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Abstract: This study aims to synthesize a new series of furochromone derivatives, evaluate their
antimicrobial properties, and improve the permeability of potent compounds to inhibit different
types of bacteria and fungi. Hence, Substituted furo[3,2-g]chromene-6-carbonitrile (3a,b) read-
ily form 7-amino-5-methyl-furo [3,2-g]chromene-6-carbonitrile (4a,b) via reduction using sodium
borohydride in methanol. The same compounds of (4a,b) were used as starting materials for the
synthesis of new furochromone derivatives such as furochromeno [2,3-d]pyrimidines, N- (6-cyano-
5-methyl-furochromene) acetamide, N-(6-cyano-5-methyl-furo chromene)-2-phenyl acetamide, N-
(6-cyano-5-methyl-furochromene) formimidate, furochromeno[1,2,4]triazepin-5-amine, furochrom
ene-6-carboxamide, furochromeno[1,2,4]triazolopyrimidines, and furochromeno[2,3-b]quinolin- 6-
amine. The structures of the new compounds were determined using spectroscopy: Nuclear Mag-
netic Resonance (1H, 13C), Mass spectra, Infrared, and elemental analysis. Molecular docking
studies were conducted to investigate the binding patterns of the prepared compounds against
DNA-gyrase (PDB 1HNJ). The results displayed that compounds furochromenotriazolopyrimi-
dine (20a,b), furochromenoquinolin-6-amine (21a,b), furochromenotriazepin-amine (9a,b), and furo-
chromenopyrimidine-amine (19a,b) were excellent antimicrobials.

Keywords: furochromones; visnagenone; khellinone; 1, 2, 4-triazole; 1, 2, 4-triazepine; quinoline;
furochromenopyrimidines; triazolopyrimidines; molecular docking; antimicrobial activity

1. Introduction

Natural furochromones (visnagin and khellin) and their derivatives are extracted
from many plants, the most famous of which is the Ammi visnaga Lam plant. Previous
studies have shown that furochromone compounds have broad biological activities [1,2].
Furochromone derivatives have been widely used in modern medicine to treat many ail-
ments such as vitiligo and hair loss [2], urolithiasis and hypertriglyceridemia [3], spasms
and kidney stones [4], and pain associated with renal colic [5]. They are also known to have
antioxidant, antidiabetic, antispasmodic, antimutagenic, herbicidal, larvicidal, insecticidal,
immunostimulatory, cardiovascular, antigastric, antineoplastic, anti-anaphylactic, anti-
atherosclerotic [3], cytotoxic [6], analgesic and anti-inflammatory [7,8], antimicrobial [9,10],
antiviral [11], and anticancer activity [12,13]. In addition, they have the ability to bind to
DNA [14] and act as coronary vasodilators [15]. Additionally, the pyranopyrimidine moiety
appears to be a significant building block in synthesized bioactive compounds with an-
timicrobial [16], antigenotoxic [17], anti-inflammatory, analgesic, and antiphlogistic [18,19],
antiplatelet, and antithrombotic activity [20]. Benzopyran derivatives have a wide range of
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biological activities, including stimulating the central nervous system [21], coronary vasodi-
lating [15,22], anti-atherosclerotic and antiatherogenic [23], antiallergic [24], spasmolytic [5],
reducing blood pressure and acting as a diuretic [25], and as an antibiotic [26]. Recently,
benzopyran derivatives have been used to reduce β-amyloid accumulation in Alzheimer’s
disease [27]. Moreover, chromene moieties are used as a building block in the generation of
natural products showing antibacterial, molluscicidal, antiallergic, antibiotic, antitumor,
hypolipidemic, and immunomodulating activities [28–30]. In order for chromene deriva-
tives to be of use in pharmaceuticals, great effort has been concentrated on developing
new synthetic approaches like 4H-chromene moieties designed by polymers to support
palladacycles with allenes, alkenes, and microwave-assisted liquid phase, and solid phase
such as KFealumina [31]. Therefore, many heterocyclic compounds are formed, such as
furochromones (visnagin and khellin) and pyran derivatives, which have various biological
activities, including compounds such as Khellol glucoside, Bergapten, Ricchiocarpen, and
chromene derivatives that possess molluscicidal activity [32] (Figure 1).
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In our previous work, we synthesized a new class of novel heterocyclic compounds
from natural furochromones and other compounds, with the study of the biological activity
of these compounds [1,7–10,12,14,33–35]. The present work presents a new technique for
the synthesis of furochromene-6-carbonitrile, furochromenopyrimidinone, furochromeno[2,3-
e][1,2,4]triazepin-5-amine, furochromeno[3,2-e][1,2,4]triazolopyrimid- ine, and furochrom
enoquinolin-6-amine using new reagents and rapid, convenient procedures that produce
better yields and a higher purity of the products than the conventional methods.

2. Results and Discussion
2.1. Synthesis

Furochromones such as visnagin (1a) and khellin (1b) were hydrolyzed with aqueous
potassium hydroxide, giving visnagenone (2a) or khellinone (2b), respectively [12,14].
Moreover, treatment of (2a) and (2b) with malononitrile in ethanol and the addition of
small amounts of triethylamine gives 7-imino-(4-methoxy or 4,9-dimethoxy)- 5-methyl-
7H-furo [3,2-g] chromene-6-carbonitrile (3a,b).

Furthermore, the same compounds (3a,b) were reduced using sodium borohydride in
methanol [36] to produce 7-amino-(4-methoxy or 4,9-dimethoxy)-5-methyl-6,7-di- hydro-
5H-furo [3,2-g]chromene-6-carbonitrile (4a,b), respectively. The infrared spectra of (3a) and
(3b) showed absorption bands at ν 3300–3310 cm−1 indicative of the (NH) groups and
at ν 2235–2240 cm−1 suggestive of carbonitrile (CN) groups. The (1H) Nuclear Magnetic
Resonance spectrum of (3a) displayed a singlet signal at δ 9.50 ppm corresponding to
one proton (NH) group, which was D2O exchangeable. The (1H)-NMR spectrum of (4b)
exhibited one singlet signal at δ 8.45 ppm, corresponding with a two-proton (NH2) group
with exchangeable D2O. The MS of (3a), (3b), (4a), and (4b) revealed molecular ion peaks
at m/z 254 (M+, 100%), 284 (M+, 98%), 258 (M+, 100%), and 288 (M+, 95%) respectively
(Scheme 1).
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The synthesis of (5a,b) was preceded by an initial condensation of the (NH2) function
in (4a,b) with the (C=O) group in formamide via intermediate (5′a,b), which, cyclized by
the nucleophilic addition of the (NH2) function into the cyano group, produced (6-methoxy
or 6,10-dimethoxy)-5-methyl-furo[3′,2′:6,7]chromeno[2,3-d] pyrimidin-4-amine (5a,b). An
infrared spectrum of (5a,b) demonstrated absorption bands at ν 3425–3422 cm−1 indicative
of an amino group, with a deficiency in the distinctive absorption of the cyano group.
The (1H)-NMR spectrum of (5a) showed a singlet signal at δ 6.45 ppm, matching the two
protons of the (NH2) group with exchangeable D2O.

Moreover, the addition of (4a) or (4b) to formic acid yielded (6-methoxy or 6, 10-
dimethoxy)-5-methyl-furochromeno [2,3-d]pyrimidin-4-one (6a,b). 1H-NMR spectrum of
(6a) exhibited a singlet signal at δ 10.70 ppm, indicating one proton of the (NH) group with
exchangeable D2O.

However, compounds (4a) and (4b) reacted with acetic anhydride and the product
obtained depended on the reaction conditions.

Thus, the treatment of (4a) or (4b) with acetic anhydride under reflux in the absence of
pyridine gave N-(6-cyano-(4-methoxy or 4,9-dimethoxy)-5-methyl-5H-furo[3,2-g] chromen-
7-yl)acetamide (7a) or (7b), respectively.

When (4a) or (4b) was reacted with acetic anhydride in pyridine in a water bath, it
produced (6-methoxy or 6, 10-dimethoxy)-2,5-dimethyl-furochromeno [2,3-d]pyrimidin-
4-ol, (8a) or (8b), the same compounds obtained from the reflux of (7a) or (7b) in a pyridine
solution. An infrared spectrum of (7a) displayed an absorption band at ν 2225 cm−1 due to
the cyano group and 1691 cm−1 for the carbonyl group. The (1H)-NMR spectrum of (7a)
exhibited one singlet signal at δ 9.35 ppm, conforming to one proton (NH) group. Also,
the IR spectrum of (8a) displayed the absence of the absorption band (CN) group and
the presence of absorption bands at ν 3412 cm−1 for the hydroxyl group. The (1H)-NMR
spectrum of (8a) exposed a singlet signal at δ 12.10 ppm, matching to the proton (OH)
group, which was D2O exchangeable.

Moreover, compounds (7a) and (7b) underwent cyclization by refluxing with hy-
drazine hydrate (N2H4) in a mixture of ethanol with a catalytic amount of piperidine to pro-
duce (7-methoxy or 7,11-dimethoxy)-2,6-dimethyl-furochromeno[2,3-e][1,2,4]triazepin-5-
amine (9a/b). An infrared spectrum of (9a,b) exposed an absorption band at ν 3420–3390 cm−1

indicative of the (NH2) group and an absorption band at ν 3305–3301 cm−1 for the (NH)
group. The (1H)-NMR spectrum of (9a) exhibited singlet signals at δ 6.85 and 10.10 ppm,
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matching two-proton (NH2) and one-proton (NH) group with exchangeable D2O, respec-
tively.

Furthermore, the partial hydrolysis of compounds (4a) and (4b) was carried out by
stirring with concentrated sulfuric acid to give 7-amino-(4-methoxy or 4,9-dimethoxy)
-5-methyl-5H-furo [3,2-g]chromene-6-carboxamide (10a/b). The 1H NMR spectrum of (10a)
showed two deuterium oxide exchangeable singlets at δ 6.86 and 7.25 ppm conforming
to (NH2) and (CONH2) protons, respectively. Furthermore, acid-catalyzed nucleophilic
cyclo-condensation of amino-carboxamide (10a/b) with acid chlorides, namely benzoyl
chloride in glacial acetic acid, produced (6-methoxy or 6, 10-dimethoxy)—5-methyl-2-
phenyl-furochromeno[2,3-d]pyrimidin-4-one(11a,b). Also, the (1H)-NMR spectrum of (11a)
showed a singlet signal at δ 11.10 ppm matching to the proton of (NH), and showed two
exchangeable deuterium oxides.

The MS spectra of (9a), (9b), (10a), (10b), (11a), and (11b) demonstrated molecular
ion peaks at m/z 312 (M+, 90%), 342 (M+, 85%), 274 (M+, 100%), 304 (M+, 92%), 360 (M+,
100%), and 390 (M+, 94%), respectively. Assignment of the newly prepared compounds
was based on spectroscopic analyses such as infrared, 1H-NMR, 13C-NMR, mass spectra,
and elemental analyses (cf. Scheme 2).
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Scheme 2. Synthesis of furochromeno[2,3-d]pyrimidinone and furochromeno[2,3-e][1,2,4] triazepin-
5-amine derivatives.

The reaction of the amino group in compounds (4a,b) with carbon-disulfide through
a nucleophilic attack of the thiol group on the carbonitrile (CN) function formed the
intermediate (12′a,′b), and rearrangement of (12”a,”b) produced the pyrimidine dithione
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derivatives (12a,b). Hence, refluxing of (4a/b) with carbon disulfide in pyridine produced
(6-methoxy or 6, 10-dimethoxy)-5-methyl-furochromeno[2,3-d]pyrimidine-dithione (12a/b).
The IR spectra of (12a) and (12b) exhibited the absence of absorption bands determined to
be amino and cyano groups and showed absorption bands at ν 3235–3210 cm−1 for (2NH)
groups, and at ν 1300–1295 cm−1 for (2C=S) functions. The (1H)-NMR spectrum of (12a)
showed singlet signals at δ 9.10 and 12.02 ppm, corresponding with the two protons of the
(2NH) groups with exchangeable D2O.

