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Abstract: Most existing image inpainting methods have achieved remarkable progress in small image
defects. However, repairing large missing regions with insufficient context information is still an
intractable problem. In this paper, a Multi-stage Feature Reasoning Generative Adversarial Network
to gradually restore irregular holes is proposed. Specifically, dynamic partial convolution is used
to adaptively adjust the restoration proportion during inpainting progress, which strengthens the
correlation between valid and invalid pixels. In the decoding phase, the statistical natures of features
in the masked areas differentiate from those of unmasked areas. To this end, a novel decoder is
designed which not only dynamically assigns a scaling factor and bias on per feature point basis using
point-wise normalization, but also utilizes skip connections to solve the problem of information loss
between the codec network layers. Moreover, in order to eliminate gradient vanishing and increase
the reasoning times, a hybrid weighted merging method consisting of a hard weight map and a soft
weight map is proposed to ensemble the feature maps generated during the whole reconstruction
process. Experiments on CelebA, Places2, and Paris StreetView show that the proposed model
generates results with a PSNR improvement of 0.3 dB to 1.2 dB compared to other methods.

Keywords: deep learning; progressive image inpainting; hybrid weighted merging; point-wise
normalization

1. Introduction

Image inpainting aims to reconstruct the missing regions of damaged images and make
the repaired image reasonable in both structure and texture. This technology shows a promis-
ing performance in many applications, such as image restoration, concealing errors and
retouching photos [1–3]. Traditional inpainting methods [4–7] can usually synthesize rela-
tively reasonable stationary textures. However, without semantic understanding of images,
they are impossible to generate visually realistic content when the scenes are complex.

Recently, the methods based on encoder-decoder architecture [8–13] have massively
improved the inpainting performance; the U-Net structure especially demonstrated a
strong ability to generate detailed images. These methods encoded the input image into
a latent high-level feature space, and then decoded it back to low-level pixels to fill the
missing area in one shot. They are more suitable for filling images with a small range of
holes, since the pixels within the local area have a strong correlation. However, as the
damaged regions become larger, the model lacks effective features to infer missing contents,
one-shot filling will generate semantically ambiguous results. An alternative solution is
progressive inpainting. These methods divide the whole restoration process into several
phases, each of which employs the information of previous phases as clues to restore
the missing area step by step. For example, PGN [14] progressively inpaints the missing
regions from the hole boundary to center, but the reconstruction at the image level suffers
from high computational cost and information distortion. In order to reduce the amount of
calculation and strengthen the connection between features, RFR-Net [15] supposes to share
the attention scores of adjacent recurrences. However, there are still several limitations
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which could impact the performance of the existing progressive inpainting solutions,
and they are summarized as follows. Firstly, current methods ignore the characteristic that
the hole regions will gradually shrink. It means that the correlation between valid and
invalid pixels will be weakened since the receptive field is fixed which is used to update
the mask at different phases. Secondly, the mean and variance of pixels in the valid regions
could be different from those of hole regions. Using batch normalization would result
in covariant shift. Finally, progressive image inpainting gradually repairs the image by
multiple recursions, so early generated signals will corrupt after long term propagation.
Using adaptive average merging would degrade the quality of the generated features.

To address these issues, a novel image inpainting framework named Multi-stage Fea-
ture Reasoning Generative Adversarial Network (MFR-GAN) is proposed in this paper,
which has the ability to generate more realistic and visually pleasing results, as shown in
Figure 1. In view of the missing regions gradually narrowing down during the progres-
sive inpainting process, we use the dynamic partial convolution which can regulate the
restoration scale according to the scope of damaged areas. By this means, the correlation
between known and unknown pixels is enhanced. In the process of progressive image
inpainting, the input features will be decoded and encoded multiple times. Since the mean
and variance of valid and invalid pixels are different, we designed a new decoding structure
which not only leverages point wise normalization instead of batch normalization, but also
uses skip-connection to minimize the loss of context information during decoding. To avoid
covariant shift as mentioned above, point wise normalization is realized by adaptively
assigning scale factors and biases to each feature point in the upsampling process.

(a) Input (b) Ground Truth (c) RFR (d) MFR-GAN

Figure 1. Comparing the proposed method with the state-of-the-art progressive image restoration
method [15]. The missing regions are shown in white.

