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Abstract

While understanding molecular heterogeneity across patients underpins precision oncology, there is increasing
appreciation for taking intra-tumor heterogeneity into account. Based on large-scale analysis of cancer omics
datasets, we highlight the importance of intra-tumor transcriptomic heterogeneity (ITTH) for predicting clinical
outcomes. Leveraging single-cell RNA-seq (scRNA-seq) with a recommender system (CaDRReS-Sc), we show that
heterogeneous gene-expression signatures can predict drug response with high accuracy (80%). Using patient-
proximal cell lines, we established the validity of CaDRReS-Sc’s monotherapy (Pearson r>0.6) and combinatorial
predictions targeting clone-specific vulnerabilities (>10% improvement). Applying CaDRReS-Sc to rapidly
expanding scRNA-seq compendiums can serve as in silico screen to accelerate drug-repurposing studies.
Availability: https://github.com/CSB5/CaDRReS-Sc.
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Background
Tumors comprise heterogeneous populations of malignant
cells that display cellular plasticity and phenotypic hetero-
geneity, as determined by genetic and environmental cues
[1–3]. Phenotypic heterogeneity in cancer cells is defined by
transcriptomic signatures that govern cell biological behav-
iors, such as proliferation, apoptosis, migration, invasion,
metabolism, and immune response [4, 5]. Intra-tumor tran-
scriptomic heterogeneity (ITTH) can confer differential se-
lective advantages to influence tumor progression and
metastasis in vivo [6, 7], as well drug response in vitro [8, 9].
Advances in high-throughput sequencing have enabled

large-scale studies into inter-patient tumor heterogeneity
at the molecular level [10–12], serving as the basis to

distinguish cancer subtypes, investigate tumor biology,
and define treatment regimens [2, 13]. These efforts
have been complemented by studies on cancer cell lines
[14–16] to understand the relationship between molecu-
lar markers and drug response in vitro. Several machine
learning models have been proposed to utilize informa-
tion from multi-omic profiles to predict drug response
for cell lines [17–23], although significant challenges re-
main in terms of robustness, generalizability, and trans-
latability into the clinic. In particular, existing models do
not explicitly account for intra-tumor transcriptomic
heterogeneity and have primarily been trained and tested
on clonal cell lines.
In this work, we begin by highlighting the impact of

intra-tumor transcriptomic heterogeneity on clinical
outcomes based on large-scale re-analysis of TCGA data
[24, 25]. We then develop a machine learning framework
(Cancer Drug Response prediction using a Recommender
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System for single-cell RNA-seq or CaDDReS-Sc) that ro-
bustly combines single-cell RNA-sequencing (scRNA-seq)
data with matrix factorization techniques for recom-
mender system [18, 26] to predict drug response for a het-
erogeneous tumor. ScRNA-seq data from 12 patient-
derived cell lines (PDCs) and cell viability measurements
in response to 8 drugs under 2 doses was used to validate
CaDDReS-Sc predictions to intra-tumor transcriptomic
heterogeneity. Extending to combinations of drugs, we
show that drug pairs identified in silico by CaDDReS-Sc
to optimally inhibit transcriptionally distinct cell clusters
were more effective than individual drugs in vitro.

Methods
Datasets and preprocessing
Tumor data
Gene expression (FPKM-UQ normalized RNA-seq) and
patient survival data for 10,956 tumors from 33 cancer
types were obtained from The Cancer Genome Atlas
(TCGA) Research Network (https://www.cancer.gov/
tcga) [24]. Clinical drug response information and Re-
sponse Evaluation Criteria in Solid Tumors (RECIST)
values were obtained from prior work to curate drug re-
sponse information [25], and statistical analysis was lim-
ited to drugs with a sufficient number of patients with
clinical data (n=8 with ≥15 patients in “Complete Re-
sponse” and “Clinical Progressive Disease” classes).

Cancer cell line data for model training
Drug response data and RMA-normalized gene expres-
sion data for 1074 cancer cell lines and 226 drugs were
obtained from the Genomics of Drug Sensitivity in Can-
cer (GDSC) database [15] to be used for model training.
For model training, only drugs tested at 9 different dos-
ages were used for robust dose-response curve fitting
and obtaining half-maximal inhibitory concentrations
(IC50) values based on Bayesian sigmoid curve fitting es-
timates [18]. This selection also prevents the situation
where the same drug is tested at different dosage ranges.
Following the classification strategy used in the GDSC
study [15], cell lines were labeled as sensitive if IC50
values were lower than the maximum dosage used in the
experiment and otherwise labeled insensitive. For each
gene, log2 expression fold-change was calculated with re-
spect to its average expression across cell lines, and cell
line kernel features were calculated using Pearson correl-
ation based on 1856 essential genes [18, 27].

Single-cell RNA-seq data
Single-cell RNA-seq data for 1241 cells from 12 head
and neck patient-derived cell lines was obtained based
on a previously published study [8]. Read counts per
gene were obtained by mapping reads with STAR
(v2.5.2a, default parameters) [28], followed by RSEM

analysis (v1.3.0, default parameters) [29]. Cells with <
10,000 reads and a cell with a large number of expressed
genes (n=14,558) were removed (the median number of
genes per cell is 7379; Additional file 1: Fig. S1). Genes
expressed in <5% of cells were then filtered out to obtain
expression values for 15,144 genes from 1171 cells that
were used for further analysis. The read count data for
all cells was normalized (as TPM values; Additional file
:2: Table S1) and used for clustering analysis and drug
response prediction. An additional scRNA-seq dataset
containing 5902 cells (TPM values for 23,686 genes)
from 21 head and neck cancer tumors was also obtained
[4]. This additional dataset was only used for evaluating
ITTH scores as there is no drug response information
available for it.