Additionally, heating of (4a/b) with 2-phenylacetyl chloride in pyridine yielded N-(6-
cyano-(4-methoxy or 4, 9-dimethoxy)-5-methyl-furochromene)-2-phenylacetamide (13a,b),
respectively.

Moreover, the latter compounds’ (13a,b) treatment with hydrogen peroxide was fol-
lowed via hydrolysis with sodium hydroxide [34] to produce 2-benzyl-(6-methoxy or 6,10-
dimethoxy)-5-methyl-furochromeno[2,3-d]pyrimidin-4-one (14a/b) with an inter- mediate
(14′a/′b). The infrared spectra of (13a,b) showed absorption bands at ν 3220–3215 cm−1

for (NH), 2244–2240 cm−1 for (CN), and 1692–1690 cm−1 for the carbonyl group. The
IR spectrum of (14a/b) revealed the disappearance of the absorption band recognized in
the (CN) group. The (1H)-NMR spectrum of (14a) revealed a singlet signal at δ 9.50 ppm,
matching the proton of the (NH) group, which was D2O exchangeable.

Likewise, the refluxing of compounds (4a,b) with phenyl-isothiocyanate or phenyl- iso-
cyanate in pyridine produced 4-imino-(6-methoxy or 6,10-dimethoxy)-5-methyl -3-phenyl-
furochromeno[2,3-d]pyrimidine-2-thione (15a or 15b) and 4-imino-(6-methoxy or 6,10-
dimethoxy)-5-methyl-3-phenyl-furochromeno[2,3-d]pyrimidin-2-one (16a,b), respectively.

The infrared spectra for (15a/b) and (16a/b) displayed the absence of an absorption
bands assignable to cyano and amino functional groups and compounds (15a/b) and
(16a/b) showed absorption bands at ν 3280–3225 cm−1 for (2NH), 1335–1332 cm−1 for (C=S)
functions, and 1688–1682 cm−1 for carbonyl groups, respectively. The 1HNMR spectra of
(15a) exhibited singlet signals at δ 9.10 and 9.60, corresponding to the two protons of the
(2NH) groups with exchangeable D2O.

The mass spectra of (14a), (14b), (15a), (15b), (16a), and (16b) presented molecular
ion peaks at m/z 376 (M+, 77%), 406 (M+, 70%), 393 (M+, 80%), 423 (M+, 75%), 377 (M+,
72%), and 407 (M+, 69%), respectively. The newly prepared compounds were confirmed
based on elemental analyses such as IR, 1H-NMR, 13C-NMR, and mass spectra, as shown
in Scheme 3.

Likewise, the refluxing and condensation of (4a/b) with triethylorthoformate in acetic
anhydride gives the corresponding ethyl N-(6-cyano-(4-methoxy or 4,9- dimethoxy) -5-
methyl-furo [3,2-g]chromen-7-yl)formimidate (17a,b).

The IR spectra of (17a,b) exhibited the absence of any absorption due to amino groups
and the presence of a cyano function at ν 2220–2218 cm−1; the 1HNMR spectrum of (17a)
showed the presence of triplet and quartet signals at δ 1.25 and 3.66 ppm due to the ethoxy
group.

Whereas the latter compound (17a,b) produced (6-methoxy or 6, 10-dimethoxy)-3,
5-dimethyl-furochromeno[2,3-d]pyrimidin-4-imine(18a,b)-upon treatment with methyl-
amine in refluxing absolute ethanol at room temperature, the (1H)-NMR spectrum of (18a)
revealed a singlet broad signal at δ 9.65 ppm, conforming to the proton of (NH), D2O
exchangeable.

Also, the same compounds (17a,b) underwent further cyclization upon reaction with
hydrazine hydrate in absolute ethanol at room temperature under refluxing and stirring
to give 4-imino-(6-methoxy or 6,10-dimethoxy)-5-methyl-furochromeno[2,3-d]pyrimidin-
3(5H)-amine (19a,b). The infrared spectrum of (19a,b) displayed the absence of a cyano
function with absorption bands of the amino group at ν 3425–3422 cm−1 and of the (NH)
group at ν 3260–3258 cm−1. The (1H)-NMR spectrum of (19a) showed the disappearance
of the ethoxy group and an absorption of singlet signals at δ 6.40 ppm, matching the
two-proton (NH2) group and at δ 9.70 ppm for the proton (NH) group, which was D2O
exchangeable.
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In addition, the cyclization of the same compounds (19a,b) was accomplished via
the reaction of (19a,b) with triethylorthoformate in acetic anhydride and refluxing to
yield (12-methoxy or 8,12-dimethoxy)-13-methyl-furochromeno [3,2-e][1,2,4]triazolo [1,5-
c]pyrimidine (20a,b). The infrared spectrum of (20a,b) demonstrated a disappearance of
absorption bands (NH) and amino groups. The (1H)-NMR spectrum of (20b) exposed two
singlet signals at δ 6.05 and 7.76 ppm, indicative of two protons of (CH) triazole and (CH)
pyrimidine rings.

Similarly, the Friedländer synthesis is a condensation of o-amino-aryl with ketones in
the presence of catalysis to form quinolines.

Therefore, condensation of compounds (4a/b) with cyclohexanone in dry 1,2-di-
chloroethane in the presence of catalyzed AlCl3 [37] with stirring under an argon at-
mosphere at room temperature causes cyclo-condensation to produce a (4-methoxy or 4,13-
dimethoxy)-5-methyl-furochromeno[2,3-b]quinolin-6-amine (21a/b) intermediate, (21′a,b).

The infrared spectra of compounds (21a,b) showed an absorption band at ν 3415–
3412 cm−1, indicative of one (NH2) group. Moreover, the (1H)-NMR spectra of (21a)
exhibited a singlet signal at δ 6.65 ppm, matching to the two protons of the amino group,
which were D2O exchangeable. The MS spectra of (19a), (19b), (20a), (20b), (21a), and
(21b) demonstrated molecular ion peaks at m/z 300 (M+, 100%), 330 (M+, 90%), 310 (M+,
85%), 340 (M+, 80%), 338 (M+, 93%), and 368 (M+, 90%), respectively. All newly prepared
compounds were founded on elemental analyses, infrared, NMR (1H, 13C), and MS spectra,
as shown in Scheme 4.
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2.2. Biological Activities
2.2.1. Biological Screening

All the newly synthesized compounds of the furochromone derivatives were tested in vitro
for their antimicrobial activities at a minimum inhibitory concentration [9,10,33–35,38–54] ver-
sus various bacteria and fungi; the results are shown in Tables 1 and 2. Some of these
compounds showed high antimicrobial activity, comparable to that of cefotaxime sodium
(MIC = 1–4 µmol mL−1). Compounds (20a,b), (21a,b), (9a,b), and (19a,b) exhibited potent
anti- microbial activity against Gram-negative bacteria; Klebsiella pneumoniae, Escherichia
coli, and Gram-positive bacteria; Streptococcus pyogenes, Staphylococcus aureus.

Further, compounds (15a,b), (16a,b), (18a,b), and (12a,b) revealed moderate antimicro-
bial activity. The MIC values in µmol mL−1 of these compounds were as follows: (20a,b)
(1–5), (21a,b) (2–6), (9a,b) (4–7), and (19a,b) (5–9).

Compounds (21a,b), (20a,b), (9a,b), and (19a,b) also showed higher antifungal activity,
with MIC in µmol/cm3 of (21a,b) (1–4), (20a,b) (1–5), (9a,b) (2–6), and (19a,b) (3–7), whose
results were compared with the positive control, nystatin (MIC: 1–3 µmol mL−1).

Some of the compounds revealed moderate antifungal activity when compared with
nystatin (MIC 1–3 µmol mL−1): (15a,b) (5–8), (16a,b) (7–10), (18a,b) (9–13) and (12a,b)
(11–15). The tested fungi were Candida albicans, Curvularia lunata, Alternaria alternate, and
Aspergillus niger.

2.2.2. Structural Activity Relationship (SAR)

The results show that some types of bacteria and fungi are more sensitive to the
synthesized compounds; some compounds have better antimicrobial activity, such as
furo[3′,2′:6,7]chromeno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine (20a,b); furo[3′,2′:6,7]chro-
meno[2,3-b]quinolin-6-amine (21a,b), furo[3′,2′:6,7]chromeno[2,3-e][1,2,4]triazepin-5- amine
(9a,b), and furo[3′,2′:6,7]chromeno[2,3-d]pyrimidin-3(5H)-amine (19a,b). So, there are other
compounds with moderate antimicrobial activity such as furo [3′,2′:6,7] chromeno [2, 3-
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d]pyrimidine-2-thione (15a,b), furo [3′,2′:6,7]chromeno [2,3-d] pyrimidin- 2-one (16a,b),
furo[3′,2′:6,7]chromeno[2,3-d]pyrimidin-4-imine (18a,b), and furo [3′,2′:6,7] chromeno [2,3-
d] pyrimidine-dithione (12a,b).

Table 1. A minimum inhibitory concentration of the compounds against bacteria.

MIC (µmol mL−1)

Compounds

Microorganisms

Gram-Negative Bacteria Gram-Positive Bacteria

Klebsiella
pneumoniae E. coli Streptococcus

pyogenes
Staphylococcus

aureus

(3a) 36 37 38 39
(3b) 35 36 37 38
(4a) 34 35 36 37
(4b) 33 34 35 36
(5a) 16 17 18 19
(5b) 15 16 17 18
(6a) 22 23 24 25
(6b) 21 22 23 24
(7a) 32 33 34 35
(7b) 31 32 33 34
(8a) 24 25 26 27
(8b) 23 24 25 26
(9a) 5 6 6 7
(9b) 4 4 5 6
(10a) 26 27 28 29
(10b) 25 26 27 28
(11a) 20 21 22 23
(11b) 19 20 21 22
(12a) 14 15 16 17
(12b) 13 13 14 15
(13a) 28 29 30 31
(13b) 27 28 29 30
(14a) 18 19 20 21
(14b) 17 18 19 20
(15a) 8 9 9 10
(15b) 7 8 8 9
(16a) 10 10 11 12
(16b) 9 10 11 11
(17a) 30 31 32 33
(17b) 29 30 31 32
(18a) 12 13 14 14
(18b) 11 12 13 13
(19a) 6 7 8 9
(19b) 5 6 7 8
(20a) 2 3 4 5
(20b) 1 2 3 4
(21a) 3 4 5 6
(21b) 2 3 4 5

Cefotaxime
sodium 1 2 3 4

Negative
control NI NI NI NI

DMSO was used as the negative control and as the solvent for test compounds and the reference drug.
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Table 2. A minimum inhibitory concentration of the compounds against fungi.

MIC (µmol mL−1)

Compounds
Microorganisms

Candida
albicans

Curvularia
lunata

Alternaria
alternata

Aspergillus
niger

(3a) 34 35 36 37
(3b) 33 34 35 36
(4a) 32 33 34 35
(4b) 31 32 33 34
(5a) 14 15 16 17
(5b) 13 14 15 16
(6a) 20 21 22 23
(6b) 19 20 21 22
(7a) 30 31 32 33
(7b) 29 30 31 32
(8a) 22 23 24 25
(8b) 21 22 23 24
(9a) 3 4 5 6
(9b) 2 3 4 5
(10a) 24 25 26 27
(10b) 23 24 25 26
(11a) 18 19 20 21
(11b) 17 18 19 20
(12a) 12 13 14 15
(12b) 11 12 13 14
(13a) 26 27 28 29
(13b) 25 26 27 28
(14a) 16 17 18 19
(14b) 15 16 17 18
(15a) 6 6 7 8
(15b) 5 6 6 7
(16a) 8 9 9 10
(16b) 7 8 8 9
(17a) 28 29 30 31
(17b) 27 28 29 30
(18a) 10 11 12 13
(18b) 9 10 11 12
(19a) 4 5 6 7
(19b) 3 4 5 6
(20a) 2 3 4 5
(20b) 1 2 2 3
(21a) 2 2 3 4
(21b) 1 1 2 3

Nystatin 1 1 2 3
Negative
control NI NI NI NI

DMSO was used as the negative control and as the solvent for test compounds and the reference drug.