When the reconstruction process is completed, the intermediate information would
be ignored if directly using the last recurrence feature map as the final result. Moreover,
pixels of the recovered regions are changed during the subsequent inpainting processes.
This means that it is difficult to guarantee that the correct clues are always synthesized in
intermediate restorations. If wrong information is generated at a certain step, it will be
inherited and become worse at the following steps. To tackle these issues, we proposed a
hybrid weighted merging method. It is constituted of a hard weight map and a soft weight
map. The hard weight map is obtained by analyzing mask characteristics, which could
enhance the influence of signals generated in the earlier reconstruction phases. Moreover,
our model should be learnable and have the ability to pay attention to certain areas of
a reconstructed feature map. To this end, the soft weight map is designed for achieving
more realistic content. For the image discriminator, we use the Patch GAN [16] architecture
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which enables the model to pay more attention to image details during the training process.
The main novelties and contributions of this work can be summarized as follows:

(1) We design a novel Multi-stage Feature Reasoning Generative Adversarial Network,
which can adaptively adjust the inpainting scope in the recursive process through dy-
namic partial convolution, and leverage point wise Normalization to avoid covariant
shift caused by the batch normalization.

(2) In the image fusion phase, we propose a hybrid weighted merging method that
accurately merges the feature maps generated in each recurrence. By this means, we
eliminated the problem of the gradient vanishing and the destruction of the content
generated in the previous.

(3) Experiments on the benchmark datasets show that our MFR-GAN has effectively
boosted the inpainting performance and generated semantically reasonable content.

The rest of the paper is organised as follows. Section 2 introduces the related work of
image inpainting; Section 3 describes methods of the present study; Section 4 is concerned
with the main results and the ablation study; Section 5 presents the conclusions.

2. Related Work

Traditional image inpainting methods are mainly composed of two categories: patch-
based and diffusion-based. The patch-based inpainting methods [17] filled missing areas
by calculating the similarity between patches and transferring similar areas from the
background area to the hole area. The diffusion-based inpainting methods [18] attempted
to propagate neighboring information to the corrupted areas. Due to capability limitation as
well as as lack of semantic understanding of the image, these methods suffer from blurring
artifacts when restoring relatively large regions.

Recently, deep learning based methods [19–26] have improved the capability of models
to repair complex semantic environments. Context-Encoder [27] firstly employed the deep
learning based method, which adopted an encoder-decoder based structure and used
GAN [28] for image restoration. Shift-Net [29] introduced a special shift connection layer
with the U-Net structure to fill arbitrary masked regions. PEN-Net [30] filled the holes
from low resolution to high resolution with a U-shaped pyramid structure to boost the
inpainting result. PConv [31] only used valid pixels to infer corrupted regions. GConv [12]
further generalized partial convolution to gated convolution that learns to select features
for feature maps at each level. Iizuka et al. [32] used a global and local discriminator
for adversarial training to obtain coherent filling content. Liu et al. [33] designed region
normalization to eliminate the influence of damaged regions on normalization. These
methods cannot effectively settle the problems of semantic ambiguity, because they try to
reconstruct the entire target without a strong correlation between the hole center pixels and
the hole boundary pixels.

SPG-Net [34] factorized image restoration into segmentation prediction and guidance.
EdgeConnect [9] utilized the hallucinated edge of the missing area for restoration to ensure
structural consistency. Similarly, Xiong et al. [35] used contour and image completion to
gradually recover the missing regions. StructureFlow [36] consisted of a texture and struc-
ture generator. The structure reconstructor removed high-frequency textures to restore the
global structure, and then used appearance flow to synthesize image details. Li et al. [37]
designed the visual structure reconstruction layer to restore part edges of a missing area for
assisting the completion tasks. Yu et al. [13] devised the contextual attention and leveraged
a coarse-to-fine framework to restore damaged images. These methods try to guide image
inpainting by adding structural constraints, but they still lack adequate information to
reconstruct the central area of the hole. Zhang et al. [14] leveraged U-Net generator with
LSTM to concatenate all sub-tasks, and progressively filled the image with the correspond-
ing output sequence. Guo et al. [38] used continuous full-resolution residual blocks to
directly fill the missing area of the original size image. Li et al. [15] employed Knowl-
edge Consistent Attention to adaptively combine the attention scores of different recurrent
processes to improve the accuracy of image restoration. Although these methods have
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achieved considerable progressive, but they are still suffering from limitations described in
the introduction.