Single-cell clustering and cluster-specific transcriptomic
profiles
A standard scRNA-seq workflow described in the
Scanpy tutorial was used to perform single-cell cluster-
ing [30, 31]. Starting from the TPM matrix, cells with a
large proportion (25%) of mitochondrial genes were re-
moved as the high proportions are indicative of poor-
quality cells [32]. Expression values were log-normalized
and adjusted based on the detection of highly variable
genes. The neighborhood graph was generated with n_
neighbors=10 and n_pcs=40. In the final step, the neigh-
borhood graph was used for cell clustering using the
Louvain algorithm [33].
To obtain a higher resolution of clustering, subclusters

of large clusters (≥ 50 cells) were identified using the
same process as the first round clustering. In total, 23
clusters were identified for the Sharma et al. dataset
(1171 cells) and 62 clusters for the Puram et al. dataset
(5902 cells) (Additional file 3: Table S2-3) [4, 8]. Tran-
scriptomic profiles for each cell cluster (patient) were
obtained by averaging TPM values across cells, to be
used later for cluster-level (patient-level) drug response
prediction.

In silico deconvolution and intra-tumor transcriptomic
heterogeneity
Percentages of pre-defined cancer cell types in each
tumor were identified by using CIBERSORT [34], a tool
for tumor deconvolution based on transcriptomic infor-
mation. Since CIBERSORT requires a cell signature
matrix containing gene expression profiles of specific
cell types, we followed CIBERSORT’s manual to con-
struct a new signature matrix using GDSC histological
subtypes (n=53) to obtain a signature matrix with 1529
marker genes.
To measure the degree of heterogeneity for each sam-

ple based on the deconvolution result, we defined an
intra-tumor transcriptomic heterogeneity score (ITTH)
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as information entropy of the corresponding cell type

profile, i.e., ITTH ¼ −
X

i

Pi logPi , where Pi is the frac-

tion of cells with cell type identified in the tumor
(Additional file 4: Table S4-6). Cell types with <5% fre-
quency were excluded to reduce the impact of classifica-
tion noise and obtain a robust score based on the
dominant cell types. For patients with two tumor sam-
ples in the TCGA dataset (3.7% of patients), we observed
a high correlation of ITTH scores between both tumors
of the same patient (Pearson r=0.77, p value<1.39×10-7)
and an average ITTH score was used. Patients were clas-
sified at the Pan-cancer level into three categories (low,
medium, and high) based on the first and third quartiles
of ITTH scores. Gene expression profiles for tumors
from TCGA were clustered using nonnegative matrix
factorization (NMF; k = 3 to mimic the number of ITTH
clusters) [35].
For scRNA-seq data, a proxy for bulk gene expression

values was obtained by calculating the average gene ex-
pression across all cells and used to compute ITTH
scores as described above. Gold-standard ITTH scores
(single-cell ITTH) were then computed based on single-
cell clustering (as described above) and then computing

information entropy as before, i.e., −
X

j

P j logP j , where

Pj is the fraction of cells that belong to cluster j.

The CaDRReS-Sc framework
Learning a pharmacogenomic space
A pharmacogenomic space is a latent space that captures
the relationship between drugs and samples (transcrip-
tomic profiles for cells, cell clusters, cell lines, or pa-
tients), where a dot product between drug and sample
vectors captures drug sensitivity. The pharmacogenomic
space is learned in CaDRReS-Sc (https://github.com/
CSB5/CaDRReS-Sc) [36] based on both transcriptomic
and drug response profiles across multiple samples and
drugs. The original objective function proposed in [18]
was defined as follows:

Minimize
1
2

P
i

P
u siu−ŝiuð Þ2 þ regularization

Κ

ŝui ¼ μþ bQi þ bPu þ qi � pu

¼ μþ bQi þ bPu þ qi xuW p
� �T

where siu, the observed sensitivity score of sample u to
drug i, is defined by siu = − log2(IC50), ŝui is the predicted
sensitivity score, Κ is the total number of drug-sample

pairs, μ is the overall mean drug response, bQi and bPu are
the bias terms for drug i and sample u, vectors qi,pu ∈ℝ

f

represent drug i and sample u in the f-dimensional

latent space, and WP ∈ℝ
d × fis a transformation matrix

that projects transcriptomic kernel features xu ∈ℝ
d for

each sample onto the pharmacogenomic space. Based on
this objective function, the cell line u is sensitive to drug
i when qi and pu are near each other in the pharmacoge-
nomic space.
As estimates of bPu do not accurately capture the true

bias of an unseen sample, the bias terms μ and bPu were
removed, allowing sample bias to be implicitly captured
in pu. Furthermore, to reduce noise from extrapolation
errors for IC50 values (Additional file 1: Fig. S2), a logis-
tic weight function was introduced to assign a weight for
each sample-drug pair as follows:

ciu ¼ min f siu; oi; lð Þ; f ŝiu; oi; lð Þð Þ
where f is a logistic function with slope l centered at oi,
which is the maximum testing dosage for drug i. In in-
sensitive cases, the dose-response curve is extrapolated
and IC50 estimates are higher than the maximum tested
dosage. Consequently, if both predicted ŝiu and observed
siu dosages are greater than the maximum dosage, then
ciu is close to 0 and the error relative to the extrapolated
IC50 value is down-weighted. Finally, to obtain a cancer
type-specific model, du > 1 was defined as a weight of
training sample u from a given cancer type, enabling the
model to focus on accuracy for a subset of training sam-
ples. As a result, we obtain the final objective function
for learning the pharmacogenomic space, which is cali-
brated for higher accuracy of drug response prediction
based on single-cell transcriptomic profiles.