Based on previous studies and practical results, the structure activity relationship of
the compounds, with results showing good antimicrobial activity have been discussed, and
the following can be confirmed:

The presence of functional groups linked with furochromones such as methyl, methoxy,
amino, imino, hydroxyl, phenyl, thioxo, acetyl, 1,2,4-triazole, 1,2,4-triazepine, pyrimidine,
quinoline, and fused rings; furochromenoquinoline, furochromenotriazolo- pyrimidine,
furochromenotriazepine, and furochromenopyrimidine moieties; and heteroatoms such as
oxygen, nitrogen, and sulfur.

Some of the functional groups present in the prepared compounds are called “acti-
vated” because they tend to donate electrons to the ring such as amine, amide, hydroxy,
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alkyl, alkoxy, and ester groups. Other functional groups are called “deactivated” because
they tend to withdraw electrons from the ring such as cyano, carbonyl, sulfonyl, haloalkyl,
nitro, and ammonium groups. Thus, the existence of these functional groups leads to
lipophilic groups in diverse places on the triazepine, pyrimidine, quinoline, triazole, pyran,
and phenyl rings, and hydrophobic reactions of the triazolopyrimidine, furochromenotri-
azepine, and furochromenoquinoline moieties at the more active site. In current work and
previous studies, most types of bacteria and fungi are affected by this class of heterocyclic
compounds [9,10,33–36,38–54].

Furthermore, previous results and our findings corroborate the promising antimicro-
bial activity of furochromenotriazolopyrimidine (20a,b), furochromeno- quinoline (21a,b),
furochromenotriazepine (9a,b), and furochromenopyrimidine (19a,b) derivatives, which
can be developed to enhance their antimicrobial activity.

2.3. Molecular Modeling

The structure of FabH (PDB 1HNJ) was obtained from the RCSB protein Data Bank [55].
Glide was used to analyze the interactions of the active compounds with the enzyme. All
the heteroatoms were removed and isolated from the 1HNJ.pdb, to make complex receptors
free of any ligand before docking. The water molecule of the enzyme was removed, and
hydrogen atoms were added to the typical geometry before docking. The ligand file was
submitted to the Chem3D Ultra Visualizing program to be reduced to the lowest energy
and to obtain a standard 3D structure. A grid box was created with active residues of
1HNJ protein, using receptor grid generation in the glide tool of the Schrodinger suite to
produce a good docking reaction at the formed binding domain. The engaged free energy
of output docked complexes was studied using prime MMGBSA of the Schrodinger suite.
The binding free energy demonstrated the consanguinity of H-bond and pi-sigma reactions
between target 1HNJ protein and little ligand molecules. Table 3 shows eight docked
complexes with an H-bond length below 3.2, suggesting that the docked complexes have
steady conformation. The binding free energy of docked complexes was in the range of
−38.8 to −49.84, with negative dG values designating the formation of steady complexes.

Table 3. Glide score, glide energy, binding energies (MM/GBSA), and interaction of the synthesized
molecules with amino acid residues of 1HNJ protein.

Compounds Structure Glide Score MM-GBSA Protein–Ligand
Interactions Bond Distance °A

(9a)
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2.3.1. Binding Free Energy Calculation

The XP docked output molecules are used to calculate the binding free energy of
protein–ligand complexes using prime MMGBSA (molecular mechanics generalized Born
surface area) at force domain OPLS-2005 [56]. Free energy of binding describes the affinity
of a ligand molecule with a protein. The binding free energy was calculated at binding
poses of protein–ligand complexes as follows:

∆G Binding = ∆G complex − ∆ (G protein + G ligand),

where G Binding is the Minimized binding free energy; G complex, G protein, and G
ligand represent the free energy of the protein–inhibitor complex, protein, and inhibitor,
respectively.

2.3.2. Molecular Docking

The FabH active site generally contains a catalytic triad tunnel involving Cys112,
His244, and Asn274. A change in these amino acid resides may inhibit or even stop
an enzyme’s catalytic activity [57]. The direct outcome of this would be that fatty acid
biosynthesis cannot carry on efficiently as the energy equipping the organism would not be
enough, so the components of all cell membranes could not be formed, and antimicrobial
activity would be revealed [58]. Subsequently, we carried out molecular docking studies
of the prepared compounds with the crystal structure of E. coli FabH (entry 1HNJ in the
Protein Data Bank) to discover their binding mode. From recent and previous scientific
studies [59–67], we know that the hydroxyl (OH) group contributes greater affinity in the
interaction of the receptor and the ligand as compared to the methoxy (OCH3) group by
forming a hydrogen bond with the amino acid of the protein molecule, and the greater
extent of hydrogen bonding leads to better interaction. In this study, molecular docking can
offer worthwhile information on the action mechanism of our compounds. The docking
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results are shown in Table 3 and Figures 2–4. In silico studies discovered that most of
the prepared molecules had a good binding free energy (kcal/mol) for the target protein,
ranging from −38.8 to −49.84 kcal/mol Table 3. Moreover, the changes in MM-GBSA
accorded well with the MIC values obtained for most of the compounds—specifically,
compounds (20b) and (21b), with good activity, exhibited very low MM-GBSA values of
−42.40 and −49.84 kcal/mol, respectively. The observations from the biological assay data
and the molecular docking results ability suggest that the antibacterial activity of these
compounds is derived from the reaction between the compounds and the enzyme FabH.
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3. Materials and Methods

Through cooperation with other researchers, a research plan was made for the synthe-
sis of new heterocyclic compounds. These new compounds were planned to study their
antimicrobial activity, and the plan was successfully implemented.

3.1. General Information

All the melting points were assessed on an Electrothermal IA 9100 series digital
melting point apparatus (Shimadzu, Tokyo, Japan). Elemental analyses were performed on
Vario EL (Elementar, Langenselbold, Germany). Microanalytical data were processed at the
microanalytical center of the Faculty of Science at Cairo University and National Research
Centre. The IR spectra (KBr disc) were recorded using a Perkin-Elmer 1650 spectrometer
(Waltham, MA, USA). NMR spectra were determined using JEOL 270 MHz and JEOL
JMS-AX 500 MHz (JEOL, Tokyo, Japan) spectrometers with Me4Si as an internal standard.
Mass spectra were recorded on an EI Ms-QP 1000 EX instrument (Shimadzu, Tokyo, Japan)
at 70 eV. Biological evaluations were performed by the antimicrobial unit of Department
of Chemistry of Natural and Microbial Products (National Research Centre, Giza 12622,
Egypt). All starting materials and solvents were purchased from Sigma-Aldrich (St. Louis,
MO, USA).

3.2. Synthesis of 7-imino-(4-methoxy or 4, 9-dimethoxy)-5-methyl-7H-furo[3,2-g]
chromene-6-carbonitrile (3a,b)

Method A. General Procedure [36]: To a stirred solution of visnaginone 2a (2.06 g, 0.01
mol) or khellinone (2b) (2.36 g, 0.01 mol) and malononitrile (0.66 g, 0.01 mol) in absolute
ethanol (50 mL) was added triethylamine (1 mL, 0.01 mol). The mixture was refluxed for
3–4 h (TLC) and then allowed to cool to room temperature. The final formed precipitate was
isolated via filtration and washed with ethanol to get s pure product, then recrystallized
from the proper solvent to give (3a) and (3b).

Method B. To a stirred solution of visnaginone (2a) (2.06 g, 0.01 mol) or khellinone (2b)
(2.36 g, 0.01 mol) in ethanolic sodium ethoxide solution (0.5 g, 0.02-atom of sodium 35 mL
of ethanol), malononitrile (0.66 g, 0.01 mol) was added and the mixture was heated under
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reflux for 2–4 h and checked by TLC. After cooling, the final solid product was collected
and recrystallized from the proper solvent to give (3a) and (3b), respectively.

3.3. Synthesis of 7-imino-4-methoxy-5-methyl-7H-furo[3,2-g]chromene-6-carbonitrile (3a)

The compound was obtained from the reaction of visnaginone (2a) (2.06 g, 0.01 mol)
and malononitrile (0.66 g, 0.01 mol), as yellowish crystals, crystallized from dioxane (82%),
melting point (M.p.): 208–210 ◦C. IR (ν, cm−1) KBr: 3300 (NH), 3055 (CH-aryl), 2965
(CH-aliph), 2240 (CN), 1630 (C=N), 1590 (C=C). 1H NMR (DMSO-d6, ppm) δ 2.35 (s, 3H,
CH3), 3.80 (s, 3H, OCH3), 6.80 (d, 1H, J = 2.35 Hz, furan), 7.10 (s, 1H, benzene), 7.30 (d, 1H,
J = 2.38 Hz, furan), 9.50 (s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ 18.5, 58.2
(2C, CH3, OCH3), 90.3 (1C, CH), 91.5, 116.7 (2C, C-CN), 103.1, 106.4, 110.2, 145.5, 150.7,
154.6, 155.2, 157.4, 161.2 (9C, Ar-C); MS (70 eV, %) m/z 254 (M+, 100%); Anal. Calc. (Found)
for C14H10N2O3 (254.25): C, 66.14 (66.22); H, 3.96 (3.90); N, 11.02 (11.12).

3.4. Synthesis of 7-imino-4,9-dimethoxy-5-methyl-7H-furo[3,2-g]chromene-6-carbonitrile (3b)

The compound was obtained from the reaction of khellinone (2b) (2.36 g, 0.01mol)
and malononitrile (0.66 g, 0.01 mol), as yellow crystals, crystallized from methanol (80%),
M.p.: 220–222 ◦C. IR (ν, cm−1) KBr: 3310 (NH), 3060 (CH-aryl), 2970 (CH-aliph), 2235
(CN), 1634 (C=N), 1595 (C=C). 1H NMR (DMSO-d6, ppm) δ 2.30 (s, 3H, CH3), 3.85 (s, 6H,
2OCH3), 6.85 (d, 1H, J = 2.34 Hz, furan),7.05 (d, 1H, J = 2.37 Hz, furan), 9.60 (s, 1H, NH,
D2O exchangeable); 13C NMR (DMSO-d6) δ 18.6 (1C, CH3), 59.5 (2C, 2OCH3), 91.8, 116.9
(2C, C-CN), 103.5, 106.2, 113.1, 123.5, 145.1, 146.5, 148.4, 150.3, 157.2, 161.5 (10 C, Ar-C);
MS (70 eV, %) m/z 284 (M+, 98%); Anal. Calc. (Found) for C15H12N2O4 (284.27): C, 63.38
(63.45); H, 4.26 (4.35); N, 9.85 (9.77).

3.5. Synthesis of 7-amino-(4-methoxy or 4,9-dimethoxy) -5-methyl-6,7-dihydro-5H-furo[3,2-g]
chromene-6-carbonitrile (4a,b)

General procedure [36]: To a solution of (3a) (2.54 g, 0.01 mol) or (3b) (2.84 g, 0.01 mol)
in methanol (50 mL) was added sodium borohydride (0.38 g, 0.01 mol) at 0 ◦C. The reaction
mixture was stirred for 1–2 h, under control (TLC). The reaction mixture was poured into
water and the precipitated solid was filtered, washed with water, and dried and crystallized
from the proper solvent to give (4a) and (4b), respectively.

