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A highly accurate 
metadynamics‑based Dissociation 
Free Energy method to calculate 
protein–protein and protein–ligand 
binding potencies
Jing Wang*, Alexey Ishchenko, Wei Zhang, Asghar Razavi & David Langley

Although seeking to develop a general and accurate binding free energy calculation method for 
protein–protein and protein–ligand interactions has been a continuous effort for decades, only limited 
successes have been obtained so far. Here, we report the development of a metadynamics-based 
procedure that calculates Dissociation Free Energy (DFE) and its application to 19 non-congeneric 
protein–protein complexes and hundreds of protein–ligand complexes covering eight targets. We 
achieved very high correlations in comparison to experimental binding free energies for these diverse 
sets of systems, demonstrating the generality and accuracy of the method. Since structures of most 
proteins are available owing to the recent success of prediction by artificial intelligence, a general free 
energy method such as DFE, combined with other methods, can make structure-based drug design a 
widely viable and reliable solution to develop both traditional small molecule drugs and biologic drugs 
as well as PROTACS.

A general method able to accurately calculate binding affinities of protein–protein complexes (PPC) and pro-
tein–ligand complexes (PLC) would be highly empowering for rational design of biologic and small molecule 
drugs. (“Ligand” refers to small molecule). It would also offer researchers a theoretical tool to study processes 
involving molecular recognition and interaction. Although development of such a method has been the focus 
of continuous effort for decades, only limited successes have been achieved. For example, empirical functions 
were developed to be used in docking codes, which are critical to making the docking codes work but usually 
poor in predicting binding free energies. Molecular Mechanics Poisson-Boltzmann/Surface Area methods and 
other similar methods were sometimes successful in generating binding free energies for specific systems1–3. 
The potential of mean force approaches which rely on physical pathways to move a binding partner relative to 
another in a complex between bound and unbound states in molecular dynamics simulations were fruitful in 
analyzing absolute binding free energies of several biological complexes4–6. Funnel-Metadynamics might be one 
of the most elegant methods that has been developed so far7–9, but it was designed only for PLC and not for PPC. 
Another elegant approach is Free Energy Perturbation (FEP) which generates rigorous relative free energies10–12, 
but its applicability was limited to calculation of relative binding free energy changes among congeneric series of 
ligands, and the relative free energy changes resulting from point mutations of proteins13–15. In this manuscript, 
we report the development of a metadynamics-based procedure which brings us much closer to being able to 
predict protein–protein and protein–ligand binding free energies as well as other types of binding free energies, 
with demonstrated generality and high accuracy.

The procedure to be reported in this paper generates Dissociation Free Energies (DFE) of molecular com-
plexes such as PPCs and PLCs. We used this procedure to calculate DFE values for 19 non-congeneric PPCs and 
hundreds of PLCs (eight different protein targets), and we achieved good to excellent correlations in comparison 
to experimental binding potencies.

The key concepts of the calculation of DFE of a molecular complex are as follows. Assuming that the complex 
structure of two molecules is known and used as the starting point, a complex is dissociated by performing a 
standard metadynamics run with a user-defined distance between the two molecules used as the collective vari-
able (CV). A Gaussian energy impulse centered at a running value of the CV is periodically added to the total 
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potential energy of the system at every time interval along the progression of the simulation, which forces the CV 
to increase, leading to the dissociation of the molecules (see Fig. 1a). Unlike the usual metadynamics procedures 
which seek repeated back-and-forth sampling to achieve the convergence condition16–18, this procedure performs 
a number of one-way trip runs. In each run, the system undergoes dissociation and does not re-associate due to 
the immense space available to explore in the dissociated state. In such a run, how long the system stays in the 
bound (associated) state depends on the free energy well or the intrinsic stability of the complex, while how long 
it stays in the free (dissociated) state is arbitrary depending on the simulation time. As long as the system stays 
in the bound state, Gaussian energies will continuously be added into that region. When the accumulation of the 
Gaussian energies fills up the bound state well, the system exits from the bound state. Therefore, the accumulated 
Gaussian energies of the bound state provide the raw data from which we can calculate a free energy quantity, 
namely the DFE of the system. DFE can be understood as a measure of the degree of difficulty of pushing the 
system out of the bound state region. The Gaussian energies added into the free state do not contribute to this 
DFE and can be ignored. Giving that a single run inevitably includes errors associated with the random nature 
of the simulation, multiple runs are performed until the calculated DFE converges to a stable value. According to 
the metadynamics terminology, the distribution of the accumulated Gaussian energies (functions) is called the 

Figure 1.   Concept and workflow of a DFE calculation. (a) One-way trip dissociation of a molecular complex 
by running metadynamics using an intermolecular distance D as CV. The dotted curve on the right panel is an 
illustrative trajectory of the centroid of the CV residue of protein B (green ribbon). (b) Primitive FES from a 
number of replicas of different random seeds, noting that a wall is placed in each run. (c) Average FES stemming 
from an ensemble of primitive FES, noting the position r0 of the bound state minimum and the boundary rb 
separating the bound state region and the free state region. (d) Boltzmann factor as a function of D, narrowly 
concentrated around r0. (e) Convergence analysis: DFE is iteratively calculated as more and more replicas enter 
into averaging, showing that DFE converges when a sufficient number of replicas are averaged.
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negative image of the free energy surface (FES, see Fig. 1b,c). Our procedure derives DFE from the FES profiles 
of the one-way trip runs.