Minimize
1
2

P
i

P
u duciu siu−ŝiuð Þ2� �þ regularization

Κ

ŝui ¼ bQi þ qi � pu

In this objective function, ciu allows the model to avoid
extrapolation errors in IC50 values from the dose-
response curve fitting step, and du guides the model to
focus on specific indications. Reducing error in predicted
IC50 values allows for the estimation of cell death per-
centages at specific dosages for both mono- and com-
binatorial therapy.

Model training and evaluation
The CaDRReS-Sc matrix factorization model was trained
with a 10-dimensional pharmacogenomic space (f = 10),
learning rate of 0.01, and maximum number of epochs
set to 100,000. All training samples were used for updat-
ing the trainable parameters in each epoch (Additional
file 1: Fig. S3). Performance on unseen samples was esti-
mated with 5-fold cross-validation within the GDSC
dataset, and predictive performance for each drug was
measured in terms of prediction accuracy and median
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absolute error (MAE). Drug-sample pairs were classified
into two classes based on their IC50 values, sensitive
(IC50 ≤ maximum testing dosage), and insensitive (IC50
> maximum testing dosage) to calculate prediction ac-
curacy. To measure how precisely the model can predict
IC50 values, we calculated MAE for each drug-sample
pair belonging to the sensitive class.

Combining cell-specific drug response values into an overall
response value
IC50 values from CaDRReS-Sc’s pharmacogenomic
space provide cell-specific information on the dose-
response curve that would have to be integrated across
cells to get an overall response profile for a patient. In
particular, an average of IC50 values (or weighted aver-
age for cell clusters) does not take into account the sig-
moid shape of the curve, resulting in inaccurate
aggregate IC50 values (naïve estimation, Additional file
1: Fig. S4). To improve the accuracy of aggregate IC50
calculations, we employed Newton’s method to itera-
tively approximate the combined dose-response curve
based on cell percentages, individual IC50 values, and
estimated slopes (default=1). The naïve estimate was
used to start the iterations, which were observed to con-
verge rapidly in practice.

Benchmarking drug response predictions for unseen cell
types
CaDRReS-Sc was benchmarked against other state-of-
the-art machine learning-based approaches for drug re-
sponse prediction, including ElasticNet [15], cwKBMF
[20], SRMF [21], and RWEN [19], based on the GDSC
dataset and 5-fold cross-validation. ElasticNet is widely
used as a standard model, cwKBMF is a component-
wise multiple kernel learning model that outperformed
the best performing model from the DREAM challenge
[37], SRMF is a collaborative filtering model, and RWEN
is a model that aims to reduce the effect of extrapolation
errors from the dose-response curve fitting step. For
ElasticNet and RWEN, we trained a model for each drug
separately based on expression values for all genes. For
cwKBMF, we used the same cell line kernel features as
CaDRReS-Sc, while excluding drug property information
as suggested by the authors. For SRMF, the method does
not support prediction for unseen cell lines, as it re-
quires a similarity matrix that consists of both train and
test samples. Therefore, we allowed SRMF to use gene
expression information for all cell lines but excluded
drug response information as appropriate.

Predicting drug response for head and neck cancer PDCs
Drugs that elicit a response in at least 30% (13 out of
42) of head and neck cancer cell lines in the GDSC data-
set (n=81) were used to train a head and neck cancer-

specific model (du = 10; Additional file 5: Table S7-8).
The resulting pharmacogenomic space was used to pre-
dict cell, cluster, and patient-specific drug response
values (IC50) based on corresponding transcriptomic
profiles. IC50 values were used to estimate cell death
percentage for a given dosage oi and aggregated at the
patient level for cell (average) and cell cluster (weighted
average) predictions.

Drug-pathway associations
A pathway activity score was computed as the summa-
tion of gene expression log2 fold-change values across all
genes within each BioCarta pathway [38]. To identify a
drug-pathway association, the Pearson correlation was
calculated between pathway activity scores and predicted
drug response values (cell death percentage) across all
training samples. Positive correlation coefficient values
indicate that high pathway activity is associated with in-
creased drug sensitivity.

Predicting combinatorial therapy response
To predict combinatorial therapy response, predicted
cell death percentages hi and hj at specific dosages oi
and oj of drug i and j for each cell cluster were aggre-
gated for each cluster as hi + hj – hihj, where hihj repre-
sents the percentage of cells inhibited by both drugs. To
estimate response for a patient, the weighted average of
cell death percentages was computed across cell clusters.
The potential utility of a drug combination over indi-

vidual drugs was calculated as the increase in cell death
percentage for the combination compared to the best in-
dividual drug within the combination. To prioritize drug
combinations for the experimental study, we first con-
firmed that monotherapy predictions showed high cross-
validation accuracy, further identified individual drugs
that could inhibit different subclones within a patient,
and focussed on combinations that were predicted to
improve over monotherapy for at least one patient (Add-
itional file 6: Table S9-10).