3.6. Synthesis of 7-amino-4-methoxy-5-methyl-6, 7-dihydro-5H-furo[3,2-g]chromene-6-
carbonitrile (4a)

The compound was obtained from the reaction of (3a) (2.54 g, 0.01mol) and sodium
borohydride (0.38 g, 0.01 mol), as white crystals, crystallized from ethanol (79%), M.p.:
240–242 ◦C. IR (ν, cm−1) KBr: broad 3416 (NH2), 3052 (CH-aryl), 2970 (CH-aliph), 2244
(CN), 1585 (C=C). 1H NMR (DMSO-d6, ppm) δ 1.45 (d, 3H, J = 6.80 Hz, CH3), 3.05 (m, 1H,
CH, pyran ring), 3.15 (t, 1H, J = 6.85 Hz, CH, pyran ring), 3.81 (s, 3H, OCH3), 5.10 (d, 1H,
J = 6.88 Hz, CH, pyran ring), 6.88 (d, 1H, J = 2.31 Hz, furan), 7.15 (s, 1H, benzene), 7.37
(d, 1H, J = 2.32 Hz, furan), 8.40 (s, 2H, NH2, D2O exchangeable); 13C NMR (DMSO-d6) δ
20.1 (1C, CH3), 21.3, 44.5, (2C, CH, pyran ring), 60.1 (1C, OCH3), 81.2 (1C, CH-NH2), 90.7
(1C, CH, benzene), 120.2 (1C, CN), 102.8, 105.1, 106.7, 145.9, 152.3, 154.8, 156.9 (7C, Ar-C);
MS (70 eV, %) m/z 258 (M+, 100%); Anal. Calc. (Found) for C14H14N2O3 (258.28): C, 65.11
(65.20); H, 5.46 (5.52); N, 10.85 (10.77).

3.7. Synthesis of 7-amino-4,9-dimethoxy-5-methyl-6,7-dihydro-5H-furo[3,2-g]chromene-6-
carbonitrile (4b)

The compound was obtained from the reaction of 3b (2.84 g, 0.01mol) and sodium
borohydride (0.38 g, 0.01 mol), as yellowish crystals, crystallized from benzene (77%), M.p.:
260–262 ◦C. IR (ν, cm−1) KBr: broad 3420 (NH2), 3057 (CH-aryl), 2962 (CH-aliph), 2241
(CN), 1582 (C=C). 1H NMR (DMSO-d6, ppm) δ 1.40 (d, 3H, J = 6.77 Hz, CH3), 3.08 (m, 1H,
CH, pyran ring), 3.11 (t, 1H, J = 6.87 Hz, CH, pyran ring), 3.90 (s, 6H, 2OCH3), 5.15 (d, 1H,
J = 6.81 Hz, CH, pyran ring), 6.84 (d, 1H, J = 2.37 Hz, furan), 7.40 (d, 1H, J = 2.39 Hz, furan),
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8.45 (s, 2H, NH2, D2O exchangeable); 13C NMR (DMSO-d6) δ 20.5 (1C, CH3), 21.7, 44.8, (2C,
CH, pyran ring), 60.6 (2C, 2OCH3), 82.4 (1C, CH-NH2), 122.1 (1C, CN), 105.1, 105.7, 110.2,
127.3, 145.1, 145.8, 146.5, 146.9 (8C, Ar-C); MS (70 eV, %) m/z 288 (M+, 95%); Anal. Calc.
(Found) for C15H16N2O4 (288.30): C, 62.49 (62.55); H, 5.59 (5.66); N, 9.72 (9.65).

3.8. Synthesis of (6-methoxy or 6, 10-dimethoxy) -5-methyl-4a, 11a-dihydro-5H-furo[3′,2′: 6,7]
chromeno[2,3-d] pyrimidin-4-amine (5a,b)

General procedure: Method A. A mixture of (4a) (2.58 g, 0.01 mol) or (4b) (2.88 g, 0.01
mol) and formamide (30 mL) was refluxed for 4–6 h under control (TLC). After cooling,
the yellowish crystals were filtered off and washed with cold water and methanol, then
recrystallized from the proper solvent to give (5a) and (5b), respectively.

Method B. A stream of NH3 gas was passed through (17a) (3.14 g, 0.01 mol) or (17b)
(3.44 g, 0.01 mol) in a dioxane solution at room temperature for 2–4 h under control (TLC).
The mixture was left in the refrigerator overnight, and the solid product that formed upon
cooling was collected by filtration to give (5a) and (5b), respectively.

3.9. Synthesis of 6-methoxy-5-methyl-4a, 11a-dihydro-5H-furo[3′,2′: 6,7]chromeno[2,3-d]
pyrimidin-4-amine (5a)

The compound was obtained from the reaction of (4a) (2.58 g, 0.01 mol) and formamide
(30 mL), as yellowish crystals, crystallized from methanol (75%), M.p. > 350 ◦C. IR (ν,
cm−1) KBr: broad 3425 (NH2), 3057 (CH-aryl), 2973 (CH-aliph), 1628 (C=N), 1588 (C=C).
1H NMR (DMSO-d6, ppm) δ 1.38 (d, 3H, J = 6.75 Hz, CH3), 3.10 (m, 1H, CH, pyran ring),
3.20 (t, 1H, J = 6.80 Hz, CH, pyran ring), 3.85 (s, 3H, OCH3), 5.05 (d, 1H, J = 6.79 Hz, CH,
pyran ring), 6.45 (s, 2H, NH2, D2O exchangeable), 6.75 (d, 1H, J = 2.35 Hz, furan), 7.18 (s,
1H, benzene), 7.40 (d, 1H, J = 2.34 Hz, furan), 8.08 (s, 1H, CH, pyrimidine ring); 13C NMR
(DMSO-d6) δ 19.5 (1C, CH3), 23.5, 46.2, (2C, CH, pyran ring), 60.4 (1C, OCH3), 85.3 (1C,
CH, pyran ring), 90.5 (1C, CH, benzene), 104.2, 105.5, 106.4, 147.2, 152.3, 154.1, 155.9, 157.4,
158.2 (9C, Ar-C); MS (70 eV, %) m/z 285 (M+, 100%); Anal. Calc. (Found) for C15H15N3O3
(285.30): C, 63.15 (63.22); H, 5.30 (5.39); N, 14.73 (14.66).

3.10. Synthesis of 6, 10-dimethoxy-5-methyl-4a, 11a-dihydro-5H-furo[3′,2′: 6,7]chromeno[2,3-d]
pyrimidin-4-amine (5b)

The compound was obtained from the reaction of (4b) (2.88 g, 0.01 mol) and formamide
(30 mL), as yellow crystals, crystallized from ethanol (73%), M.p. > 350 ◦C. IR (ν, cm−1)
KBr: broad 3422 (NH2), 3059 (CH-aryl), 2977 (CH-aliph), 1629 (C=N), 1584 (C=C). 1H NMR
(DMSO-d6, ppm) δ 1.35 (d, 3H, J = 6.73 Hz, CH3), 3.20 (m, 1H, CH, pyran ring), 3.30 (t,
1H, J = 6.77 Hz, CH, pyran ring), 3.91 (s, 6H, 2OCH3), 5.10 (d, 1H, J = 6.81 Hz, CH, pyran
ring), 6.50 (s, 2H, NH2, D2O exchangeable), 6.80 (d, 1H, J = 2.37 Hz, furan), 7.45 (d, 1H,
J = 2.38 Hz, furan), 8.11 (s, 1H, CH, pyrimidine ring); 13C NMR (DMSO-d6) δ 19.8 (1C, CH3),
24.2, 47.6, (2C, CH, pyran ring), 60.9 (2C, 2OCH3), 86.1 (1C, CH, pyran ring), 105.1, 106.3,
110.2, 127.4, 144.7, 145.5, 146.5, 147.1, 157.7, 158.5 (10 C, Ar-C); MS (70 eV, %) m/z 315 (M+,
100%); Anal. Calc. (Found) for C16H17N3O4 (315.33): C, 60.94 (60.88); H, 5.43 (5.50); N,
13.33 (13.40).

3.11. Synthesis of (6-methoxy or 6, 10-dimethoxy)-5-methyl-3, 5-dihydro-4H-furo[3′,2′: 6,7]
chromeno[2,3-d]pyrimidin-4-one (6a,b)

General procedure: Method A. A solution of (4a) (2.58 g, 0.01 mol) or (4b) (2.88 g,
0.01 mol) and formic acid (25 mL) was heated under reflux for 7–10 h under control (TLC).
The reaction solution was allowed to cool to room temperature and poured into water.
The formed solid precipitate was collected by filtration, washed with ethanol, dried, and
crystallized from the proper solvent to give (6a) and (6b).

Method B. A mix of (4a) (2.58 g, 0.01 mol) or (4b) (2.88 g, 0.01 mol) and formic acid
(10 mL) in formamide (35 mL) was refluxed for 5–8 h. After cooling, the solution was
poured into cold water. The solid precipitate that formed was collected by filtration, washed
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with cold water/ethanol, and recrystallized from the proper solvent to give (6a) and (6b),
respectively.

3.12. Synthesis of 6-methoxy-5-methyl-3, 5-dihydro-4H-furo[3′,2′: 6, 7]chromeno[2,3-d]
pyrimidin-4-one (6a)

The compound was obtained from the reaction of (4a) (2.58 g, 0.01 mol) and formic
acid (25 mL), as brownish crystals, crystallized from dioxane (81%), M.p. > 350 ◦C. IR (ν,
cm−1) KBr: 3295 (br. NH), 3063 (CH-aryl), 2962 (CH-aliph), 1680 (CO), 1630 (C=N), 1582
(C=C). 1H NMR (DMSO-d6, ppm) δ 1.48 (d, 3H, J = 6.79 Hz, CH3), 3.65 (q, 1H, J = 6.76 Hz,
CH, pyran ring), 3.92 (s, 3H, OCH3), 6.81 (d, 1H, J = 2.32 Hz, furan), 7.07 (s, 1H, benzene),
7.45 (d, 1H, J = 2.37 Hz, furan), 8.12 (s, 1H, CH, pyrimidine ring), 10.70 (s, 1H, NH, D2O
exchangeable); 13C NMR (DMSO-d6) δ 19.4, (1C, CH, pyran ring), 22.1 (1C, CH3), 60.7 (1C,
OCH3), 90.8 (1C, CH, benzene), 105.8, 106.3, 107.5, 109.6, 146.4, 150.7, 151.2, 153.8, 156.1,
160.5 (10C, Ar-C), 163.4 (1C, C=O); MS (70 eV, %) m/z 284 (M+, 100%); Anal. Calc. (Found)
for C15H12N2O4 (284.27): C, 63.38 (63.45); H, 4.26 (4.35); N, 9.85 (9.77).

3.13. Synthesis of 6,10-dimethoxy-5-methyl-3, 5-dihydro-4H-furo[3′,2′: 6,7]chromeno[2,3-d]
pyrimidin-4-one (6b)

The compound was obtained from the reaction of (4b) (2.88 g, 0.01 mol) and formic
acid (25 mL), as yellowish crystals, crystallized from methanol (80%), M.p. > 350 ◦C. IR (ν,
cm−1) KBr: 3290 (broad NH), 3060 (CH-aryl), 2959 (CH-aliph), 1682 (CO), 1633 (C=N), 1588
(C=C). 1H NMR (DMSO-d6, ppm) δ 1.50 (d, 3H, J = 6.80 Hz, CH3), 3.70 (q, 1H, J = 6.78 Hz,
CH, pyran ring), 3.95 (s, 6H, 2OCH3), 6.84 (d, 1H, J = 2.35 Hz, furan), 7.50 (d, 1H, J = 2.34 Hz,
furan), 8.14 (s, 1H, CH, pyrimidine ring), 10.75 (s, 1H, NH, D2O exchangeable); 13C NMR
(DMSO-d6) δ 19.7, (1C, CH, pyran ring), 22.5 (1C, CH3), 60.9 (2C, 2OCH3), 106.1, 107.4,
110.6, 113.1, 124.3, 139.1, 145.8, 146.5, 146.9, 150.5, 161.8 (11C, Ar-C), 163.9 (1C, C=O); MS
(70 eV, %) m/z 314 (M+, 100%); Anal. Calc. (Found) for C16H14N2O5 (314.30): C, 61.14
(61.22); H, 4.49 (4.55); N, 8.91 (8.84).

3.14. Synthesis of N-(6-cyano-(4-methoxy or 4, 9-dimethoxy)-5-methyl-5H-furo[3,2-g]
chromen-7-yl) acetamide (7a,b)

General procedure: A mix of (4a) (2.58 g, 0.01 mol) and (4b) (2.88 g, 0.01 mol) was
refluxed in acetic anhydride (30 mL) for 3–5 h, and then allowed to cool to room temperature
and poured into cold water (50 mL). The solid product that formed was collected by
filtration and washed with cold water. The final products were recrystallized from the
proper solvent to give (7a) and (7b).