We used the Desmond metadynamics module implemented in Maestro suite19,20 to do metadynamics runs 
and we wrote several scripts to perform job launches and post-run data processing including FES regeneration, 
averaging, DFE calculation and convergence analysis. However, this procedure can be readily reproduced based 
on other metadynamics programs.

Results
Summary of DFE procedure.  The calculation of DFE of a complex is composed of the following steps. (1) 
A first set of independent metadynamics runs are launched. Each run shares the same starting point while using 
a different random seed, and typically proceeds for 10–40 ns. (2) After completion of these runs, the FES of each 
run (namely the primitive FES) is calculated (see Fig. 1b). (3) The averaged FES is calculated from an ensemble 
of primitive FES (see Fig. 1c). (4) DFE is calculated from an averaged FES. And (5) the convergence analysis is 
performed (see Fig. 1e). If convergence is not reached, another set of runs are launched and the previous steps 
are iterated; otherwise, the final DFE is obtained. After step 2, each run is examined to determine if it behaves as 
a one-way trip. A run that does not fit the one-way trip description is removed from the ensemble for averaging. 
A run that needs more simulation time to exit from BS is extended. This is called “the correction process” and 
will be detailed in the “Methods” section. The calculation of the primitive FES of an individual run is part of the 
standard metadynamics16,19,20. The calculation of DFE and the convergence analysis will be illustrated in more 
detail below.

The primitive FES from three of the runs of a PPC (PDB entry 3A4S) are given in Fig. 1b as examples. While 
their differences reflect the randomness of different runs, they all feature a major peak around the bound state 
region and a flatter variable curve in the free state region. The averaged FES from 50 runs for the same system 
is given in Fig. 1c, indicating a smoother surface, a clear bound state minimum centered at r0 and a boundary rb 
between the bound state region and the free state region which is a maximum or saddle point.

Calculation of DFE from averaged FES.  Denoting the averaged FES using symbol g(D), a nominal par-
tition function Q can be calculated using the following equation:

where a and b are the beginning and end of the bound state region, respectively; k, T and D are the Boltzmann 
constant, temperature and CV distance, respectively.

It is important to point out that exp
(

−
g(D)
kT

)

 decreases exponentially when g(D) increases. As shown in the 
example in Fig. 1d, this function is narrowly concentrated around r0. Only the region around r0 with energy 
higher than the minimum point by 4 kcal/mol or less has significant contributions to Q. Therefore, the integra-
tion can be done over the entire D region sampled, which would have no significant difference compared to 
integration over the bound state region. In other words, practically, a can be set to zero and b can be set to the 
distance where the wall is placed. (A wall is used to stop the monomers from moving too far from each other). 
One does not have to determine where rb is to calculate Q.

DFE is calculated from the nominal partition function as,

Convergence analysis based on DFE‑N plot.  DFE is calculated based on the averaged FES which 
depends on how many runs are used in the averaging process. To examine if DFE converges into a stable value 
for a given system, DFE is first calculated using only one run, and then recalculated iteratively by incorporating 
additional runs into the averaging. An example of a plot of DFE as a function of the number of runs (N) used in 
the averaging is shown in Fig. 1e. Large fluctuations in the calculated DFE are observed initially for small values 
of N and convergence to a stable value occurs as N is increased. When the fluctuations among the last five runs 
are smaller than 1 kcal/mol, the sampling is considered converged and the final DFE value is obtained.

Calculation of DFE for a diverse set of PPCs.  Nineteen PPCs were selected from the Protein–Protein 
Interaction Database which provides a collection of crystal structures of PPCs with the corresponding experi-
mental binding affinities21–27. The details of the selection are given in the “Methods” section. The DFE procedure 
was applied to each complex.

The derived averaged FES and convergence plots for these PPCs are given in Supplementary Fig. S1. Col-
umns 1–4 of Table 1 summarize each PPC’s PDB code, complex type, definition of CV and DFE value obtained, 
respectively. Columns 6–7 give the experimental binding free energy ∆Ge and dissociation constant Kd of each 
PPC. The plot of ∆Ge against calculated DFE for the 19 complexes (Fig. 2a) indicates a strong linear correlation 
between DFE and ∆Ge, though one point (open circle) appears to be an outlier. If this point is excluded from the 
Least-Square-Fitting, the coefficient of determination R2 and the coefficient of correlation R are 0.84 and 0.92, 
respectively, indicating a very high correlation. The relationship between DFE and ∆Ge from the Least-Square-
Fitting was as follows, with a standard error of 1.61 kcal/mol.

(1)Q = (b− a)−1

∫ b

a
exp

(

−
g(D)

kT

)

dD

(2)DFE = −kT lnQ

(3)�Ge = 0.4512DFE − 1.02
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If the outlier is not excluded, R2, R and the standard error change to 0.74, 0.86 and 2.06, respectively, which 
still indicates a high correlation.