Experimental validation
Cell line isolation and cell culture
Cell lines were isolated from patients with oral squa-
mous cell carcinoma (OSCC) as mentioned in previous
work [9]. Briefly, tumors were minced and enzymatically
dissociated using 4 mg/mL-1 Collagenase type IV
(Thermo Fisher, cat. no. 17104019) in DMEM/F12, at
37 °C for 1 h. Post digestion, cells were pelleted and re-
suspended in phosphate-buffered saline (Thermo Fisher,
cat. no 14190235) for 3 cycles. Cells were then strained
through 70-μm cell strainers (Falcon, cat. no. 352350),
prior to pelleting and resuspension in RPMI media
(Thermo Fisher, cat. no 61870036), containing 10% fetal
bovine serum (Gibco, cat. no 10270-106) and 1%
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penicillin-streptomycin (Thermo Fisher, cat. no. 15140122).
Cells were plated on CellBIND plates (Corning, cat. no
3335) and kept in a humidified atmosphere of 5% CO2 at
37 °C. Cells were routinely screened for mycoplasma con-
tamination using MycoAlertTM PLUS Mycoplasma Detec-
tion Kit (Lonza, cat. no: LT07-710).

Compounds, drug response, and cell viability assays
For each patient, a separate line was isolated from the
tumor obtained from the patient’s primary and meta-
static lymph node sites. Approximately 5000 cells (2500
primary and 2500 metastatic cells) were seeded per well
of a 96-well plate, 24 h prior to drug treatment. Drugs
that were used for treatment were obtained from Sell-
eckChem, MedChemExpress, and Cayman Chemical.
Docetaxel (cat. no. S1148), Doxorubucin hydrochloride
(cat. no. S1208), Epothilone B (cat. no. S1364), Obato-
clax Meylate (cat. no. S1057), PHA-793887 (cat. no.
S1487), PI-103 (cat. no. S1038), and Vorinostat (cat. no.
S1047) were obtained from Selleckchem, while Gefitinib
was purchased from Cayman Chemical (cat. no. 13166)
and Staurosporin (cat. no. HY-15141) from MedChem-
Express. Cells were treated at a drug concentration that
corresponds to the median IC50 value for head and neck
cancer cell lines seen in the GDSC database [15], as well
as at a concentration that is 3-fold lower (Additional file
7: Table S11). All compounds were dissolved in DMSO
(Sigma Aldrich, cat. no. D8418) and kept at a constant
1% (v/v) across all drug concentrations and controls.
Cells were treated for 72 h prior to the evaluation of
drug response. The amount of viable cells post drug
treatment was quantitated using CellTiter-Glo lumines-
cent reagent (Promega, cat. no. G7572). An integration
time of 250 ms was used when luminescence signals
were read using TECAN Infinite M1000 pro-multi-mode
plate reader. The relative luminescence of each well was
computed using the following formula (Luminescence
Drug/ Luminescence DMSO) and expressed as percentage
cell viability (Additional file 7: Table S12-13). The me-
dian cell death percentage (100—cell viability) was then
calculated across replicates.

Results
Intra-tumor transcriptomic heterogeneity is significantly
associated with treatment response and patient
outcomes
To investigate the relationship between intra-tumor tran-
scriptomic heterogeneity (ITTH) and clinical outcomes, we
leveraged transcriptomic data from The Cancer Genome
Atlas (TCGA) for 10,956 tumors across 33 cancer types,
and an in silico deconvolution approach [34], to define a
transcriptomic heterogeneity score for each patient (ITTH
score, measuring the degree of heterogeneity in gene ex-
pression across cells of a tumor inferred based on bulk

transcriptomic profiles; Methods). Comparing these in
silico heterogeneity scores with single-cell RNA-seq derived
gold-standards (single-cell ITTH score—scITTH; Methods)
on two different datasets [4, 8] showed that the in silico
scores provided a useful proxy to capture transcriptomic
heterogeneity (Pearson r=0.55 and 0.59; Fig. 1a).
Survival data for various cancer types was then ana-

lyzed to detect differences in patients with low, medium,
and high transcriptomic heterogeneity (24/33 cancer
types with ≥15 samples in each class). Significant associ-
ations between ITTH and survival were observed in 5
cancer types, with high heterogeneity associated with
poorer outcomes in some cancer types and low hetero-
geneity in others (Fig. 1b). The most significant associa-
tions were observed in low-grade glioma (LGG, Low vs
Med/High; FDR-corrected log-rank p value<2.39×10-5)
and sarcoma (SARC, Low vs Med/High, p value<
4.45×10-4), in agreement with prior work on the impact
of cell-type diversity in low-grade glioma (LGG) [39]
and cellular plasticity in sarcoma (SARC) [40] on treat-
ment outcomes.
To investigate if information in ITTH clusters is cap-

tured directly in clustering based on bulk transcriptomic
profiles, corresponding clusters were compared for the 5
cancer types (LGG: low-grade glioma, SARC: sarcoma,
COAD: colon adenocarcinoma, READ: rectum adeno-
carcinoma, SKCM: skin cutaneous melanoma; Fig. 1c;
Methods). Among these 5 cancer types, associations
were observed between transcriptomic clusters and sur-
vival in 2 cancer types (LGG, SKCM; FDR-corrected log-
rank p value<0.05), and these transcriptomic clusters
were typically observed to be orthogonal to ITTH clus-
ters (Fig. 1c; 4/5 cancer types; chi-squared test p value<
0.05). For example, in low-grade glioma, the low ITTH
cluster is characterized by a better survival rate com-
pared to transcriptomic clusters 1 and 2 (TC1, TC2),
while in rectum adenocarcinoma, the high ITTH cluster
is characterized by a lower survival rate compared to all
three transcriptomic groups (Additional file 1: Fig. S5),
highlighting the additional information captured in
ITTH analysis.
Drawing on the availability of patient response data in