3. Methods

Figure 2 shows the overall architecture of the Multi-stage feature generation Adver-
sarial network, whose inputs are the damaged image Xin and the corresponding binary
mask Min, which indicates the missing regions. The proposed model is composed of three
components: a feature generator to fill the holes in the feature maps, a feature merging
model to accurately fuse the pixels synthesized in every recurrence, and a discriminator
used for detail generation. We empirically use two parallel encoders to acquire semantic
and image global structure information during the generation process. Firstly, we utilize the
dynamic partial convolution to identify the region to be reconstructed in each recurrence.
Next, the above operations are performed repeatedly to generate feature maps of different
inpainting stages. When the corrupted images are completely filled, the feature maps of
each stage are fused by the hybrid weighted merging model to generate the repaired results.
Finally, the repaired image is sent to the discriminator for evaluating whether each patch
belongs to the real or fake distribution, so as to improve the quality of image inpainting.

Figure 2. Illustration of our framework. Firstly, we use dynamic partial convolution to update the
input mask ml , then use the inpainting network to generate the pixels for the missing areas. Next,
the above operations are performed repeatedly to generate the feature maps of different inpainting
stages. Finally, the feature maps of each stage are fused by using the Hybrid weighted merging to
generate the repaired results.

3.1. Hybrid Weighted Merging

After a specific number of recurrences, the corrupted image has passed through the
feature generation module several times. If we directly use the feature map generated by
the last recurrence, it will cause the gradient to vanish and the loss of intermediate gener-
ated features. If adopting average merging, the defect area in early reconstructed image will
damage subsequently generated information. The early-stage feature information is trans-
mitted farther in the subsequent process to infer the center content; error information may
be generated. Therefore, the signals generated in early stages at the same location should
be more deterministic and the influence of signals generated in the later recurrences should
be decreased. However, adaptively average fusing the valid pixels will affect the early
generated feature information. To address this problem, we propose a hybrid weighted
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merging method to fuse the feature maps generated during hole restoration processes. It is
composed of hard weighting and soft weighting, as shown in Figure 3. For hard weighting,
on the premise of fusing non-hole region feature values, the model adaptively generates
the weight proportion for current recurrence feature map according to the generation order
of valid pixels. Firstly, divide the feature map as shown in the following formula:

mask =

{
maski, if j = 0
maski −maski−1, otherwise,

(1)

where maski is the mask of the ith recurrence update, maski−1 is the mask of the (i− 1)th

recurrence update. Then, a weight map Wi is constructed for each recursively generated
feature map F′i:

W j
i =

N

∑
j=0

mask j ×
1

1 + e(S−i)/(S−j)
, (2)

where i is the recurrence times, j is the number of regions, mask j is the jth region of maski.

W j
i represents the jth region of the weight map corresponding to the ith recursive feature

map F′i, and S is the number of feature maps generated in this inpainting process. Then,
we use the softmax function to generate the proportion of the component wi

x,y for the pixel
at position (x, y). fx,y,z represents the feature value of feature map F′i at location (x, y, z),
and the value of output feature map F̄ at location (x, y, z) can be expressed as follows:

f h
x,y,z =

S

∑
i=0

wh
x,y,z × δ

(
f i
x,y,z − µz√

σ2
z + ε

)
. (3)

Figure 3. The details of the hybrid weighted merging method.

The hard weight map directly generates the weight by analyzing the mask without the
learning process, which would limit the network’s performance. To this end, we propose a
soft weight map to assist the hard weighting for achieving better inpainting results. The soft
weight map is an adaptive map which is acquired by the input feature and average fused
output feature map with a learning process. As shown in Figure 4, we concatenate the Fi

and input feature map Fin to obtain a soft weight map:

Ws = σ(Conv([Fi, Fin])) · (1−M) + M, (4)
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where σ is the sigmoid activation function and the value of the feature map at location
(x, y) after soft weighting can be expressed as follows:

f s
x,y,z =

S

∑
i=0

ws
x,y,z × δ

(
f i
x,y,z − µz√

σ2
z + ε

)
, (5)

in which µz =
1

H×W ∑H
x=1 ∑W

y=1 f i
x,y,z, σz =

√
1

H×W ∑H
x=1 ∑W

y=1

(
f i
x,y,z − µz

)2
, δ represents a

leaky relu activation function. By fusing feature maps in the above manner, the gradient
vanishing can be effectively avoided, improving the ability of MFR-GAN to restore large
damaged areas.

(a) Input (b) PConv (c) GConv (d) EC (e) LBAM (f) RFR (g) MFR (h) GT

Figure 4. Qualitative comparison on Places2.