The results indicate that DFE is linearly correlated with ∆Ge, but the individual DFE values differ from the 
corresponding individual ∆Ge values. This is consistent with the concept that DFE is not the binding free energy 
by definition, but it is closely coupled with it. The major difference between the concept of DFE and that of bind-
ing free energy is that DFE quantifies the work required to dissociate a complex while binding free energy is the 
free energy difference between the bound and free states. DFE does not require the calculation of the free state 
explicitly, neither does it require the calculation of the contribution of the standard state concentration5,28. The 
ignored terms in DFE may be mostly the constant terms of the binding free energy. More analysis about what 
are missing in DFE is given in the “Discussion” section.

The above relationship between ∆Ge and DFE was used to convert the DFE values into calculated binding 
free energies ∆Gc (Column 5, Table 1). ∆Gc can be compared with ∆Ge individually. The errors given in the DFE 

Table 1.   Calculation of DFE of 19 non-congeneric PPCs to compare with experimental binding free energies. 
a A CV was defined by the distance between the centroid of the backbone heavy atoms of a residue in protein 
1 and the centroid of the backbone heavy atoms of a residue in protein 2. For 2PTC, 2C0L, 3LVK, 3F1P 
and 2OOB, the Cβ was also included in the definition of the corresponding centroid. b Calculated binding 
free energy by introducing DFE into Eq. (3) in the text. c Experimental binding free energy calculated using 
∆Ge = kT ln(Kd) at T of 310 K. d Experimental binding constant Kd from ref.27.

PDB code PPI type CVa DFE (kcal/mol) ∆Gc
b (kcal/mol) ∆Ge

c (kcal/mol) Kd
d (M)

1EMV IM9 immunity protein–Colicin 
E9 nuclease V37A–F86B − 32.42 ± 0.16 − 15.65 − 19.32 2.4 × 10–14

2PTC Trypsin–BPTI D194E–K50I − 36.59 ± 0.27 − 17.53 − 18.75 6 × 10–14

1BVN α-Amylase–Tendamistat D300P–A823T − 34.67 ± 0.07 − 16.66 − 15.65 9.2 × 10–12

1R0R A serine protease–OMTKY3 L126E–T17I − 32.38 ± 0.13 − 15.63 − 14.94 2.94 × 10–11

1ACB Chymotrypsin–Eglin C S214E–L45I − 29.38 ± 0.2 − 14.27 − 13.76 2 × 10–10

1AY7 Rnase SA–Barstar T82A–L20B − 28.54 ± 0.18 − 13.9 − 13.76 2 × 10–10

2UUY​ Trypsin–Tryptase inhibitor D196E–K39I − 24.11 ± 0.32 − 11.9 − 11.7 5.6 × 10–9

1KAC Adenovirus protein–Human 
receptor L430A–W59B − 23.99 ± 0.16 − 11.84 − 11.11 1.48 × 10–8

3BZD TCR Vβ8.2–Enterotoxin C-3 F75A–M24B − 17.73 ± 0.23 − 9.02 − 9.95 9.6 × 10–8

2C0L PEX5–SCP2 S612A–L31B − 14.56 ± 0.15 − 7.59 − 9.88 1.09 × 10–7

1KTZ TGFβ–TGFβ receptor V33A–T51B − 20.78 ± 0.05 − 10.39 − 9.27 2.9 × 10–7

3LVK Cys desulfurase–Sulfurtransferase D52A–R27B − 17.72 ± 0.17 − 9.01 − 9.25 3 × 10–7

1FFW Chemotaxis protein CheY–Chem-
otaxis protein CheA L84A–L212B − 14.46 ± 0.07 − 7.54 − 8.33 1.35 × 10–6

3F1P HIF2A–ARNT V340A–I458B − 20.83 ± 0.47 − 10.42 − 8.3 1.4 × 10–6

1US7 HSP90–P50 F104A–L205B − 17.59 ± 0.16 − 8.96 − 8.28 1.46 × 10–6

3A4S UBC9–SLD2 I45B–I408C − 13.61 ± 0.17 − 7.16 − 7.87 2.81 × 10–6

1QA9 CD2–CD58 K91A–D33B − 20.74 ± 0.12 − 10.38 − 7.16 9 × 10–6

2OOB CBL-B–Ubiquitin L69B–A937A − 9.81 ± 0.15 − 5.44 − 5.99 6 × 10–5

3SGB Proteinase B–OMTKY3 L18I–S195E − 18.84 ± 0.03 − 9.52 − 15.24 1.79 × 10–11

Figure 2.   Correlation plots between calculated DFE and experimental binding free energies ∆Ge. (a) 
Correlation plot for 19 PPCs. The open circle is an outlier (corresponding to complex 3SGB in Table 1). The 
indicated R2 and SE (Standard Error) correspond to the Least-Square-Fitting after excluding the outlier. (b) 
Correlation plot for PLCs for target CDK2.
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column of Table 1 are due to the sampling completeness. The differences between ∆Gc and ∆Ge are typically 
larger than these errors because they include everything that could cause discrepancies between calculations 
and experimental measurements including theoretical assumptions, force-field errors and experimental errors.