TCGA for a few drugs (n=8) and cancer types (n=24),
we systematically assessed associations between ITTH
scores and clinical drug response (CR: complete re-
sponse, PR: partial response, SD: stable disease; CPD:
clinical progressive disease; Fig. 1d, Additional file 1: Fig.
S6). Significant associations were identified in 3/8 drugs
(Doxorubicin, Carboplatin, Leucovorin; FDR-corrected
Wilcoxon p value<0.05; Fig. 1d; Methods), where for ex-
ample, Doxorubicin-resistant patients exhibited signifi-
cantly higher transcriptomic heterogeneity (n=80; CR vs
CPD Wilcoxon p value< 9.86×10-3). This response pat-
tern for Doxorubicin in patients with high ITTH scores
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could indicate pre-existing resistant populations [41],
tumor evolution [8], or high variability in drug-target en-
gagement [42]. For Carboplatin (Fig. 1d; n=138; CR vs
CPD Wilcoxon p value<2.06×10-2), and Leucovorin (n=
35; CR vs CPD p value<2.06×10-2), the opposite trend
was observed where responders showed significantly
higher transcriptomic heterogeneity, consistent with
prior work on other platinum compounds such as Cis-
platin [43]. Direct measurement and incorporation of
transcriptomic heterogeneity could therefore lead to
more accurate predictions for drug response, as we ex-
plore in the next section.

Calibrating a recommender system for improved
predictive performance on diverse unseen cell types
The development of single-cell transcriptomics has en-
abled the direct identification and quantification of cell
populations within a tumor [4, 44–46]. Corresponding
scRNA-seq workflows with gene expression measurement,

normalization, cell clustering, and summarization (Fig. 2a)
can be coupled in principle with existing methods that
predict drug response from bulk transcriptomic profiles
[15, 18–21] to obtain cell-specific response information.
However, the utility of such a workflow and potential
techniques to obtain a summarized response score for the
heterogeneous tumor have not been explored. Besides, a
more fundamental challenge is the robustness of such
models to diverse, unseen cell types [22].
To address these questions, we develop a machine

learning framework trained with cancer cell line data for
improved robustness on diverse, unseen cell types, and
the ability to combine cell-specific predictions into ac-
curate tumor response values (CaDRReS-Sc; Fig. 2b).
Specifically, based on a recommender system technique
for cancer drug response prediction [18], we designed a
novel objective function that enables the model to simul-
taneously classify sensitive/insensitive cell types and pre-
dict half-maximal inhibitory concentration (IC50) values

Fig. 1 Impact of intra-patient transcriptomic heterogeneity on clinical outcomes. a Scatterplots showing the correlation between transcriptomic
heterogeneity estimates based on in silico deconvolution (ITTH score) versus single-cell analysis derived values (scITTH score). b Survival analysis
with ITTH clusters (Low/Medium/High) identified significant differences across various cancer types (FDR-corrected log-rank p value<0.05). c Plots
depicting the overlap between clusters based on transcriptomic profiles (TC) and ITTH scores. P values are based on Fisher’s exact test and
indicate that the clusters are distinct for most cancer types. d Comparison between ITTH scores of patients from different RECIST classes for
Doxorubicin, Carboplatin, and Leucovorin highlighting significant differences (*FDR-corrected Wilcoxon p value<0.05)
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for sensitive cases (Additional file 1: Fig. S2; Methods).
Comparison of predictive accuracy versus a naïve object-
ive function (mean squared error for IC50) on unseen
cell lines in the GDSC database showed significant im-
provements (Fig. 2c; 5-fold cross-validation; Wilcoxon p
value<2.66×10-4), especially for drugs with a smaller pro-
portion of sensitive cell lines. By focusing on predicting
response values for sensitive cell lines, we observed that
the overall median absolute error (MAE) was signifi-
cantly reduced in a majority of the drugs (Fig. 2d; 5-fold
cross-validation; Wilcoxon p value<1.80×10-5; Methods),

enabling accurate prediction of drug response at specific
dosages.
We calculated two different metrics, accuracy to evalu-

ate the ability to differentiate between sensitive and in-
sensitive cell types, and MAE to measure the error of
IC50 prediction. The combination of these two metrics al-
lows us to assess overall model performance in providing
predictions that can be combined across cell-types for a
heterogenous tumor (MAE) and yet provide discrimin-
atory drug response predictions for the drug dosages used
in future experiments (accuracy). Benchmarking against