3.15. Synthesis of N-(6-cyano-4-methoxy-5-methyl-5H-furo[3,2-g]chromen-7-yl)acetamide (7a)

The compound was obtained from the reaction of (4a) (2.58 g, 0.01mol) and acetic
anhydride (30 mL) as yellowish crystals, crystallized from ethanol (90%), M.p.: 318–320 ◦C.
IR (ν, cm−1) KBr: 3300 (br. NH), 3057 (CH-aryl), 2962 (CH-aliph), 2225 (CN), 1691 (C=O),
1583 (C=C). 1H NMR (DMSO-d6, ppm) δ 1.30 (d, 3H, J = 6.83 Hz, CH3), 1.90 (s, 3H, CH3),
3.63 (q, 1H, J = 6.84 Hz, CH, pyran ring), 3.87 (s, 3H, OCH3), 6.79 (d, 1H, J = 2.37 Hz, furan),
7.07 (s, 1H, benzene), 7.42 (d, 1H, J = 2.38 Hz, furan), 9.35 (s, 1H, NH, D2O exchangeable);
13C NMR (DMSO-d6) δ 19.6 (1C, CH, pyran ring), 22.7, 24.4 (2C, 2CH3), 60.2 (1C, OCH3),
68.1 (1C, C-CN, pyran ring), 118.6 (1C, CN), 90.1 (1C, CH, benzene), 104.5, 105.4, 108.8,
146.1, 150.5, 154.2, 155.1, 162.4 (8C, Ar-C), 168.5 (1C,C=O); MS (70 eV, %) m/z 298 (M+,
100%); Anal. Calc. (Found) for C16H14N2O4 (298.30): C, 64.42 (64.50); H, 4.73 (4.65); N,
9.39 (9.32).

3.16. Synthesis of N-(6-cyano-4,9-dimethoxy-5-methyl-5H-furo[3,2-g]chromen-7-yl)acetamide (7b)

The compound was obtained from the reaction of (4b) (2.88 g, 0.01mol) and acetic
anhydride (30 mL) as yellow crystals, crystallized from methanol (85%), M.p.: 332–334 ◦C.
IR (ν, cm−1) KBr: 3310 (br. NH), 3058 (CH-aryl), 2966 (CH-aliph), 2223 (CN), 1688 (C=O),
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1580 (C=C). 1H NMR (DMSO-d6, ppm) δ 1.28 (d, 3H, J = 6.87 Hz, CH3), 1.84 (s, 3H, CH3),
3.59 (q, 1H, J = 6.78 Hz, CH, pyran ring), 3.90 (s, 6H, 2OCH3), 6.81 (d, 1H, J = 2.38 Hz, furan),
7.47(d, 1H, J = 2.40 Hz, furan), 9.30 (s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ
19.3 (1C, CH, pyran ring), 22.1, 24.8 (2C, 2CH3), 61.3 (2C, 2OCH3), 68.5 (1C, C-CN, pyran
ring), 118.8 (1C, CN), 106.2, 110.5, 112.7, 124.2, 139.6, 145.9, 146.4, 147.1, 163.7 (9C, Ar-C),
168.1 (1C,C=O); MS (70 eV, %) m/z 328 (M+, 100%); Anal. Calc. (Found) for C17H16N2O5
(328.32): C, 62.19 (62.27); H, 4.91 (4.84); N, 8.53 (8.60).

3.17. Synthesis of (6-methoxy or 6,10-dimethoxy)-2, 5-dimethyl-5H-furo [3′,2′: 6,7]chromeno
[2,3-d]pyrimidin-4-ol (8a,b)

General procedure: Method A. A mixture of (4a) (2.58 g, 0.01 mol) and (4b) (2.88 g,
0.01 mol) in an acetic anhydride/pyridine mixture (30 mL:15 mL) was heated in a water
bath for 10–12 h under control (TLC), allowed to cool, and poured into 30 mL of acidified
cold water. The solid precipitate that formed was collected via filtration and washed with
cold water. The precipitate products were recrystallized from the proper solvent to give
(8a) and (8b).

Method B. A solution of (7a) (2.98 g, 0.01 mol) or (7b) (3.28 g, 0.01 mol) in absolute
ethanol (25 mL) with pyridine (5 mL) was heated and refluxed on water bath for 6–9 h
under control (TLC), after cooling the solid precipitate was collected via filtration, washed
with water, dried and recrystallized from appropriate solvent to give (8a) and (8b).

3.18. Synthesis of 6-methoxy-2,5-dimethyl-5H-furo[3′,2′:6,7]chromeno[2,3-d]pyrimidin-4-ol (8a)

The compound was obtained from the reaction of (4a) (2.58 g, 0.01 mol) and acetic
anhydride/pyridine as yellow crystals, crystallized from toluene (84%), M.p. > 350 ◦C. IR
(ν, cm−1) KBr: 3412 (br. OH), 3071 (CH-aryl), 2960 (CH-aliph), 1632 (C=N), 1586 (C=C).
1H NMR (DMSO-d6, ppm) δ 1.50 (d, 3H, J = 6.78 Hz, CH3), 2.08 (s, 3H, CH3), 4.10 (q, 1H,
J = 6.81 Hz, CH, pyran ring), 3.82 (s, 3H, OCH3), 6.80 (d, 1H, J = 2.39 Hz, furan), 7.01 (s, 1H,
benzene), 7.55 (d, 1H, J = 2.35 Hz, furan), 12.10 (s, 1H, OH, D2O exchangeable); 13C NMR
(DMSO-d6) δ 22.1, 24.5 (2C, 2CH3), 24.9 (1C, CH, pyran ring), 60.4 (1C, OCH3), 93.2 (1C,
CH, benzene), 105.6, 107.1, 112.7, 119.3, 146.4, 150.2, 153.8, 154.7, 156.1, 164.5, 169.8 (11C,
Ar-C); MS (70 eV, %) m/z 298 (M+, 100%); Anal. Calc. (Found) for C16H14N2O4 (298.30): C,
64.42 (64.35); H, 4.73 (4.80); N, 9.39 (9.46).

3.19. Synthesis of 6, 10-dimethoxy-2, 5-dimethyl-5H-furo[3′,2′: 6,7]chromeno[2,3-d]
pyrimidin-4-ol (8b)

The compound was obtained from the reaction of (4b) (2.88 g, 0.01 mol) and acetic
anhydride/pyridine as yellowish crystals, crystallized from benzene (82%), M.p. > 350 ◦C.
IR (ν, cm−1) KBr: 3408 (br. OH), 3073 (CH-aryl), 2962 (CH-aliph), 1636 (C=N), 1588 (C=C).
1H NMR (DMSO-d6, ppm) δ 1.58 (d, 3H, J = 6.74 Hz, CH3), 2.13 (s, 3H, CH3), 4.18 (q, 1H, J
= 6.82 Hz, CH, pyran ring), 3.94 (s, 6H, 2OCH3), 6.82 (d, 1H, J = 2.41 Hz, furan), 7.57 (d, 1H,
J = 2.40 Hz, furan), 12.15 (s, 1H, OH, D2O exchangeable); 13C NMR (DMSO-d6) δ 22.6, 23.8
(2C, 2CH3), 24.7 (1C, CH, pyran ring), 62.3 (2C, 2OCH3), 106.5, 115.2, 115.8, 119.5, 128.5,
136.7, 144.9, 146.3, 146.8, 154.5, 165.6, 107.1 (12C, Ar-C); MS (70 eV, %) m/z 328 (M+, 100%);
Anal. Calc. (Found) for C17H16N2O5 (328.32): C, 62.19 (62.27); H, 4.91 (4.85); N, 8.53 (8.60).

3.20. Synthesis of (7-methoxy or 7,11-dimethoxy)-2,6-dimethyl-1,6-dihydrofuro[3′,2′:6,7]
chromeno[2,3-e][1,2,4]triazepin-5-amine (9a,b)

General procedure: A mix of (7a) (2.98 g, 0.01 mol) and (7b) (3.28 g, 0.01 mmol) and
hydrazine hydrate (5 mL) in ethanol (40 mL) containing (0.1 mL) of piperidine was refluxed
for 4–7 h under control (TLC). The reaction solution was concentrated under reduced
pressure and the residue was triturated through methanol. The formed solid product was
filtered, washed with methanol, and recrystallized from the appropriate solvent to give (9a)
and (9b), respectively.
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3.21. Synthesis of 7-methoxy-2,6-dimethyl-1,6-dihydrofuro[3′,2′:6,7]chromeno[2,3-e][1,2,4]
triazepin-5-amine (9a)

The compound was obtained from the reaction of (7a) (2.98 g, 0.01 mol) and hydrazine
hydrate as yellow crystals, crystallized from DMF (78%), M.p. >350 ◦C. IR (ν, cm−1) KBr:
broad 3420–3395 (NH2), 3305 (br. NH), 3050 (CH-aryl), 2960 (CH-aliph), 1630 (C=N), 1585
(C=C). 1H NMR (DMSO-d6, ppm) δ 1.28 (d, 3H, J = 6.90 Hz, CH3), 1.70 (s, 3H, CH3), 3.68 (q,
1H, J = 6.80 Hz, CH, pyran ring), 3.82 (s, 3H, OCH3), 6.77 (d, 1H, J = 2.30 Hz, furan), 6.85 (s,
2H, NH2, D2O exchangeable), 7.01 (s, 1H, benzene), 7.50 (d, 1H, J = 2.31 Hz, furan), 10.10 (s,
1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ 18.1 (1C, CH, pyran ring), 22.3, 24.1
(2C, 2CH3), 60.5 (1C, OCH3), 80.2 (1C, triazepin ring), 90.6 (1C, CH, benzene), 105.8, 106.7,
109.5, 146.4, 148.5, 148.6, 151.1, 153.8, 155.7, 160.2 (10 C, Ar-C); MS (70 eV, %) m/z 312 (M+,
90%); Anal. Calc. (Found) for C16H16N4O3 (312.33): C, 61.53 (61.60); H, 5.16 (5.21); N, 17.94
(17.88).

3.22. Synthesis of 7,11-dimethoxy-2,6-dimethyl-1,6-dihydrofuro[3′,2′:6,7]chromeno
[2,3-e][1,2,4]triazepin-5-amine (9b)

The compound was obtained from the reaction of (7b) (3.28 g, 0.01 mmol) and hy-
drazine hydrate as yellowish crystals, crystallized from DMF (74%), M.p. > 350 ◦C. IR (ν,
cm−1) KBr: broad 3415–3390 (NH2), 3301 (br. NH), 3052 (CH-aryl), 2963 (CH-aliph), 1634
(C=N), 1587 (C=C). 1H NMR (DMSO-d6, ppm) δ 1.29 (d, 3H, J = 6.92 Hz, CH3), 1.72 (s, 3H,
CH3), 3.70 (q, 1H, J = 6.83 Hz, CH, pyran ring), 3.88 (s, 6H, 2OCH3), 6.80 (d, 1H, J = 2.31 Hz,
furan), 6.90 (s, 2H, NH2, D2O exchangeable), 7.55 (d, 1H, J = 2.36 Hz, furan), 10.20 (s, 1H,
NH, D2O exchangeable); 13C NMR (DMSO-d6) δ 18.7 (1C, CH, pyran ring), 22.9, 24.4 (2C,
2CH3), 61.8 (2C, 2OCH3), 80.6 (1C, triazepin ring), 106.1, 110.4, 112.5, 124.3, 139.2, 145.6,
146.2, 146.9, 148.5, 148.7, 160.4 (11 C, Ar-C); MS (70 eV, %) m/z 342 (M+, 85%); Anal. Calc.
(Found) for C17H18N4O4 (342.35): C, 59.64 (59.71); H, 5.30 (5.37); N, 16.37 (16.30).