Comparison with and without the correction process.  The above results were obtained after apply-
ing the correction process. Table 2 gives a comparison of DFE and ∆Gc with and without the correction pro-
cess (columns 5–8) as well as the total number of runs, chemical time in each run before any extension, and 
corrections made if any, for each PPC, respectively. Overall, about 13% of the runs could not be considered 
as completed one-way trips. These runs were either extended to longer simulation times or removed from the 
calculations according to the process detailed in the “Methods” section. Interestingly, the correction process did 
not change ∆Gc significantly for any of the complexes; the changes due to the correction are either close to or 
smaller than 0.5 kcal/mol. In terms of DFE, only three of the 19 complexes showed a difference more than 1 kcal/
mol (1.2, 1.3 and 2.2) before and after the correction. The correlation indexes R2 (0.84) and R (0.91) without the 
correction remained practically the same as those with the correction.

Calculation of DFE for eight protein targets with different sets of ligands.  To investigate the 
performance of the DFE procedure in predicting protein–ligand binding free energies, we used a published 
dataset of PLC structures with experimental binding affinities, which had previously been used to benchmark 
the FEP method10.

The derived averaged FES and convergence plots of all the PLCs are given in Supplementary Figs. S2 and S3. 
Columns 1–5 in Table 3 give the protein targets, number of ligands for each target, CV definition, number of 
runs and chemical time in each run, respectively. The obtained DFE were compared with experimental ∆Ge for 
each target separately, with the Least-Square-Fitting analysis. The derived R2 and standard error for each target 
are included in Columns 6–7 of Table 3. R2 varied from 0.67 for CDK2 to 0.32 for BACE. R2 for Thrombin was 
exceptionally low (0.01), however, exclusion of two outliers brought R2 to 0.62. The average R2 across all the 
eight targets was 0.45 without excluding any points and 0.53 after excluding the two outliers in Thrombin data. 
Interestingly, the standard error did not follow the trend of R2, but distributed flatly between 0.57 and 1.09 kcal/
mol. Thrombin had the smallest standard error. These observations suggest that the prediction errors for dif-
ferent targets are similar and reasonably small, and that the variations of R2 among different targets are mainly 
due to the different binding free energy spans of the ligand sets. For example, the span for CDK2 is 4.2 kcal/
mol while the span for Thrombin is 1.7, causing a higher R2 for the former than for the latter. Likewise, the R2 
for these PLCs are generally smaller than the R2 for the PPCs because the latter has a much larger binding free 
energy span (13 kcal/mol).

The linear relationship between DFE and ∆Ge derived from Least-Square-Fitting for each target is given in 
Column 8, Table 3. The correlation plots are given in Fig. 2b for CDK2 and Supplementary Fig. S4 for all the 
targets.

Table 2.   Comparison of calculated DFE and binding free energies ∆Gc before and after the correction. a The 
number of runs. b Chemical time of a run before the correction process. c DFE after the correction process. 
d DFE before the correction process. e Calculated binding free energy after the correction process. f Calculated 
binding free energy before the correction process.

PDB code Na tb (ns) Applied corrections DFEc (kcal/mol) DFEnc d (kcal/mol) ∆Gc
e (kcal/mol) ∆Gc

nc f (kcal/mol)

1EMV 50 40 No corrections − 32.42 − 32.42 − 15.65 − 15.57

2PTC 50 20 18 runs extended to 30 ns; 2 runs to 40 ns − 36.59 − 35.95 − 17.53 − 17.43

1BVN 50 40 No corrections − 34.67 − 34.67 − 16.66 − 16.57

1R0R 50 20 No corrections − 32.38 − 32.38 − 15.63 − 15.55

1ACB 50 30 No corrections − 29.38 − 29.38 − 14.27 − 14.22

1AY7 60 40 13 runs with Invasions removed − 28.54 − 30.76 − 13.9 − 14.36

2UUY​ 50 20 4 runs extended to 30 ns − 24.11 − 24.14 − 11.9 − 11.88

1KAC 50 30 No corrections − 23.99 − 23.99 − 11.84 − 11.82

3BZD 50 20 3 runs with Invasions removed − 17.73 − 17.77 − 9.02 − 9.04

2C0L 50 20 13 runs with repeated sampling removed − 14.56 − 15.9 − 7.59 − 7.61

1KTZ 50 20 8 runs extended to 30 ns − 20.78 − 20.79 − 10.39 − 10.39

3LVK 50 20 3 runs with repeated sampling removed; 11 runs extended to 30 ns; 
2 runs to 40 ns − 17.72 − 16.89 − 9.01 − 9.02

1FFW 50 10 11 runs with repeated sampling removed; 6 runs extended to 20 ns − 14.46 − 13.24 − 7.54 − 7.03

3F1P 50 30 7 runs with repeated sampling removed; 2 runs extended to 40 ns − 20.83 − 20.31 − 10.42 − 10.41

1US7 50 10 No corrections − 17.59 − 17.59 − 8.96 − 8.96

3A4S 50 10 2 runs with Invasions removed; 17 runs extended 20 ns − 13.61 − 14.42 − 7.16 − 7.55

1QA9 50 20 No Corrections − 20.74 − 20.74 − 10.38 − 10.37

2OOB 50 10 2 runs with repeated sampling removed; 5 runs extended to 20 ns − 9.81 − 9.54 − 5.44 − 5.5

3SGB 50 40 No correction − 18.84 − 18.84 − 9.52 − 8.96
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The overall predictive power of the DFE method was similar to that of the FEP+ method10 for these same sets 
of PLCs. A comparison of the R2 and standard error between the two methods in terms of predicting experimen-
tal binding free energies is summarized in Supplementary Table S1 and Figs. S4 and S5.