3.2. Dynamic Partial Convolution

The significance of the restoration proportion is most noticeable when a model is
applied to progressively inpaint the masked image. During the mask updating phase,
in order to adaptively identify the area to be repaired in each recurrence, we introduce
the dynamic partial convolution. It firstly calculates the holes ratio according to the input
mask, and the formula is as follows:

D =
∑N

i=0 E1,wΨi
jEh,1

∑N
i=0 w× h

, (6)

where D is the scale factor, E1,w and Eh,1 represent the 1×W row vector and H × 1 column
vector with the value of 1. Ψi

j represents the mask corresponding to the input image Fin,

W and H are the width and height of Ψi
j, and N represents the value of batch size. Next,

the receptive field γ of convolution kernel is obtained by D, its formula is as follows:

γ =

{
dD/1e−1e+ 2, if β%2 6= 0
dD/1e−1e+ 1, if β%2 = 0

(7)

After obtaining the value of γ, the next procedure is updating the area to be repaired.
We set stride to 1 and padding = (γ− 1)/2 ensures that the mask size is consistent with the
feature map size, its formula is as follows:

fx,y,z =

 WT
(

fx,y �mx,y
sum(1)

sum(mx,y)

)
+ b, if sum

(
mx,y

)
> 0

0, otherwise
(8)

Here, fx,y,z is the feature value at location (x, y) of layer z; WT denotes the weight of
the convolution layer filter, fx,y is the input feature patch of the current sliding window,
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mx,y is the input mask patch corresponding to fx,y, 1 refers to a H ×W matrix with all

elements being 1, sum(1)
sum(mx,y)

is the scale factor, the output result is adjusted when the number

of convolution effective input values changes. The feature value of the new mask are
expressed as:

m∗x,y =

{
1, if sum

(
mx,y

)
> 0

0, otherwise
(9)

After dynamic partial convolution, the updated mask Ml and the feature map Fl are
sent to the feature generation module. The difference between the updated mask and the
input mask is defined as the area to be repaired in this iteration, and the updated mask
remains unchanged until the next recurrence.

3.3. Feature Generation

A well-designed generator is vital to infer the missing content of the image. In order
to fill the hole regions with high-quality features, two parallel encoders are used after
down-sampling. The first encoder EA uses an attention mechanism to synthesize visually
realistic textures, and the second encoder ED uses dilated convolution to collect the spatial
features of the feature map. For encoder EA, we use several convolution layers which
are bridged through a skip connection, and apply knowledge Consistent Attention to
control the inconsistencies between the adjacent attention feature maps. For encoder ED,
we directly stack four dilated convolution layers. After the input feature maps passing
through EA and ED, the outputs of the two encoders are concatenated and sent into a single
decoder for up-sampling.

3.4. Attention Module

In image inpainting, the attention mechanism can search for possible textures in the
background and use them to replace textures in unknown areas. It thus ensures that the
filling contents are meaningful in both structure and texture. When the feature map Fi is
input into the attention model, we first calculate the cosine similarity between each pair of
feature pixels:

ŝim
i
x,y,x′ ,y′ =

〈
fx,y∥∥ fx,y
∥∥ ,

fx,y∥∥ fx,y
∥∥
〉

, (10)

where ŝim
i
x,y,x′ ,y′ represents the similarity between features of the background image hole

(x, y) and the foreground image hole (x′, y′). Then utilizing the similarity of the target
pixels in the adjacent areas, we carry out k× k filtering to smooth the attention score:

sim′ix,y,x′ ,y′ =
∑p,q∈{−k,...,k} ŝimx+p,y+q,x′ ,y′

k× k
. (11)

After that, the softmax function is used to generate the attention score, which is
expressed as score′. If the features at position (x, y) are valid in the last iteration, their
attention scores are adaptively combined with present scores to synthesize the current
iteration score:

scorei
x,y,x′ ,y′ = score′ix,y,x′ ,y′ . (12)

If the pixel value at the (x, y) is invalid in the previous recurrence, the attention score
obtained in this recursion is the final score:

scorei
x,y,x′ ,y′ = λscorei′

x,y,x′ ,y′ + (1− λ)scorei−1
x,y,x′ ,y′ . (13)

Next, the attention score is used to reconstruct the feature map F̂. The feature value of
F̂ at (x, y) is f̂x,y, and the calculation process of f̂x,y is as follows:
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f̂ i
x,y = ∑

x′∈1,...,W ′∈1,...,H
scorei

x,y,x′ ,y′ f
i
x′ ,y′ . (14)

Finally, after splicing feature map F̂ and input feature map Fin, a pixel-by-pixel convo-
lution is performed to generate the reconstructed feature map F′.