Fig. 2 CaDRReS-Sc accurately predicts drug response in unseen cell types. a Overview of single-cell RNA-seq workflow to preprocess sequencing
data and provide inputs to CaDRReS-Sc (indicated by blue dashed lines). The normalized read count values and cell clustering results are utilized
by CaDRReS-Sc for predicting drug response, taking into account transcriptomic heterogeneity within each patient. b Overview of CaDRReS-Sc
workflow, where a pre-trained pharmacogenomic space based on drug response and gene expression profiles from cell-line experiments is used
to provide cell- or cluster-specific drug response predictions. These are then combined to estimate overall drug response and prioritize drug
combinations for a patient. c Comparison of prediction accuracy on unseen cell types between CaDRReS-Sc’s objective function and a naïve
function that does not take uncertainty in IC50 values into account. Each dot represents a drug (n=226), and dot colors represent the percentage
of sensitive cell lines. As can be seen here, CaDRReS-Sc’s objective function is particularly useful when the percentage of sensitive cell lines is low.
d Comparison of median absolute error (MAE) obtained based on predictions using CaDRReS-Sc as well as a naïve objective function. CaDRReS-
Sc’s robust objective function results in lower MAE across a majority of drugs (points above the y=x line), especially for drugs with a lower
percentage of sensitive cell lines (lighter shades). e Histograms showing the average prediction accuracy (error bars show 1 standard deviation)
using different drug response prediction approaches. f Histograms showing MAE (error bars show 1 standard deviation) with different drug
response prediction approaches. Overall, CaDRReS-Sc was seen to have high accuracy on the sensitive/non-sensitive classification task while
reporting the lowest MAE for the IC50 regression task
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other machine learning approaches for drug response pre-
diction trained on the same cancer line dataset, such as
ElasticNet [15], cwKBMF [20], SRMF [21], and RWEN
[19], we found that average prediction accuracy for
CaDRReS-Sc was significantly better than other three
methods (cwKBMF, SRMF, RWEN; Wilcoxon p value<
0.05), with an average prediction accuracy of around 80%
compared to <60% for other methods (Fig. 2e, Additional
file 1: Fig. S7a). Improvements compared to ElasticNet
can be seen in drugs with a smaller fraction of sensitive
cell lines, where CaDRReS-Sc’s objective function reduced
the adverse effect on the training of limited sensitive cell
line data (Additional file 1: Fig. S7b,c). We noted that
CaDRReS-Sc, a shared model across multiple drugs (simi-
lar to cwKBMF and SRMF), could recapitulate the predic-
tion accuracy of the ElasticNet models that were trained
specifically for each drug (Additional file 1: Fig. S8a).
Besides prediction accuracy (i.e., predicting sensitive

or insensitive), it is essential to predict precise dosages.
Precision in IC50 predictions also allows us to infer re-
sponses such as cell death percentage at a given dosage.
We observed that by aggregating information across
drugs, CaDRReS-Sc showed the lowest prediction error,
reducing MAE by >30% compared to cwKBMF, Elastic-
Net, and SRMF (Fig. 2f). By comparing to the ElasticNet
models, we observed that CaDRReS-Sc reduced MAE
for most of the drugs and reduced the error by >45%
(from median MAE 3.26 to 1.79) for drugs with <50% of
sensitive cell types (Additional file 1: Fig. S8b). Finally,
we confirmed that a numerical integration-based ap-
proach to combine drug response values across cell clus-
ters accurately predicts overall tumor response
(Additional file 1: Fig. S4). Together, these capabilities
enable CaDRReS-Sc to accurately predict drug response
in the presence of transcriptomic heterogeneity as evalu-
ated in the next section based on scRNA-seq data from
patient-derived cell lines.

Accurate drug response prediction in the presence of
intra-patient heterogeneity
As commonly used cancer cell lines typically lack signifi-
cant transcriptomic heterogeneity, we leveraged patient-
derived cell lines (PDCs) to serve as model systems
where sensitivity measurements can be systematically
and conveniently made across multiple drugs, while cap-
turing in vivo transcriptomic heterogeneity [9]. In total,
12 PDCs from head and neck cancer patients [8] were
used for scRNA-seq analysis (median >105 reads/cell,
>5×103 detected genes, >1200 cells in total; Additional
file 1: Fig. S1; Methods) and drug response was mea-
sured for 8 different drugs at 2 different concentrations
(median IC50 of ATCC head and neck cancer cell lines
and 3-fold lower; Methods). Visualization of single-cell
transcriptomic profiles in 2D space confirmed that

significant intra-patient transcriptomic heterogeneity
was seen in PDCs (relative to inter-patient heterogeneity;
Fig. 3a). Particularly, when primary and lymph node
metastatic tumors from HN120 and HN137 are consid-
ered, we observed transcriptomically distinct subpopula-
tions that agree with the observations reported in
previous studies [8, 9] (Additional file 1: Fig. S9).
We explored several strategies to utilize scRNA-seq

data—ranging from using transcriptomic profiles of indi-
vidual cells, aggregating profiles within a cluster of cells,
to combining profiles at the patient-level—for predicting
drug response (cell death percentage at a specific drug
dosage; Methods). Comparing predictions and drug re-
sponse observed in our experimental validation (5
pooled PDCs; 8 drugs), we observed significant correla-
tions using CaDRReS-Sc under all three strategies (Fig.
3b, d; Pearson r=0.68, 0.66, 0.62, p value<1.11×10-6,
3.59×10-6, and 1.93×10-5, respectively; Additional file 1:
Fig. S10a-b). We also found that the cell clusters were
mapped onto the region near GDSC head and neck can-
cer cell lines in the pharmacogenomic space (Additional
file 1: Fig. S11), suggesting that CaDRReS-Sc could map
cell clusters to responses of individual cell lines reported
in GDSC. Despite noise and dropout events observed in
single-cell data [47], predictions based on cell- and
cluster-level transcriptomic profiles consistently showed
better agreement with in vitro drug response compared
to patient-level prediction (Pearson r=0.68/0.66 vs 0.62;
consistently across drug dosages; Additional file 1: Fig.
S12), highlighting the importance of transcriptomic het-
erogeneity and the robustness of kernel-based predic-
tions with CaDRReS-Sc (Pearson r≤0.59 with ElasticNet
and RWEN; Additional file 1: Fig. S13a-b).
As CaDRReS-Sc is based on a pharmacogenomic space