Definition of appropriate CVs and assessment of variability due to the different CVs.  The inter-
molecular distance used as the CV in the calculation of DFE of a complex needs to be defined such that its forced 
increase directly leads to the dissociation of the complex without significant conformational changes unrelated 
to the dissociation. Although it is difficult to differentiate which conformational changes are related to the dis-
sociation and which are not, we took the following precautions in the choice of CVs: (1) we avoided using any 
residues from flexible loops to define a CV because the Gaussian forces acting upon such a CV could cause 
conformational changes of the corresponding loops which might not originate from the dissociation process. (2) 
The CV for a PPC was defined as the distance between the centroids of the backbone heavy atoms of a pair of 
residues, each from different proteins in the complex. The CV for a PLC was defined as the distance between the 
centroid of the heavy atoms of a residue of the protein and the centroid of the heavy atoms of the whole ligand in 
the complex. And (3) the protein residues used to define a CV were tightly packed within the respective proteins 
and were located within either an α-helix or a β-sheet of multiple strands when possible.

We used one PPC (3A4S) to explore the effect of the change of CV definition on DFE, in which we tried seven 
different CVs by changing the residues defining the CV. For each of the CVs, DFE was respectively calculated 
with and without the correction process (see Supplementary Table S2). We found that the standard deviation 
of DFE stemming from the changes of CV definition was about 1.08 kcal/mol without the correction process 
and 1.03 with the correction process. The standard error of the mean was 0.41 and 0.39 kcal/mol, respectively. 
The maximum difference among the set of DFE values was about 2.73 without the correction and 2.96 with the 
correction. Substituting these values into Eq. (3), the estimated uncertainty in the predicted ∆Gc due to the dif-
ferent choices of CV was less than 1.3 kcal/mol, or 0.5 based on the standard deviation of DFE. Given that the 
standard error of Eq. (3) was about 1.6 kcal/mol, the uncertainty due to the different choices of CV would not 
alter the described quality of correlation largely, and it might be one of the sources of error already included in 
the standard error of Eq. (3).

Discussion
It is striking that the calculated DFE generally showed strong correlations with the experimental binding free 
energies for such a variety of systems. We offer the following thoughts concerning what factors and subprocesses 
of an association/dissociation event are included and what are absent in a DFE calculation. (1) Conceptually, the 
DFE of a complex is derived from the sampling of the time period of the entire bound state up to a point where 
the system exits from the bound state well. (2) The factors captured include at least the interactions between 
and within the solute molecules, effects stemming from the thermal motions, conformational changes within 
the sampled period and solvent effects. And (3) the period after the dissociation is not considered, in which the 
solutes undergo free movements and isolated conformational variations as well as much weaker nonspecific inter-
actions. The free movements of the solutes in the free state are independent of the solute molecular interactions, 
contributing a constant term to the binding free energy. The nonspecific interactions of the system after its exit 
out of the bound state are solute-dependent but may be much weaker relative to the bound state interactions and 
the entropic term of the free movements of the free state. The role of the conformational changes or dynamics 
of solutes in the free state (before one solute finds an entrance into another) is not captured in DFE and may be 
significant for some systems. More studies may be useful to clarify this point in the future. However, the role of 

Table 3.   R2, standard errors (SE) and relationships between DFE and experimental binding free energies ∆Ge 
for 8 protein targets with different sets of ligands, as well as the simulation conditions. a A CV was defined 
by the distance between the centroid of the backbone heavy atoms of a residue of the corresponding protein 
and the centroid of the heavy atoms of the corresponding whole ligand, except that, for TYK2 and Thrombin, 
the Cβ was also included in the definition of the corresponding centroid; and for CDK2, P38α and BACE, the 
heavy atoms of a whole residue were used. b The number of runs performed for each ligand. c Chemical time of 
a run. d The numbers in the parentheses correspond to the results after exclusion of two outlier points in the 
Thrombin data set.