3.23. Synthesis of 7-amino-(4-methoxy or 4, 9-dimethoxy)-5-methyl-5H-furo[3,2-g]chromene-
6-carboxamide (10a,b)

General procedure: Method A. Compound (4a) (2.58 g, 0.01 mol) or (4b) (2.88 g,
0.01 mol) was stirred in concentrated H2SO4 (30 mL) for 20–24 h at room temperature. The
reaction mixture was poured dropwise over crushed ice. The solid product was filtered,
washed with water, left to dry and recrystallized from the appropriate solvent to give (10a)
or (10b), respectively.

Method B. Compound (4a) (2.58 g, 0.01 mol) or (4b) (2.88 g, 0.01 mol) was added
dropwise with stirring to concentrated cold sulfuric acid at 20 ◦C (15 mL); so long as the
temperature did not exceed 40 ◦C, the solution was stirred for a further 2 h at room tem-
perature and poured into ice-cold water (20 mL). The reaction solution was left overnight
in the refrigerator. The final solid precipitate was filtered off and recrystallized from the
proper solvent to give (10a) or (10b).

3.24. Synthesis of 7-amino-4-methoxy-5-methyl-5H-furo[3,2-g]chromene-6-carboxamide (10a)

The compound was obtained from the reaction of (4a) (2.58 g, 0.01 mol) and con-
centrated cold sulfuric acid as brownish crystals, crystallized from methanol (73%), M.p.:
345–347 ◦C. IR (ν, cm−1) KBr: broad 3415, 3405 (2NH2), 3080 (CH-aryl), 2930 (CH-aliph),
1660 (C=O), 1581 (C=C). 1H NMR (DMSO-d6, ppm) δ 1.38 (d, 3H, J = 6.72 Hz, CH3), 3.65 (q,
1H, J = 6.75 Hz, CH, pyran ring), 3.87 (s, 3H, OCH3), 6.74 (d, 1H, J = 2.35 Hz, furan), 6.86 (s,
2H, NH2, D2O exchangeable), 7.09 (s, 1H, benzene), 7.25 (s, 2H, 2NH2, D2O exchangeable),
7.74 (d, 1H, J = 2.42 Hz, furan); 13C NMR (DMSO-d6) δ 19.2 (1C, CH, pyran ring), 21.5
(1C, CH3), 60.2 (1C, OCH3), 84.5 (1C, pyran ring), 90.7 (1C, CH, benzene), 105.2, 106.6,
110.3, 146.7, 150.9, 153.5, 155.8, 159.2 (8C, Ar-C), 170.1(1C,C=O); MS (70 eV, %) m/z 274
(M+, 100%); Anal. Calc. (Found) for C14H14N2O4 (274.28): C, 61.31 (61.38); H, 5.15 (5.22); N,
10.21 (10.27).
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3.25. Synthesis of 7-amino-4,9-dimethoxy-5-methyl-5H-furo[3,2-g]chromene-6-carboxamide (10b)

The compound was obtained from the reaction of (4b) (2.88 g, 0.01 mol) and conc. cold
sulfuric acid as yellowish crystals, crystallized from ethanol (70%), M.p. > 350 ◦C. IR (ν,
cm−1) KBr: broad 3410, 3402 (2NH2), 3085 (CH-aryl), 2935 (CH-aliph), 1665 (C=O), 1583
(C=C). 1H NMR (DMSO-d6, ppm) δ 1.40 (d, 3H, J = 6.71 Hz, CH3), 3.70 (q, 1H, J = 6.79 Hz,
CH, pyran ring), 3.92 (s, 6H, 2OCH3), 6.80 (d, 1H, J = 2.40 Hz, furan), 6.91 (s, 2H, NH2,
D2O exchangeable), 7.30 (s, 2H, 2NH2, D2O exchangeable), 7.70 (d, 1H, J = 2.44 Hz, furan);
13C NMR (DMSO-d6) δ 18.9 (1C, CH, pyran ring), 21.7 (1C, CH3), 61.8 (2C, 2OCH3), 85.1
(1C, pyran ring), 106.4, 111.5, 113.7, 124.3, 138.5, 144.9, 146.4, 147.1, 158.7 (9C, Ar-C), 173.5
(1C,C=O); MS (70 eV, %) m/z 304 (M+, 92%); Anal. Calc. (Found) for C15H16N2O5 (304.30):
C, 59.21 (59.30); H, 5.30 (5.39); N, 9.21 (9.14).

3.26. Synthesis of (6-methoxy or 6,10-dimethoxy)-5-methyl-2-phenyl-3,5-dihydro-4H-furo[3′,2′:
6,7]chromeno[2,3-d]pyrimidin-4-one (11a,b)

General procedure: A mix of compounds (10a) (2.74 g, 0.01 mol) and (10b) (3.04 g,
0.01 mol) and the suitable acid chloride (0.01 mol), namely benzoyl chloride (1.2 mL, 0.01
mol), was refluxed in acetic acid (25 mL) for 9–12 h under control (TLC). The reaction
solution was allowed to cool, then poured onto ice-cold water. The solid precipitate was
filtered, washed with water, and recrystallized from the proper solvent to give (11a) and
(11b).

3.27. Synthesis of 6-methoxy-5-methyl-2-phenyl-3,5-dihydro-4H-furo[3′,2′: 6,7]chromeno[2,3-d]
pyrimidin-4-one (11a)

The compound was obtained from the reaction of (10a) (2.74 g, 0.01 mol) and benzoyl
chloride as yellowish crystals, crystallized from dioxane (71%), M.p. > 350 ◦C. IR (ν, cm−1)
KBr: broad 3270 (NH), 3084 (CH-aryl), 2935 (CH-aliph), 1686 (C=O), 1585 (C=C). 1H NMR
(DMSO-d6, ppm) δ 1.40 (d, 3H, J = 6.80 Hz, CH3), 3.70 (q, 1H, J = 6.81 Hz, CH, pyran ring),
3.90 (s, 3H, OCH3), 6.78 (d, 1H, J = 2.39 Hz, furan), 7.07 (s, 1H, benzene),7.35–7.72 (m, 5H,
phenyl), 7.78 (d, 1H, J = 2.41 Hz, furan), 11.10 (s, 1H, NH, D2O exchangeable); 13C NMR
(DMSO-d6) δ 19.5 (1C, CH, pyran ring), 21.8 (1C, CH3), 60.7 (1C, OCH3), 90.8 (1C, CH,
benzene), 105.4, 106.1, 108.1, 109.3, 128.1, 128.6, 130.4, 131.5, 146.2, 150.5, 153.1, 155.6, 158.7,
160.5 (16C, Ar-C), 165.2(1C,C=O); MS (70 eV, %) m/z 360 (M+, 100%); Anal. Calc. (Found)
for C21H16N2O4 (360.37): C, 69.99 (69.90); H, 4.48 (4.41); N, 7.77 (7.84).

3.28. Synthesis of 6, 10-dimethoxy-5-methyl-2-phenyl-3, 5-dihydro-4H-furo[3′,2′: 6,7]chromeno
[2,3-d]pyrimidin-4-one (11b)

The compound was obtained from the reaction of (10b) (3.04 g, 0.01 mol) and benzoyl
chloride as brownish crystals, crystallized from THF (68%), M.p. > 350 ◦C. IR (ν, cm−1)
KBr: broad 3275 (NH), 3080 (CH-aryl), 2932 (CH-aliph), 1682 (C=O), 1580 (C=C). 1H NMR
(DMSO-d6, ppm) δ 1.41 (d, 3H, J = 6.82 Hz, CH3), 3.68 (q, 1H, J = 6.84 Hz, CH, pyran ring),
3.94 (s, 6H, 2OCH3), 6.80 (d, 1H, J = 2.37 Hz, furan), 7.40–7.79 (m, 5H, phenyl), 7.85 (d, 1H,
J = 2.34 Hz, furan), 11.22 (s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ 19.2 (1C,
CH, pyran ring), 22.1 (1C, CH3), 60.9 (2C, 2OCH3), 106.5, 107.8, 110.5,112.6, 123.5, 128.4,
128.9, 130.5, 131.9, 139.2, 145.4, 146.6, 146.9, 157.1, 160.8 (17C, Ar-C), 166.1 (1C,C=O); MS
(70 eV, %) m/z 390 (M+, 94%); Anal. Calc. (Found) for C22H18N2O5 (390.39): C, 67.69 (67.75);
H, 4.65 (4.71); N, 7.18 (7.10).

3.29. Synthesis of (6-methoxy or 6,10-dimethoxy)-5-methyl-1,4a,5,11a-tetrahydro-2H-furo[3′,2′:
6,7]chromeno [2,3-d]pyrimidine-2,4(3H)-dithione (12a,b)

General procedure: A solution of compound (4a) (2.58 g, 0.01 mol) or (4b) (2.88 g,
0.01 mol) and carbon disulfide (4 mL) in 40 mL of pyridine was heated and stirred under
reflux on a water bath for 11–14 h with TLC. The solid product precipitated so formed
was filtered off while hot and washed several times with ethanol. The final products were
recrystallized from the suitable solvent to give (12a) or (12b).
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3.30. Synthesis of 6-methoxy-5-methyl-1,4a,5,11a-tetrahydro-2H-furo[3′,2′:6,7]chromeno[2,3-d]
pyrimidine-2,4(3H)-dithione (12a)

The compound was obtained from the reaction of (4a) (2.58 g, 0.01 mol) and carbon
disulfide, as pale yellow crystals, crystallized from DMF (68%), M.p. > 350 ◦C. IR (ν, cm−1)
KBr: IR (ν, cm−1) KBr: broad 3235-3210 (2NH), 3059 (CH-aryl), 2977 (CH-aliph), 1581 (C=C),
1300–1295 (2C=S), 1H NMR (DMSO-d6, ppm) δ 1.33 (d, 3H, J = 6.74 Hz, CH3), 3.08 (m, 1H,
CH, pyran ring), 3.12 (t, 1H, J = 6.75 Hz, CH, pyran ring), 3.90 (s, 3H, OCH3), 5.20 (d, 1H, J
= 6.77 Hz, CH, pyran ring), 6.80 (d, 1H, J = 2.34 Hz, furan), 7.10 (s, 1H, benzene), 7.42 (d,
1H, J = 2.37 Hz, furan), 9.10, 12.02 (s, 2H, 2NH, D2O exchangeable); 13C NMR (DMSO-d6)
δ 19.3 (1C, CH3), 32.5 (1C, CH, pyran ring), 60.8 (1C, OCH3), 70.2, 90.5 (2C, 2CH, pyran
ring), 92.1 (1C, CH, benzene), 103.6, 105.4, 106.9, 146.5, 151.6, 154.1, 155.7 (7C, Ar-C), 180.1,
195.8 (2C, C=S); MS (70 eV, %) m/z 334 (M+, 92%); Anal. Calc. (Found) for C15H14N2O3S2
(334.41): C, 53.88 (53.80); H, 4.22 (4.30); N, 8.38 (8.45).

3.31. Synthesis of 6,10-dimethoxy-5-methyl-1,4a,5,11a-tetrahydro-2H-furo[3′,2′:6,7]chromeno [2,
3-d]pyrimidine-2,4(3H)-dithione (12b)

The compound was obtained from the reaction of (4b) (2.88 g, 0.01 mol) and carbon
disulfide, as yellowish crystals, crystallized from dioxane (66%), M.p. > 350 ◦C. IR (ν, cm−1)
KBr: IR (ν, cm−1) KBr: broad 3231–3207 (2NH), 3060 (CH-aryl), 2980 (CH-aliph), 1580
(C=C), 1302–1297 (2C=S), 1H NMR (DMSO-d6, ppm) δ 1.28 (d, 3H, J = 6.71 Hz, CH3), 3.12
(m, 1H, CH, pyran ring), 3.20 (t, 1H, J = 6.76 Hz, CH, pyran ring), 3.95 (s, 6H, 2OCH3), 5.30
(d, 1H, J = 6.78 Hz, CH, pyran ring), 6.82 (d, 1H, J = 2.30 Hz, furan), 7.48 (d, 1H, J = 2.32 Hz,
furan), 9.20, 12.15 (s, 2H, 2NH, D2O exchangeable); 13C NMR (DMSO-d6) δ 19.7 (1C, CH3),
33.1 (1C, CH, pyran ring), 61.8 (2C, 2OCH3), 70.5, 90.9 (2C, 2CH, pyran ring), 105.5, 106.3,
110.4, 127.1, 144.7, 145.6, 146.4, 146.8 (8C, Ar-C), 180.5, 196.1 (2C, C=S); MS (70 eV, %) m/z
364 (M+, 85%); Anal. Calc. (Found) for C16H16N2O4S2 (364.43): C, 52.73 (52.80); H, 4.43
(4.35); N, 7.69 (7.78).