3.5. Point Wise Normalization

After the recovery decoder, the generated feature maps are sent for up-sampling.
We infer that the statistical characteristics of pixels in the hole regions and the pixels in
the no-hole regions are different. Using traditional batch normalization could ignore this
characteristic and cause the covariant shift. To tackle this issue, we utilize point wise
normalization in the decoding phase to dynamically produce the mask aware scale and bias
of batch normalization. The input feature is first normalized in the channel wise manner,
and then modulated with learned scale and bias.

f̄ i
x,y,z = γi

x,y,z(m
i)

f i
x,y,z − µi

z

σi
z

+ βi
x,y,z(m

i), (15)

where fx,y,z is the feature before normalization, µz and σz are the mean and standard
deviation of the activation in channel z.

3.6. Loss Function and Model Architecture

The entire training procedure is illustrated in Algorithm 1. We use a Patch-GAN [16]
discriminator for image restoration learning. The Patch-GAN discriminator calculates the
adversarial loss from the generator. The loss function is consisted of L1 loss, perceptual
loss, style loss, adversarial loss and TV loss. L1 loss ensures the accuracy of feature map
reconstruction. Given the binary mask with zeros indicating missing pixels, we define the
L1 loss as follows:

Lhole =
1

NIgt

∥∥(1−M)�
(

Iout − Igt
)∥∥

1 (16)

Lvalid =
1

NIgt

∥∥M�
(

Iout − Igt
)∥∥

1, (17)

where Igt and Iout is the ground-truth image and output value of the network. NIgt is the
total number of elements in the image, which equals C× H ×W.

The perceptual loss proposed by Gatys et al. [39] is used to force the filled image and
the ground-truth image have similar feature representation. It can be written as follows:

Lperc =
N−1

∑
n=0

∥∥∥ΨIout
n −Ψ

Igt
n

∥∥∥
1

N
Ψ

Igt
n

+
N−1

∑
n=0

∥∥∥ΨIcom
n −Ψ

Igt
n

∥∥∥
1

N
Ψ

Igt
n

, (18)

where Ψn represents the nth feature layer select in the fixed VGG, Icom is composed of the
hole range pixels of raw output image and non-hole pixels of the ground truth image. N

Ψ
Igt
n

is the number of elements in Ψ
Igt
n and is used as a normalization factor.

A VGG-based [40] Style loss is similar to perceptual loss. The autocorrelation of each
feature map is calculated before measuring the L1 distance, the computation of the style
loss is as follows:

Lstyleout =
N−1

∑
n=0

1
CnCn

∥∥∥∥Kn

((
ΨIout

n

)T(
ΨIout

n

)
−
(

Ψ
Igt
n

)T(
Ψ

Igt
n

))∥∥∥∥
1

(19)

Lstylecom =
N−1

∑
n=0

1
CnCn

∥∥∥∥Kn

((
ΨIcom

n

)T(
ΨIcom

n

)
−
(

Ψ
Igt
n

)T(
Ψ

Igt
n

))∥∥∥∥
1
. (20)
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Algorithm 1: Multi-stage Feature Reasoning GAN
Input:
Imgin : Input image
Maskin : random masks
Output:
Imgrep : Repaired image

1 X0, M0 ← DPconv(Imgin, Maskin)

2 FeatureGroup←
{

X0}
3 i← 0, IterNum← 7
4 while i smaller than Iternum do
5 x1, m1 ← DPconv(X0, M0)

6 x2, m2 ← DPconv(x1, m1)

7 x3 ← DownSampling(x2)

8 x4 ← x3

9 x5 ← KCA(x3), x6 ← DilatedConvolution(x4)

10 x7 ← Cat(x5, x6)

11 x8 ← Conv(x7)

12 Xi ← UpSampling(x8)

13 FeatureGroup← FeatureGroup +
{

Xi}
14 i← (i + 1)
15 end
16 Xmerged ← HybridWeightedMerging(FeatureGroup)
17 Imgrep ← DeCoding(Xmerged)

18 Discriminator ← Imgrep
19 return Imgrep

In (19) and (20), Kn is the normalization factor for the pth, equal to 1/Cn HnWn. The fi-
nal loss term total variation loss is expressed as follows:

Ltv = ∑
(i,j)∈R,(i,j+1)∈R

1
NIcom

∥∥∥Ii,j+1
com − Ii,j

com

∥∥∥+ ∑
(i,j)∈R,(i+1,j)∈R

1
NIcom

∥∥∥Ii+1,j
com − Ii,j

com

∥∥∥, (21)

where NIcom represents the number of pixels in Icom. Total loss Ltotal is the combination of
the above loss functions:

Ltotal = λvalidLvalid + λholeLhole + λpercLperc + λstyleLstyle + λadvLadv + λtvLtv. (22)

In this paper, the weight parameters of each loss function in Equation (22) are set as
follows: 1 for λvalid, 6 for λhole, 0.1 for λtv, 120 for λstyle, 0.1 for λadv and 0.05 for λperc.