Target Number of ligands CVa Nb tc (ns) R2 SE (kcal/mol) Relationship

CDK2 16 F80 40 20 0.67 0.72 ∆Ge = 0.858DFE + 7.26

TYK2 16 M978 50 10 0.66 0.79 ∆Ge = 0.602DFE − 0.85

P38α 34 L75 40 20 0.6 0.65 ∆Ge = 0.39DFE − 3.33

JNK1 21 L110 27 10 0.51 0.62 ∆Ge = 0.559DFE − 2.86

MCL1 42 L290 30 10 0.48 0.78 ∆Ge = 0.642DFE − 1.96

PTP1B 23 R221 40 15 0.35 1.09 ∆Ge = 0.628DFE + 4.19

BACE 36 W176 40 20 0.32 0.65 ∆Ge = 0.268DFE − 4.18

Thrombind 11 S214 50 10 0.01 (0.62) 0.57 (0.36) (∆Ge = 0.793DFE + 0.37)

Averaged 0.45 (0.53) 0.73 (0.71)
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the conformational changes or dynamics for the period between the entrance and the “endpoint” of the bound 
state is accounted for in the DFE procedure.

Although the DFE procedure samples the free energy surface based on the dissociation events, the free energy 
surface obtained would be the same as that obtained from the association events for the bound state region. This 
is because binding is a reversible process. An event that travels from the free state to the bound state (namely 
association event) would sample the same bound state free energy well as an event from the opposite direction 
(dissociation event). This is true for both real and simulated events. Based on this reasoning, the calculated free 
energy should have captured the effects of part of both on- and off- processes of binding, the part that covers 
the bound state phase.

In general, the averaged FES has a primary minimum corresponding to the bound state significantly deeper 
than other regions along the CV. As a result, the derived DFE primarily depends on the bottom of the minimum 
(within 4 kcal/mol from the minimum point). The sampling beyond this bottom region does not contribute to 
the DFE significantly. In the other words, in addition to the free state region being unimportant for DFE, the 
transition state and bound state regions beyond the bottom of the minimum are also unimportant. This implies 
that after the system moves away from the bottom region, even though the molecules may retain much of the 
native interactions and/or gain some nonnative interactions, the simulation of these regions does not contribute 
to the DFE significantly. This is counterintuitive but true, and it is one of the reasons for the robustness of the 
DFE calculation. However, this does not mean that some parts of the native interactions are not needed for DFE. 
Every part of the native interactions contributes to the free energy values of the bottom region of the minimum 
and thus contributes to the DFE.

Some comparisons between our DFE method and the traditional potential of mean force methods4–6 and 
between DFE and other metadynamics methods7–9 are given as follows. (1) In the potential of mean force meth-
ods, a complex is dissociated by forcing one of the binding partners to move relative to the other along a user-
defined path. Such a steered movement is achieved by dividing the path into n windows and using restraining 
forces to gradually move the system from one window to the next. In comparison, a DFE run does not require 
a user-defined path: the system moves in an unrestrained molecular dynamics simulation governed by the total 
energy which is the sum of the normal molecular energy and the added Gaussian functions. Gaussians are 
periodically added to wherever the system is in an unrestrained simulation rather than to pre-defined locations. 
The system is driven out of the bound state well by the accumulation of the Gaussian energies via any pathways 
that it can find at random in the simulation. (2) Unlike the potential of mean force methods, a DFE simulation 
does not require any restraints or constraints on any translational, rotational or conformational variables of the 
molecules. (3) Unlike other metadynamics methods, a DFE simulation does not use comprehensive collective 
variables but uses a single physical distance as the collective variable. And (4) the DFE procedure achieves con-
vergence despite the above three simplifications because it uses one-way trip simulations in which the dissociated 
partners are not required to re-associate, and it reaches the convergence by averaging multiple independent runs. 
In the traditional methods, the dissociated partners are required to re-associate (backward trips) for convergence, 
which poses a problem that the partners cannot find the original native interaction mode if their orientations and 
conformations are not restrained. Thus, there is a need of imposing system-dependent restraints or constraints 
and using comprehensive collective variables in the traditional methods. In contrast, the DFE method is free of 
these complications and can be performed much more easily.

One drawback of this method is that it does not predict binding modes. One remedy is to combine DFE 
with docking using DFE to select binding modes and generate more accurate estimates of binding free energies.

The recent success of prediction of protein structures of almost the entire human proteome with high accu-
racy with AI-driven AlphaFold29,30 methodology has removed a major obstacle hampering structure-based 
drug design. The combined use of DFE with artificial intelligence31, docking32,33 and de novo design34–36 could 
overcome the remaining barriers and make rational drug design a widely viable and reliable approach. Several 
important issues such as hit identification, potency, selectivity and off-target toxicity can be addressed using this 
type of structure-based approach. This applies both for small molecule drugs and biologic drugs. And finally, 
DFE can also be used to study protein–protein interactions of trimer complexes in the design of PROTACS37–41.

Methods
Major steps of a DFE calculation.  The calculation of DFE of a complex consists in a multi-step proce-
dure by employing the Desmond module implemented in Maestro Drug Discovery Suite42 (version 2019-3 with 
OPLS3e force-field43) to generate raw data, and by processing the raw data to obtain DFE using our own scripts. 
It is composed of the following steps.

	 (1)	 Protein preparation. The crystal structure is imported into Maestro GUI. The Protein Preparation Wizard 
panel44 is used to add hydrogen atoms, patch end groups, add missing side chains and missing loops, 
assign protonation states of histidine, aspartate and glutamate at pH 7.045 and optimize the polar hydrogen 
orientations in crystal water molecules and proteins.