model that can help interrogate drug-response mecha-
nisms [18], we applied it to our single-cell data to study
drug-pathway associations for individual cells (Methods).
For example, we found a wide range of responses for
Epothilone B (Fig. 3e), especially amongst cells in
HN120 and HN137 where primary cells are more sensi-
tive than metastatic cells (Additional file 1: Fig. S14a).
Examination of CaDRReS-Sc’s latent pharmacogenomic
space identified a significant association between Wnt
pathway activation and Epothilone B response (Wil-
coxon p value<7.24×10-8; Additional file 1: Fig. S14c),
consistent with prior work on this subject [48]. Similarly,
we noted diverse responses across cells for Doxorubicin
(Fig. 3f; e.g., primary cells tend to be more sensitive in
HN120, Additional file 1: Fig. S14b), and significant as-
sociation with activation of the Fas pathway (Wilcoxon p
value<4.69×10-15; Additional file 1: Fig. S14d) [49],
highlighting the potential to obtain biological insights on
therapeutic vulnerabilities based on single-cell informa-
tion and the interpretability of the CaDRReS-Sc model.
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Drug combinations can be identified in silico by utilizing
scRNA-seq data
Going beyond monotherapy, the ability to predict drug
combinations to target different cancer cell types within a
heterogeneous tumor can be essential for improving treat-
ment efficacy in the clinic [50, 51]. The utility of combina-
tions can arise from independent drug action as well as the
increased chance of specific clones being sensitive to a drug
[52]. To explore this, we evaluated if in silico predictions
with scRNA-seq data could reveal drug combinations
that provide better response compared to monotherapy,
even at lower dosages. Specifically, by inspecting 21 cell
clusters across all PDCs identified in our monotherapy
analysis, we observed different cluster proportions
across patients (Fig. 4a) and a broad range of predicted
monotherapy responses across cell clusters (Fig. 4b). These
results suggest variability in therapeutic response across dif-
ferent subclones in a given individual, allowing us to iden-
tify complementary drug combinations for subclones.

We calculated an expected combination effect (% cell
death) for five candidate drug combinations, including
Docetaxel:Epothilone B, Docetaxel:Gefitinib, Gefitinib:
Epothilone B, Epothilone B:PI-103, and Doxorubicin:
Vorinostat, based on predicted cluster-specific drug re-
sponses and the distribution of cell clusters. These com-
binations were then functionally validated on five pooled
PDCs via cell-based viability assays using low drug dos-
ages to circumvent off-target effects resulting from ex-
treme inhibition (Methods). Despite the potential for
drug interactions [53], CaDRReS-Sc predictions for re-
sponse to various drug combinations showed a clear cor-
relation to observed responses across the 25 different
experimental conditions (Fig. 4c; Pearson r=0.58; p
value<2.30×10-3), in comparison to weaker correlations
with other methods (Pearson r≤0.49 with ElasticNet and
RWEN; Additional file 1: Fig. 13c-d).
Testing drugs in each combination at low dosages also

helped to mimic what might be needed to support the

Fig. 3 Calibrated drug response prediction in heterogenous patient-derived cell lines using scRNA-seq data. a PCA plot showing the diversity of
single-cell transcriptomic profiles from different patient-derived cell lines. Comparison of observed and predicted cell death percentages for 5
patient-derived cell lines using 8 different drugs (at lower concentrations), based on CaDRReS-Sc analysis at the b cell-level, c cluster-level, and d
patient-level. Error bars show 1 standard deviation based on 3 experimental replicates. Note that that cell and cluster-level predictions show a
greater correlation with experimental observations than patient-level predictions, highlighting the utility of scRNA-seq data. e–f PCA plots
showing varied cell-level response predictions to treatment with Epothilone B and Doxorubicin, highlighting substantial inter- and intra-patient
drug response heterogeneity
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mitigation of side effects from combinatorial treatment
[50]. We then evaluated if this approach can be used to
predict pairs of drugs that can elicit greater overall cell
death compared to monotherapy. Overall, we observed
consistent trends between in silico predictions with
CaDRReS-Sc (Fig. 4d) and experimental results (Fig. 4e).
For instance, the combination of Doxorubicin and Vorino-
stat was predicted to provide a notable improvement over
monotherapy (+22%) in HN148, which was observed ex-
perimentally as well (+11%), consistent with prior work on
this combination [54]. By computing the expected im-
provement of combinatorial therapy over monotherapy,
we observed concordance between CaDRReS-Sc’s in silico
predictions and in vitro experimental results (Fig. 4f; 25

different experimental conditions; Wilcoxon p value<
3.39×10-2), but no significant associations for other
methods (ElasticNet, RWEN). These results indicate
that CaDRReS-Sc can sufficiently capture therapeutic
response for mono- and combinatorial therapy, enab-
ling prioritization of drugs and combinations for
in vitro and in vivo studies.

Discussion
While the role of intra-patient heterogeneity in genetic
mutations has been extensively explored with respect to
tumor biology [3, 55], fewer studies have investigated
how this combines with epigenetic heterogeneity to in-
fluence transcriptomic heterogeneity [39], drug response,