4. Experiments

This section starts with the introduction of detailed experimental settings, then we
compare our model with other methods in terms of both visual quality and quantitative
measurements to demonstrate the efficiency of our proposed method. Finally, we conduct
an ablation study to examine the design details of MFR-GAN.

4.1. Datasets

We used three well-known public image datasets and a mask dataset [31] to verify our
model. Images were resized to 256× 256 for training and testing.

• Places2 Dataset [41]: a dataset containing over 365 scenes, which enables the model
to learn the distribution from many natural scenes. Including 1.8 million images for
training and 12K images for testing.
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• CelebA Dataset [42]: a dataset that focuses on face images, containing about 200K
images. We used more than 180K images training models, and the other images were
used for testing.

• Paris StreetView [43]: a dataset collected from Street View in Paris that is commonly
used for inpainting methods. It contains 14,900 images for training and 100 images
for testing.

4.2. Training Settings

For the MFR-GAN, we used the Adam optimizer to optimize the generator and
discriminator. We trained the model with a batch size of 6 on 2 11G NVIDIA RTX2080Ti
GPUs. At the beginning, we trained the model with a learning rate of 1× 10−4. Then we
set the learning rate to 1× 10−5 for fine tuning the model, and it was kept unchanged until
the model convergence. For CelebA, we first trained 200 K times, then fine tuned 500 K
times until convergence. Pytorch was used as the deep learning development framework,
and the CUDA version was v10.0.

4.3. Comparison Method

We compared our model with several recent state-of-the-art methods. These models
are: PConv [31], GatedConv [12], EdgeConnect [9], LBAM [44] and RFR [15]. For LBAM,
EdgeConnect, RFR-Net and GConv, we directly used the officially released pretrained
model. Since the source code of partial convolution was not available, we implemented
it with the experimental settings in the paper. Compared with PConv, GConv, LBAM
and EC, the proposed method strengthens the constraint on the center of the hole by
progressively reasoning the content of the hole from the edge of the hole. Compared with
RFR-Net, the proposed method solves the problem of covariant shift by using point-wise
normalization, and a hybrid fusion method is introduced to make full use of the feature
maps generated at each stage, which effectively improves the ability of the model to repair
large holes.

4.4. Qualitative Comparisons

For qualitative comparisons, we compared the irregular holes inpainting results of our
method with five existing methods on the Places2, CelebA and Pairs StreetView datasets.
Figure 4 shows that there are varying degrees of blurry boundary and distorted structures
when PConv and Edgeconnect repair natural images. Moreover, when PConv repairs
the semantic complex natural image, the color distortion is relatively serious, and neither
structural connectivity of the generated content nor smooth and reasonable color content
can be achieved. GConv well preserves the source image contents, but there are still color
inconsistencies in some areas of the result. The result of LBAM suffers from center blur
due to the lack of information for restoring deeper pixels in holes. Although RFR-Net
can generate meaningful content through leveraging the learned intermediate signals for
further restoration, the results still have unreasonable textures. In contrast, the results
generated by our model have reasonable semantics and visual authenticity.

Figure 5 shows the inpainting results on CelebA; it is observed that content synthe-
sized by PConv, LBAM and GConv is relatively vague, and the color of some areas is
different from the original image. When the holes are relatively large, the image edge
generated in the first stage of EdgeConnect includes error information, which leads to
the failure of generating a correct structure in the second stage. RFR-Net can generate a
plausible structure, but the results still contain unreasonable textures. Through the flexible
combination of point wise normalization and skip-connection during the decoding process,
our model could make full use of contextual feature information, and generates the content
with reasonable semantics and rich details.
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(a) Input (b) PConv (c) GConv (d) EC (e) LBAM (f) RFR (g) MFR (h) GT

Figure 5. Qualitative comparison of CelebA.