3.32. Synthesis of N-(6-cyano-(4-methoxy or 4,9-dimethoxy)-5-methyl-6,7-dihydro-5H-furo[3,
2-g]chromen-7-yl)-2-phenylacetamide (13a,b)

General procedure: A mixture of compound (4a) (2.58 g, 0.01 mol) or (4b) (2.88 g,
0.01 mol) and 2-phenylacetyl chloride (1.55 g, 0.01 mol) in 35 mL of pyridine was heated
and refluxed for 7–10 h with TLC. The reaction solution was allowed to cool at room
temperature and then poured into acidified cold water. The final precipitate was filtered,
washed with cold water, dried, and crystallized with the appropriate solvent to give (13a)
or (13b).

3.33. Synthesis of N-(6-cyano-4-methoxy-5-methyl-6,7-dihydro-5H-furo[3,2-g]chromen-7-yl)-
2-phenyl- acetamide (13a)

The compound was obtained from the reaction of (4a) (2.58 g, 0.01mol) and 2-phenylacetyl
chloride (1.55 g, 0.01mol), as brownish crystals, crystallized from n-hexane (90%), M.p.:
292–294 ◦C. IR (ν, cm−1) KBr: broad 3215 (NH), 3045 (CH-aryl), 2962 (CH-aliph), 2240 (CN),
1690 (C=O), 1582 (C=C). 1H NMR (DMSO-d6, ppm) δ 1.41 (d, 3H, J = 6.73 Hz, CH3), 3.21 (m,
1H, CH, pyran ring), 3.28 (t, 1H, J = 6.79 Hz, CH, pyran ring), 3.35 (s, 2H, CH2), 3.88 (s, 3H,
OCH3), 5.35 (d, 1H, J = 6.83 Hz, CH, pyran ring), 6.74 (d, 1H, J = 2.39 Hz, furan), 7.02–7.26
(s, 5H, benzene), 7.30 (s, 1H, benzene), 7.50 (d, 1H, J = 2.38 Hz, furan), 9.22 (s, 1H, NH,
D2O exchangeable); 13C NMR (DMSO-d6) δ 19.4 (1C, CH3), 20.5, 38.7, (2C, CH, pyran ring),
39.5 (1C, CH2), 60.6 (1C, OCH3), 82.3 (1C, CH-pyran ring), 91.1 (1C, CH, benzene), 120.5
(1C, CN), 103.4, 105.3, 106.5, 127.4, 128.8, 129.1, 136.1, 146.7, 152.1, 153.9, 156.5 (13C, Ar-C),
170.8 (1C, C=O); MS (70 eV, %) m/z 376 (M+, 100%); Anal. Calc. (Found) for C22H20N2O4
(376.41): C, 70.20 (70.28); H, 5.36 (5.45); N, 7.44 (7.52).
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3.34. Synthesis of N-(6-cyano-4, 9-dimethoxy-5-methyl-6,7-dihydro-5H-furo[3,2-g]chromen-
7-yl)-2-phenylacetamide (13b)

The compound was obtained from the reaction of (4b) (2.88 g, 0.01mol) and 2-phenylacetyl
chloride (1.55 g, 0.01 mol), as yellowish crystals, crystallized from benzene (85%), M.p.:
305–307 ◦C. IR (ν, cm−1) KBr: broad 3220 (NH), 3050 (CH-aryl), 2966 (CH-aliph), 2244 (CN),
1692 (C=O), 1585 (C=C). 1H NMR (DMSO-d6, ppm) δ 1.38 (d, 3H, J = 6.72 Hz, CH3), 3.19 (m,
1H, CH, pyran ring), 3.25 (t, 1H, J = 6.75 Hz, CH, pyran ring), 3.33 (s, 2H, CH2), 3.95 (s, 6H,
2OCH3), 5.45 (d, 1H, J = 6.84 Hz, CH, pyran ring), 6.71 (d, 1H, J = 2.45 Hz, furan), 7.05–7.30
(s, 5H, benzene), 7.55 (d, 1H, J = 2.44 Hz, furan), 9.30 (s, 1H, NH, D2O exchangeable); 13C
NMR (DMSO-d6) δ 19.6 (1C, CH3), 20.8, 40.2, (2C, CH, pyran ring), 39.7(1C, CH2), 61.2 (2C,
2OCH3), 82.6 (1C, CH-pyran ring),120.7 (1C, CN), 106.1, 107.4, 110.2, 126.7, 127.5, 129.4,
129.8, 136.9, 145.1, 146.2, 146.5, 146.9 (14C, Ar-C), 171.3 (1C, C=O); MS (70 eV, %) m/z 406
(M+, 88%); Anal. Calc. (Found) for C23H22N2O5 (406.44): C, 67.97 (67.90); H, 5.46 (5.55); N,
6.89 (6.80).

3.35. Synthesis of 2-benzyl-(6-methoxy or 6,10-dimethoxy)-5-methyl-1,4a,5,11a-tetrahydro-
4H-furo[3′,2′: 6,7]chromeno [2,3-d]pyrimidin-4-one (14a,b)

General procedure: To a well-stirred cold mixture of compound (13a) (3.76 g, 0.01 mol)
or (13b) (4.06 g, 0.01 mol) in 20 mL of (HCl: AcOH/1:1), a cold solution of H2O2 (20 mL) was
added dropwise in an ice bath (0–5 ◦C), and the reaction solution was stirred for 6–8 h at
room temperature. The solid that precipitated was collected by filtration, then redissolved
in NaOH (30 mL 10%), heated under reflux for 30–60 min, and cooled. The result was
acidified with HCl (25 mL) and the final solid product was collected and crystallized from
the proper solvent to give (14a) or (14b).

3.36. Synthesis of 2-benzyl-6-methoxy-5-methyl-1,4a,5,11a-tetrahydro-4H-furo[3′,2′:6,7]
chromeno[2,3-d]pyrimidin-4-one (14a)

The compound was obtained from the reaction of (13a) (3.76 g, 0.01 mol) and H2O2, as
yellowish crystals, crystallized from DMF (55%), M.p. > 350 ◦C. IR (ν, cm−1) KBr: broad
3290 (NH), 3075 (CH-aryl), 2970 (CH-aliph), 1677 (C=O), 1626 (C=N), 1585 (C=C). 1H NMR
(DMSO-d6, ppm) δ 1.37 (d, 3H, J = 6.71 Hz, CH3), 3.15 (m, 1H, CH, pyran ring), 3.31 (t, 1H,
J = 6.74 Hz, CH, pyran ring), 3.62 (s, 2H, CH2), 3.80 (s, 3H, OCH3), 5.22 (d, 1H, J = 6.79 Hz,
CH, pyran ring), 6.71 (d, 1H, J = 2.41 Hz, furan), 7.10 (s, 1H, benzene), 7.20–7.40 (s, 5H,
benzene), 7.60 (d, 1H, J = 2.38 Hz, furan), 9.50 (s, 1H, NH, D2O exchangeable); 13C NMR
(DMSO-d6) δ 19.8 (1C, CH3), 30.5 (1C, CH, pyran ring), 38.9 (1C, CH2), 60.2 (1C, OCH3),
63.5, 84.7 (1C, CH-pyran ring), 91.8 (1C, CH, benzene), 103.6, 105.5, 106.8, 126.1, 128.4, 129.3,
135.8, 146.4, 152.5, 154.2, 155.8, 157.4 (14C, Ar-C), 172.1 (1C, C=O); MS (70 eV, %) m/z 376
(M+, 77%); Anal. Calc. (Found) for C22H20N2O4 (376.41): C, 70.20 (70.12); H, 5.36 (5.28); N,
7.44 (7.57).

3.37. Synthesis of 2-benzyl-6,10-dimethoxy-5-methyl-1,4a,5,11a-tetrahydro-4H-furo[3′,2′:6,
7]chromeno[2,3-d]pyrimidin-4-one (14b)

The compound was obtained from the reaction of (13b) (4.06 g, 0.01 mol) and H2O2,
as yellow crystals, crystallized from dioxane (52%), M.p. > 350 ◦C. IR (ν, cm−1) KBr: broad
3285 (NH), 3070 (CH-aryl), 2972 (CH-aliph), 1675 (C=O), 1628 (C=N), 1582 (C=C). 1H NMR
(DMSO-d6, ppm) δ 1.33 (d, 3H, J = 6.73 Hz, CH3), 3.20 (m, 1H, CH, pyran ring), 3.35 (t, 1H,
J = 6.71 Hz, CH, pyran ring), 3.66 (s, 2H, CH2), 3.94 (s, 6H, 2OCH3), 5.30 (d, 1H, J = 6.83 Hz,
CH, pyran ring), 6.85 (d, 1H, J = 2.45 Hz, furan), 7.22–7.42 (s, 5H, benzene), 7.68 (d, 1H,
J = 2.43 Hz, furan), 9.60 (s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ 18.9 (1C,
CH3), 30.8 (1C, CH, pyran ring), 39.4 (1C, CH2), 61.1 (2C, 2OCH3), 63.8, 85.1 (1C, CH-pyran
ring), 106.1, 106.7, 110.4, 125.9, 126.6, 128.8, 129.5, 135.9, 145.1, 146.5, 146.8, 147.2, 157.1
(15C, Ar-C), 172.5 (1C, C=O); MS (70 eV, %) m/z 406 (M+, 70%); Anal. Calc. (Found) for
C23H22N2O5 (406.44): C, 67.97 (67.91); H, 5.46 (5.40); N, 6.89 (6.79).
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3.38. Synthesis of 4-imino-(6-methoxy or 6,10-dimethoxy)-5-methyl-3-phenyl-1,3,4,4a,5,11a-
hexahydro-2H-furo [3′,2′: 6,7]chromeno [2,3-d]pyrimidine-2-thione (15a,b) and 4-imino-(6-
methoxy or 6,10-dimethoxy)-5-methyl-3-phenyl-1,3,4,4a,5,11a-hexahydro-2H-furo[3′,2′:6,7]
chromeno[2,3-d]pyrimidin-2-one (16a,b)

General procedure: A solution of compound (4a) (2.58 g, 0.01 mol) or (4b) (2.88 g,
0.01 mol) and phenylisothiocyanate (1.60 mL, 0.01 mol) or phenylisocyanate (1.10 mL,
0.01 mol) in 40 mL of pyridine was heated and refluxed for 21–24 h under control (TLC).
The mixture was cooled and poured into cold water, filtrated, washed several times with
ethanol, and dried. The final product was recrystallized from the proper solvent to give
(15a), (15b), (16a), or (16b), respectively.