Fig. 4 Prioritizing drug combinations targeting transcriptionally-distinct subclones with CaDRReS-Sc. a Proportions of various transcriptionally
distinct cell clusters (n=21) in head and neck cancer patient-derived cell lines. b Heatmap of predicted cell death percentages across cell clusters
within each patient. c Comparison between predicted and observed drug response for five different drug combinations and patient-derived cells.
Boxplots contrasting monotherapy (gray) and combinatorial therapy (orange) response based on d CaDRReS-Sc predictions and e experimental
measurements. Error bars show 1 standard deviation (n=2–3), dashed lines indicate the best monotherapy, and asterisk symbols indicate drug
combinations that show improvement. In general, relative response values for monotherapy and combinatorial therapy, as observed from
experimental measurements, were also reflected in CaDRReS-Sc predictions. f Boxplots showing that drug combinations that were observed to
improve over monotherapy (x-axis, no/low vs high determined based on median value in experiment) had significantly higher predicted
improvements (combination over monotherapy) using CaDRReS-Sc as well (y-axis)
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and patient outcomes [1, 2]. In this work, we leveraged
the availability of large-scale tumor sequencing datasets
to highlight the relationship between intra-tumor tran-
scriptomic heterogeneity and patient outcomes, identify-
ing associations in 5 out of 24 cancer types and 3 out of
8 standard-of-care drugs. While this analysis emphasized
the general importance of taking ITTH into account for
predicting treatment response and outcomes, the power
to detect associations might have been limited by the de-
pendence on an in silico deconvolution approach [34,
56]. We also observed that increased ITTH does not al-
ways associate with adverse outcomes, as a progressive
disease could be associated with convergence to homo-
geneity (or loss of ITTH) which may influence the re-
sponse to specific classes of drugs [57, 58]. However,
further investigation is needed as the treatment outcome
would depend on the MoA of the drug, indication-
specific biology, and the distinct vulnerabilities associ-
ated with tumor cell populations based on their tran-
scriptome. With the increasing availability of single-cell
tumor sequencing datasets, the resolution of such ana-
lysis could be greatly improved and help identify shared
cell populations that contribute to treatment resistance
across patients.
Predicting treatment response in silico in the presence

of intra-tumor heterogeneity requires models that pro-
vide calibrated values for a single drug across many cell
types, while prior work has focused on calibrated predic-
tions for a cell type across many drugs [18]. To address
this, CaDRReS-Sc uses a novel objective function that
accounts for the uncertainty in drug response values
across drugs. This allowed CaDRReS-Sc to train a model
that is as accurate as single-drug models (80%), while le-
veraging information across drugs to provide highly cali-
brated response values (low MAE) compared to start-of-
the-art multi-drug methods. This establishes CaDRReS-
Sc as the only method that can differentiate responsive
cell types with high accuracy, while minimizing error in
computing IC50, for combining into a robust overall
prediction for a heterogenous tumor. Furthermore,
CaDRReS-Sc’s latent pharmacogenomic model provides
ready visualization and interpretation to examine the
pathways involved in drug response heterogeneity in a
tumor.
Patient-derived cell lines (PDCs) serve as ideal systems

for drug sensitivity measurements in vitro while captur-
ing intra-tumor transcriptomic heterogeneity [8, 9], and
we leveraged this in a proof-of-concept study, with 12
head and neck cancer PDCs and 8 drugs under 2 dos-
ages, to assess the ability to predict drug response in
silico in the presence of transcriptomic heterogeneity.
We note that scRNA-seq could have lower coverage
compared to bulk RNA-seq and our analysis would be
skewed towards highly abundant genes. The Fluidigm

C1 chip was used to generate the single-cell data used
here, and this yields a relatively higher number of de-
tected genes, allowing drug response prediction to be
based on a more representative set of genes.
Several sources of noise in drug response measure-

ment experiments have been reported in previous stud-
ies, including lack of experimental replication [14, 15],
and discordance in drug response information that was
generated based on the same set of cell lines [59]. To
mitigate this noise, we trained the model based on one
dataset and only utilized drugs that were tested at 9 dif-
ferent dosages to ensure that curve fitting and computed
IC50 values would be more reliable. Despite variations
in experimental conditions between training data from
public cancer cell line datasets [15] and test response
data from heterogenous PDCs, in silico predictions from
CaDRReS-Sc could recapitulate cell death percentages
observed in our in vitro experiments (Pearson r=0.68,
Fig. 3b), highlighting the robustness of such models. Fur-
ther availability of drug response data in PDCs and at
clinically relevant doses [60] could help advance the pre-
dictive performance and clinical utility of such models.
In predicting response to monotherapies, we observed

consistently higher correlations with in vitro measure-
ments when using transcriptomic profiles with higher
granularity (individual cells or cell clusters versus bulk
profiles). This prompted us to consider prioritizing com-
binatorial therapy options based on CaDRReS-Sc predic-
tions for different subclones, assuming that the
combinatorial effect can be approximated in many cases
through independent drug action on distinct subclonal
cancer cell populations [52]. Independent action of
drugs on primary and metastatic tumors with distinct
transcriptomic patterns have also been reported [9]. Al-
though this does not directly account for the impact of
drug-drug interactions [50, 61, 62], overall, we were able
to capture the effect of combinatorial drug therapy (Fig.
4c-e) and its improvement over monotherapy (Fig. 4f)
based on distinct drug response profiles across sub-
clones. We envisage, therefore, that the growing corpus
of scRNA-seq data can be data-mined using CaDRReS-
Sc to identify drug combinations that target clone-
specific therapeutic vulnerabilities and lead to better
treatment outcomes [8, 41].

Conclusions
Developing in silico tools for predicting in vivo treat-
ment response remains a challenge as multiple factors
(e.g., tumor microenvironment, immune response, over-
all patient health) can impact patient trajectories. The
ability to predict the synergistic effect of multiple drugs
on a given sub-population would also be useful informa-
tion that complements the additive effects across sub-
populations that is captured by our framework. In this
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study, we aimed to bridge the in silico to in vitro gap for
predicting response to mono- and combinatorial therapy
in the presence of transcriptomic heterogeneity. To-
gether with improved technologies for patient-derived
cancer cell models, this combined in silico/in vitro ap-
proach could form the basis of a first-cut precision oncol-
ogy platform that prioritizes mono- and combinatorial
therapy options in a clinically relevant timeframe.
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