	 (2)	 Simulation system setup. The complex is solvated in a cubic solvent box of which the size is set to be about 
the sum of the largest dimension of the complex and 35 Å. The solvents are composed of water molecules, 
sodium ions and chloride ions with a salt concentration of 0.15 M. Any potential ligands are checked 
with Force Field Builder module. If dihedral angles with suboptimal parameters exist, the corresponding 
parameters will be generated using this module which fits the force-field energy against the quantum 
mechanical energy for the related fragments.

	 (3)	 Preparation of metadynamics input files. The solvated complex is loaded into the Metadynamics panel. 
The CV distance is defined. The Gaussian width and height are set to 0.05 Å and 0.01 kcal/mol, respec-
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tively. A wall at the CV value equal to the sum of the largest dimension of the complex and 30 Å is set to 
prevent the CV from going too far. The time interval between which a Gaussian is injected is set to 0.09 
picoseconds (ps). The simulation temperature and pressure are set to 310 K and 1.01325 bar, respectively. 
The simulation time is set to the desired time (usually 10–40 ns). This step generates three input files (cfg, 
msj and cms), a command file (sh) and a force-field directory opls_dir.

	 (4)	 Generation and submission of multi-replica jobs. This step is done using one of our scripts. The initial 
input directory and the input files therein are replicated into multiple replicas which differ from each 
other only by the random seeds used. A typical scenario is 50 replicas with random seed changing from 
2007 to 2056. Each replica is launched into a different instance of type p3.xlarge in an AWS virtual cluster, 
and each replica employs one GPU of type V100 and one CPU.

	 (5)	 Multisim19,20 run of each replica. Each replica run undergoes multiple stages as instructed in the msj file as 
follows. (a) Brownian dynamics of NVT ensemble: temperature 10 K, small timesteps, restraints on solute 
heavy atoms and 100 ps. (b) Berendsen dynamics of NVT ensemble: temperature 10 K, small timesteps, 
restraints on solute heavy atoms and 12 ps. (c) Berendsen dynamics of NPT ensemble: temperature 10 K, 
restraints on solute heavy atoms and 12 ps. (d) Berendsen dynamics of NPT ensemble: temperature 
310 K, restraints on solute heavy atoms and 12 ps. (e) Berendsen dynamics of NPT ensemble: temperature 
310 K, no restraints and 500 ps. (f) Production. Martyna-Tobias-Klein dynamics of NPT ensemble with 
metadynamics is performed at a temperature of 310 K without restraints up to the targeted simulation 
time. This generates a kerseq file recording all the Gaussian functions infused into the system along the 
simulation time, the trajectory file and other output files.

	 (6)	 Calculation of primitive FES from each replica run. The expression of the Gaussian energy function G(D) 
that is added to the system at a time point t is

where d(t) is the value of the CV at time t serving as the center of the Gaussian function and D is the CV 
serving as the variable of the Gaussian function; h and σ are the user-defined Gaussian height and width, 
respectively16. D is a spatial variable that covers the full range of the CV variations.

		    The free energy value at a CV point is the negativity of the sum of all the Gaussian energies at that 
point. The corresponding distribution of the free energy versus the CV is the so-called FES. Although 
the module automatically generates a FES file at the end of each run, a new FES is generated by dividing 
the sampled region of CV into 80 equal intervals and calculating the free energy at each division point 
by summing up the values of all the Gaussian energies at that point, based on the Gaussian functions 
recorded in the kerseq file. The resulted FES file contains an 80 × 2 table in which each row is composed 
of a CV value and the corresponding free energy value, and there are 80 such rows.

	 (7)	 Calculation of average FES. This step is done using one of our scripts with an algorithm as follows. The 
primitive FES files of all the runs are scanned to find the lowest and highest values of CV that have been 
visited. The segment of CV between the lowest value and the highest value is divided into equal intervals 
with the interval size equal to the smallest of the different interval sizes of different primitive FES. The 
free energy value at each division point (based on this new division) for each primitive FES is calculated 
based on the two closest points in the previous primitive FES file using a linear interpolation scheme. 
Assuming that, for a division point at CV value D in the new division, the closest points to D in the old 
primitive FES file correspond to D1 (D1 < D) and D2 (D2 > D) and the free energy values at D1 and D2 are 
g1 and g2, respectively, the free energy value g at D is as below.

		    After the recalculation of each primitive FES for the common division scale above, the average free 
energy value at each division point of CV is calculated by averaging the free energy values from all the 
primitive FES of replicas.