The Paris StreetView Dataset contains images of highly complex structures. As shown
in Figure 6, when too much valid information is missing, there are obvious artifacts in
the inpainting results of PConv and GConv. LBAM, EC and RFR can generate natural
structures, but the results still have unsmooth content. Compared with the above methods,
the texture of the inpainted regions is more natural in our results. These results suggest that
our method can learn to synthesize better signals by making full use of mask information
to gradually fill the missing contents. Besides, in the feature fusion phase, on the basis of
eliminating gradient vanishing, the hybrid weighted merging method enables the model
to adaptively fuse the feature maps with a learning process, which greatly enhances the
reasoning capability of the model.

(a) Input (b) PConv (c) GConv (d) EC (e) LBAM (f) RFR (g) MFR (h) GT

Figure 6. Qualitative comparison on Paris StreetView.

4.5. Quantitative Comparisons

Compared with other datasets, Places2 contains more scenarios, thus it can better
verify the authenticity of different methods. For the evaluation metrics, we use peak
signal-to-noise ratio (PSNR) to measure the L2 distance. The larger the value of PSNR,
the better the image restoration effect is. Usually, when the PSNR value is greater than 28,
there is no significant difference in image quality. SSIM is used to measure structural
similarity; its value range is between 0 and 1. The higher value means less image distortion.
Fréchet Inception Distance (FID) is used to measure the Wasserstein-2 distance between
fake and real images. A lower FID score indicates that the two sets of images are more
similar, and a score of zero in the best case indicates that the two sets of images are the
same. We use the same irregular mask as PConv for testing. The masks are divided into
six categories according to the proportion of holes: (0.01, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4],
(0.4, 0.5], (0.5, 0.6]. For each category, we randomly use 50 masks and images as input to
test the model. For the performance of repairing irregular masks, as shown in Table 1,
when the missing ratio is (0.2, 0.3], the average PSNR of the repair results is 26.23 dB,



Sensors 2022, 22, 2854 12 of 17

the SSIM is 0.922, and the FID is 12.79. Our method has produced excellent results. When
the hole ratio is (0.5, 0.6], the PSNR is 19.53 dB, the SSIM is 0.669, and the FID is 34.27.
Although the effective information is insufficient, our model can still generate clear content
through multiple inferences, as shown in Figure 7 and Table 1. This further validates the
effectiveness of our method.

(a) PSNR (b) SSIM (c) Mean l1

Figure 7. Quantitative comparison of CelebA, the mask ratio is between 0.5 and 0.6.

Table 1. Numerical comparisons on the Place2 dataset. ↑ indicates higher is better while ↓ indicates
lower is better.

Methods (0.01, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6]

PConv 34.15 27.68 25.23 22.34 21.35 18.71
GC 34.03 27.12 24.95 22.13 20.92 18.35

PSNR↑ LBAM 34.62 27.87 25.42 22.91 21.75 18.81
EC 34.36 27.46 25.58 22.83 21.58 18.97

RFR-Net 34.94 28.05 25.99 23.56 21.78 19.36
Ours 35.31 28.29 26.23 23.83 21.95 19.53

PConv 0.982 0.943 0.901 0.839 0.787 0.632
GC 0.981 0.939 0.898 0.835 0.779 0.618

SSIM↑ LBAM 0.984 0.947 0.905 0.846 0.783 0.634
EC 0.983 0.942 0.908 0.848 0.789 0.636

RFR-Net 0.985 0.948 0.915 0.871 0.805 0.663
Ours 0.987 0.954 0.922 0.877 0.811 0.669

PConv 4.56 11.21 16.63 23.15 34.27 47.59
GC 4.24 9.79 15.74 24.92 33.94 45.13

FID↓ LBAM 4.12 9.35 14.85 22.41 28.54 42.31
EC 3.97 8.27 14.59 19.57 26.94 39.15

RFR-Net 3.28 7.03 13.45 18.34 24.38 35.82
Ours 2.93 6.81 12.79 16.85 23.26 34.27

4.6. Ablation Study

In this section, we conduct ablation experiments on the Places2 datasets, and illustrate
the effectiveness of dynamic partial convolution, hybrid weighted merging, point wise
normalization and the effect of recurrence number based on PSNR, SSIM, and FID.

Dynamic partial convolution As demonstrated in Figure 8, we visualize the changes
of mask during the whole restoration process. The first row and third row show the
mask variation of our model during the inpainting process, and the second row and
fourth row are RFR-Net. It is shown that the hole change in our method is smoother than
that of RFR-Net. Specifically, our model has learned to dynamically adjust the size of
receptive field according to the mask ratios for updating the mask, which is beneficial
for strengthening the connection of corrupted area pixels and valid pixels during the
progressive completion process.



Sensors 2022, 22, 2854 13 of 17

Hybrid weighted merging The hybrid weighted merging method effectively increases
the reasoning times. For large holes, the model can perform multiple inferences for gen-
erating more realistic content. Figure 9 shows the visualization of the hard weight map
and the soft weight map. The weights of the hard weight map are obtained by the gen-
erated order of the signals, as shown in Figure 9a; because the center is repaired in the
later recurrence, thus the weight gradually increases from the hole boundary to the center.
As shown in Figure 9b, the weight distribution of the soft weight map is uniform, and the
weights are adaptively changed by borrowing information from the input features. BN+G
AW is a U-Net architecture using average merging, which achieves a PSNR of 21.83 dB.
We replace the average merging with hybrid weighted merging, which is named BN+G
HW. As shown in Table 2, under the same training strategies and experimental settings,
BN+G HW achieves an average PSNR of 21.89 dB, SSIM of 0.808 and FID of 23.82. We can
see that the quantitative score is significantly improved after using the hybrid weighted
merging method.

Table 2. Quantitative ablation study on the Places2 dataset.

Method PSNR SSIM FID

BN+G AW 21.83 0.806 24.21
BN+G HW 21.89 0.808 23.82
PN+G AW 21.92 0.809 23.54
PN+G HW 21.95 0.811 23.26

As shown in Figure 10, we compared the hybrid weighted merging method with
other feature fusion methods on the Paris StreetView dataset, which has more repetitive
structures such as gates. It can be observed that the image structure generated by our
method has clear textures and consistent contextual structures.

(a) (b) (c) (d) (e) (f) (g)

Figure 8. Visualization of the mask updated during the inpainting process. Yellow areas represent
invalid pixels, and purple areas denote valid pixels. From the left to the right are: (a) Input mask,
(b) first updated mask, (c) second updated mask, (d) third updated mask, (e) fourth updated mask,
(f) fifth updated mask, (g) sixth updated mask.
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(a)
(b)

Figure 9. The visualization of the hard weight map and soft weight map. (a) is the hard weight map
and (b) is the soft weight map.

(a) Input (b) No (c) Average (d) Adaptive (e) Hybrid

Figure 10. Different methods for feature merging. From the left to the right are: (a) Input, (b) No
merging, (c) Average merging, (d) Adaptive merging, (e) Hybrid merging.

Point wise normalization. The results in the third row and fourth row demonstrate
the performance with point wise normalization. Compared to the Batch Normalization
counterpart, the PSNR and SSIM are significantly improved, this means that point-wise
normalization is able to capture the discrepancy between valid and invalid pixels dur-
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ing decoding processes, and learn the adaptive scale and bias parameters for assisting
batch normalization.

The effect of iteration numbers As a hyper-parameter, the IterNums is set to seven
in our model. In order to demonstrate the influence of different IterNums, we conduct
the experiments on the Places2 dataset with large continuous holes. As shown in Table 3,
the results from IterNums 5 are far from the others. This is because it is difficult to
completely restore the large continuous holes in the small IterNums. Too many recursion
times, resulting in far feature propagation, is also not conducive to image restoration.

Table 3. The influences of different IterNums.

IterNums PSNR SSIM FID

5 18.39 0.605 40.21
7 19.53 0.669 34.27
9 19.32 0.661 35.93

5. Conclusions

In this paper, we propose a novel Multi-stage Feature Reasoning Generative Adver-
sarial Network using recurrence filling to restore the arbitrary image defects. The hybrid
weighted merging method fuses the feature map base to the mask characteristic and a learn-
ing process; it takes full advantage of the signals generated in every recurrence and thus
eliminates gradient vanishing and increases the reasoning times of the model. Through the
dynamic partial convolution, the image restoration range is adaptively adjusted according
to the mask ratio. By this means, the correlation between hole boundary pixels and center
area pixels is gradually strengthened, which is especially suitable for progressive image
completion. Furthermore, skip-connection and point wise normalization are combined to
minimize the loss of valid information in the up-sampling process; thus, the generated
result structure is clearer and the content is more natural. Extensive experiments on the
Places2, CelebA and Pairs StreetView datasets have demonstrated that MFR-GAN is more
competitive than other methods in subjective quality and is objectively quantitative.
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