	 (8)	 Examination of each run against one-way trip criteria and the correction process. The plot of CV versus 
simulation time and the plot of primitive FES are plotted for each run using one of our own scripts. And 
the average FES is overlaid to the primitive FES in the latter plot. The position of the native minimum r0 
and the boundary rb between the bound state and the free state are determined based on the average FES. 
A one-way trip run is a run that the CV travels from the bound state region (< rb) to the region outside 
of it (> rb), and it does not come back as reflected in the CV versus time plot (see Fig. 3a). If it comes 
back to the bound state region after it has exited from it, it is considered as a multiple-way trip run (see 
Fig. 3b), which should be rejected from the ensemble for the averaging of FES. If the CV in a run does 
not exit from the bound state but it goes smaller and smaller to the extent less than r0 by more than 4 Å 
(see Fig. 3c), and its primitive FES shows significant invasion to the region left to the inner wall of the 
primary minimum of the average FES (see Fig. 3d), it is a run that leads to the continuous decrease of 
the CV distance via conformational changes and other movements unrelated to the dissociation process, 
and it should be rejected from the averaging. If a run has not exited from the bound state but it does not 
belong to the previous category (see Fig. 3e), this run should be extended to longer simulation time so 
that it can exit from the bound state (see Fig. 3f). If the last case fits to the one-way trip description after 
the extension, it is used in the averaging; otherwise, it will be discarded too. The whole process above 
is called the correction process. Interestingly, this correction process did not have much impact to the 

(4)G(D) = hexp

(

−
(D − d(t))2

2σ 2

)

(5)g = g1 + (D − D1)
(g2 − g1)

(D2 − D1)
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final DFE results in our studies, because most runs belonged to the one-way trip category. This process 
is currently manual, but it can be automated with a script if it is necessary in the future.

	 (9)	 Calculation of DFE. The average FES is used in Eq. (1) to calculate a nominal partition function Q, and 
DFE is calculated from Q based on Eq. (2), using one of our scripts.

	(10)	 Convergence analysis. After the completion of the first set of replicas, DFE is first calculated using the 
first replica only, and then recalculated repeatedly by adding more and more replicas into the averaging. 
DFE is plotted as a function of the number N of the replicas used in the averaging. If this plot shows that 
DFE fluctuations become smaller and smaller when N becomes greater, the sampling is trending toward 
convergence. When the last five points in this plot have fluctuations less than 1 kcal/mol, the convergence 
is considered to have reached and the sampling stops. Otherwise, another set of replicas are launched 
and the previous steps are iterated until the convergence is reached. (In our applications, the first set had 
30–50 replicas depending on the systems and the convergence was reached without the need of a second 
set for any of the systems).

Approximate speed.  The time of calculation of DFE of a complex is dominated by the metadynamics 
simulation time, since the time to run the scripts for post-run data processing is insignificant. Assuming that 
one deploys sufficient instances to allow all the runs of a complex to go in parallel, and that each run has a length 
of about 10–40 ns, the whole process takes about 1–4 h on p3.xlarge/V100 instances (excluding the time of the 
manually-performed correction process). In the calculations of PLCs, the computer time of the DFE was about 
the same as that of the FEP+10 on a per ligand basis.

Figure 3.   Examination of each run against one-way trip description. (a) D versus Time plot of a one-way 
trip run in which the sampling initially stays around r0 (lower-level dotted red line), and then goes up passing 
through rb (higher-level dotted red line) without returning back to the level around r0. (b) D versus Time plot 
of a multi-trip run in which the sampling goes up passing through rb and then returns back to the original level 
around r0. (c) D versus Time plot of a run where D goes toward opposite direction of dissociation signaling 
invasions, conformational changes or other movements unrelated to the dissociation. (d) Average FES (orange 
curve) and the primitive FES (blue curve) corresponding to the run in panel (c). The primitive FES of this run 
invades the “inner” region, left to the left wall of the primary minimum of the average FES. (e) D versus Time 
plot of a run that stays in the bound state because the simulation time is not long enough. (f) D versus Time plot 
after the run in panel e is extended to longer simulation time, showing a one-way trip behavior.
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Crystal structures of PPCs and PLCs and experimental binding affinities.  A small subset of PPCs 
were selected from the Protein–Protein Interaction Affinity Database 2.0 which contains 179 high quality PPC 
crystal structures with the corresponding experimental binding constants, the so-called “affinity benchmark” 
that the researchers had prepared to validate various protein–protein docking programs21–27. We carefully ana-
lyzed the full set and removed the complexes where the protein–protein interfaces met the following conditions: 
(1) consisted of more than two proteins, (2) were proximal to the truncated termini of protein constructs used 
in the structures, (3) involved coordinated metal ions, and (4) were close to missing loops of the proteins. In 
addition, the complexes that contain ATP or GTP analogs were also removed since the experimental interaction 
geometries around these groups were usually difficult to be maintained by constraint-free simulations due to the 
existence of coordinate bonds and strong charge-charge interactions. From the remaining structures, we ran-
domly selected 19 complexes. These complexes spanned the full experimental affinity range from micromolar to 
femtomolar Kd about uniformly and were structurally diverse in size and nature of interactions. Most binding 
interfaces consisted of a mixture of hydrophobic interactions, hydrogen bonds and salt bridges. Our selected 
complexes included the ones interacting mostly through the helical packing or beta-sheet interfaces, as well 
as the ones interacting via a mixture of different secondary structure elements. Thus, we selected a reasonably 
diverse subset of protein complexes to test the performance of DFE method. The PLC structures and the binding 
data were taken from reference10 without exception.

Data availability
The Maestro and Desmond input files for each system modeled in this manuscript have been placed in a com-
pressed folder named input_files available from Supplementary Data section.
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