3.39. Synthesis of 4-imino-6-methoxy-5-methyl-3-phenyl-1,3,4,4a,5,11a-hexahydro-2H-furo
[3′,2′:6,7]chromeno[2,3-d]pyrimidine-2-thione (15a)

The compound was obtained from the reaction of (4a) (2.58 g, 0.01 mol) and phenylisoth-
iocyanate as brownish crystals, crystallized from methanol (60%), M.p. > 350 ◦C. IR (ν,
cm−1) KBr: broad 3300-3225 (2NH), 3071(CH-aryl), 2966 (CH-aliph), 1633 (C=N), 1585
(C=C), 1335 (C=S), 1H NMR (DMSO-d6, ppm) δ 1.32 (d, 3H, J = 6.74 Hz, CH3), 3.10 (m, 1H,
CH, pyran ring), 3.27 (t, 1H, J = 6.72 Hz, CH, pyran ring), 3.78 (s, 3H, OCH3), 5.15 (d, 1H,
J = 6.73 Hz, CH, pyran ring), 6.74 (d, 1H, J = 2.38 Hz, furan), 7.14 (s, 1H, benzene), 7.35–7.58
(s, 5H, benzene ring), 7.70 (d, 1H, J = 2.36 Hz, furan), 9.10 (s, 1H, NH, D2O exchangeable),
9.60 (s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ 19.5 (1C, CH3), 30.1, 53.8 (2C,
2CH, pyran ring), 60.6 (1C, OCH3), 88.8 (1C, CH-pyran ring), 91.9 (1C, CH, benzene), 103.3,
105.2, 106.4, 128.1, 129.2, 131.4, 133.2, 146.1, 152.4, 154.1, 155.6, 157.1 (14C, Ar-C), 175.5 (1C,
C=S); MS (70 eV, %) m/z 393 (M+, 80%); Anal. Calc. (Found) for C21H19N3O3S (393.46): C,
64.11 (64.20); H, 4.87 (4.80); N, 10.68 (10.61).

3.40. Synthesis of 4-imino-6,10-dimethoxy-5-methyl-3-phenyl-1,3,4,4a,5,11a-hexahydro-2H-furo
[3′,2′:6,7]chromeno[2,3-d]pyrimidine-2-thione (15b)

The compound was obtained from the reaction of (4b) (2.88 g, 0.01 mol) and phenylisoth-
iocyanate as yellowish crystals, crystallized from n-hexane (58%), M.p. > 350 ◦C. IR (ν,
cm−1) KBr: broad 3305–3230 (2NH), 3074 (CH-aryl), 2968 (CH-aliph), 1631 (C=N), 1583
(C=C), 1332 (C=S), 1H NMR (DMSO-d6, ppm) δ 1.28 (d, 3H, J = 6.70 Hz, CH3), 3.08 (m, 1H,
CH, pyran ring), 3.24 (t, 1H, J = 6.77 Hz, CH, pyran ring), 3.88 (s, 6H, 2OCH3), 5.23 (d, 1H,
J = 6.78 Hz, CH, pyran ring), 6.80 (d, 1H, J = 2.40 Hz, furan),7.38–7.61(s, 5H, benzene ring),
7.82 (d, 1H, J = 2.42 Hz, furan), 9.20 (s, 1H, NH, D2O exchangeable), 9.70 (s, 1H, NH, D2O
exchangeable); 13C NMR (DMSO-d6) δ 20.1 (1C, CH3), 30.7, 54.2 (2C, 2CH, pyran ring), 60.9
(2C, 2OCH3), 89.5 (1C, CH-pyran ring), 105.9, 106.4, 110.2, 126.8, 128.6, 129.5, 131.7, 134.3,
145.1, 146.2, 146.7, 147.1, 157.3 (15C, Ar-C), 175.8 (1C, C=S); MS (70 eV, %) m/z 423 (M+,
75%); Anal. Calc. (Found) for C22H21N3O4S (423.49): C, 62.40 (62.50); H, 5.00 (5.10); N, 9.92
(9.83).

3.41. Synthesis of 4-imino-6-methoxy-5-methyl-3-phenyl-1,3,4,4a,5,11a-hexahydro-2H-furo
[3′,2′:6,7]chromeno[2,3-d]pyrimidin-2-one (16a)

The compound was obtained from the reaction of (4a) (2.58 g, 0.01 mol) and phenyliso-
cyanate as yellow crystals, crystallized from toluene (57%), M.p. > 350 ◦C. IR (ν, cm−1) KBr:
broad 3290–3240 (2NH), 3080 (CH-aryl), 2971 (CH-aliph), 1688 (C=O), 1635 (C=N), 1590
(C=C), 1H NMR (DMSO-d6, ppm) δ 1.36 (d, 3H, J = 6.77 Hz, CH3), 3.08 (m, 1H, CH, pyran
ring), 3.30 (t, 1H, J = 6.79 Hz, CH, pyran ring), 3.91 (s, 3H, OCH3), 5.25 (d, 1H, J = 6.78 Hz,
CH, pyran ring), 6.79 (d, 1H, J = 2.41 Hz, furan), 7.27 (s, 1H, benzene), 7.39–7.61 (s, 5H,
phenyl ring), 7.68 (d, 1H, J = 2.43 Hz, furan), 9.05 (s, 1H, NH, D2O exchangeable), 9.52 (s,
1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ 20.2 (1C, CH3), 31.4, 54.1 (2C, 2CH,
pyran ring), 60.8 (1C, OCH3), 89.2 (1C, CH-pyran ring), 92.1 (1C, CH, benzene), 102.8, 104.5,
106.2, 127.7, 128.4, 129.6, 132.9, 146.3, 152.5, 153.9, 155.7, 156.8 (14C, Ar-C), 159.1 (1C, C=O);
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MS (70 eV, %) m/z 377 (M+, 72%); Anal. Calc. (Found) for C21H19N3O4 (377.40): C, 66.83
(66.75); H, 5.07 (5.15); N, 11.13 (11.05).

3.42. Synthesis of 4-imino-6,10-dimethoxy-5-methyl-3-phenyl-1,3,4,4a,5,11a-hexahydro-2H-furo
[3′,2′:6,7]chromeno[2,3-d]pyrimidin-2-one (16b)

The compound was obtained from the reaction of (4b) (2.88 g, 0.01 mol) and phenyliso-
cyanate as pale yellow crystals, crystallized from benzene (53%), M.p. > 350 ◦C. IR (ν,
cm−1) KBr: broad 3282–3233 (2NH), 3073 (CH-aryl), 2960 (CH-aliph), 1682 (C=O), 1633
(C=N), 1581 (C=C), 1H NMR (DMSO-d6, ppm) δ 1.32 (d, 3H, J = 6.73 Hz, CH3), 3.14 (m, 1H,
CH, pyran ring), 3.35 (t, 1H, J = 6.70 Hz, CH, pyran ring), 3.95 (s, 6H, 2OCH3), 5.30 (d, 1H,
J = 6.72 Hz, CH, pyran ring), 6.82 (d, 1H, J = 2.40 Hz, furan), 7.45–7.65 (s, 5H, phenyl ring),
7.72 (d, 1H, J = 2.44 Hz, furan), 9.17 (s, 1H, NH, D2O exchangeable), 9.50 (s, 1H, NH, D2O
exchangeable); 13C NMR (DMSO-d6) δ 20.5 (1C, CH3), 31.7, 54.5 (2C, 2CH, pyran ring), 61.1
(2C, 2OCH3), 90.3 (1C, CH-pyran ring), 105.5, 106.2, 110.4, 126.8, 127.9, 128.5, 129.2, 133.1,
144.8, 145.7, 146.3, 146.8, 156.7 (15C, Ar-C), 160.5 (1C, C=O); MS (70 eV, %) m/z 407 (M+,
69%); Anal. Calc. (Found) for C22H21N3O5 (407.43): C, 64.86 (64.80); H, 5.20 (5.12); N, 10.31
(10.38).

3.43. Synthesis of Ethyl -N-(6-cyano-(4-methoxy or 4, 9-dimethoxy)-5-methyl-6,7-dihydro-5H-
furo[3,2-g]chromen-7-yl)formimidate (17a,b)

General procedure: A mix of compound (4a) (2.58 g, 0.01 mol) or (4b) (2.88 g, 0.01 mol)
and triethyl-orthoformate (1.50 mL, 0.01 mol) and acetic anhydride (40 mL) was refluxed
for 5–8 h under control (TLC). The solvent was removed under reduced pressure and the
separated solid was recrystallized from the proper solvent to give (17a) or (17b).

3.44. Synthesis of Ethyl-N-(6-cyano-4-methoxy-5-methyl-6,7-dihydro-5H-furo[3,2-g]chromen
-7-yl) formimidate (17a)

The compound was obtained from the reaction of (4a) (2.58 g, 0.01mol) and triethyl-
orthoformate as brownish crystals, crystallized from methanol (73%), M.p.: 270–272 ◦C.
IR (ν, cm−1) KBr: 3049 (CH-aryl), 2955 (CH-aliph), 2220 (CN), 1635(C=N), 1580 (C=C). 1H
NMR (DMSO-d6, ppm) δ 1.25 (t, 3H, J = 6.72 Hz, CH3), 1.35 (d, 3H, J = 6.75 Hz, CH3), 3.27
(m, 1H, J = 6.80 Hz, CH, pyran ring), 3.35 (t, 1H, J = 6.85 Hz, CH, pyran ring), 3.39 (d, 1H,
J = 6.68 Hz, CH, pyran ring), 3.66 (q, 2H, J = 6.65 Hz, CH2), 3.80 (s, 3H, OCH3), 6.82 (d, 1H,
J = 2.33 Hz, furan), 7.17 (s, 1H, benzene), 7.50 (d, 1H, J = 2.46 Hz, furan), 8.02 (s, 1H,CH,
methine proton); 13C NMR (DMSO-d6) δ 18.5, 20.7 (2C, 2CH3), 21.5, 45.2 (2C, 2CH, pyran
ring), 60.8 (1C, OCH3), 64.2 (1C, CH2), 90.6 (1C, benzene ring), 92.3 (1C, pyran ring), 119.5
(1C, CN), 103.6, 105.1, 106.3, 146.5, 152.1, 154.7, 155.6 (7C, Ar-C), 159.1 (1C,C=N); MS (70 eV,
%) m/z 314 (M+, 100%); Anal. Calc. (Found) for C17H18N2O4 (314.34): C, 64.96 (64.88); H,
5.77 (5.70); N, 8.91 (8.98).

3.45. Synthesis of Ethyl-N-(6-cyano-4,9-dimethoxy-5-methyl-6,7-dihydro-5H-furo[3,2-g]
chromen-7-yl)formimidate (17b)

The compound was obtained from the reaction of (4b) (2.88 g, 0.01mol) and triethyl-
orthoformate as yellowish crystals, crystallized from acetone (67%), M.p.: 280–282 ◦C. IR
(ν, cm−1) KBr: 3045 (CH-aryl), 2951 (CH-aliph), 2218 (CN), 1633 (C=N), 1583 (C=C). 1H
NMR (DMSO-d6, ppm) δ 1.20 (t, 3H, J = 6.68 Hz, CH3), 1.31 (d, 3H, J = 6.69 Hz, CH3), 3.23
(m, 1H, J = 6.73 Hz, CH, pyran ring), 3.29 (t, 1H, J = 6.76 Hz, CH, pyran ring), 3.37 (d, 1H,
J = 6.74 Hz, CH, pyran ring), 3.61 (q, 2H, J = 6.67 Hz, CH2), 3.91 (s, 6H, 2OCH3), 6.85 (d,
1H, J = 2.35 Hz, furan), 7.55 (d, 1H, J = 2.44 Hz, furan), 8.06 (s, 1H,CH, methine proton);
13C NMR (DMSO-d6) δ 19.2, 20.9 (2C, 2CH3), 21.8, 45.7 (2C, 2CH, pyran ring), 62.5 (2C,
2OCH3), 64.6 (1C, CH2), 91.9 (1C, pyran ring), 119.7 (1C, CN), 106.1, 106.7, 110.5, 127.1,
145.1, 145.8, 146.3, 146.9 (8C, Ar-C), 159.7 (1C,C=N); MS (70 eV, %) m/z 344 (M+, 97%); Anal.
Calc. (Found) for C18H20N2O5 (344.37): C, 62.78 (62.85); H, 5.85 (5.77); N, 8.13 (8.21).
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3.46. Synthesis of (6-methoxy or 6,10-dimethoxy)-3,5-dimethyl-3,4a,5,11a-tetrahydro-4H-furo
[3′,2′:6,7]chromeno[2,3-d]pyrimidin-4-imine (18a,b)

General procedure: A mix of compound (17a) (3.14 g, 0.01 mol) or (17b) (3.44 g,
0.01 mol) and methylamine (0.04 mL, 0.01 mol) in absolute ethanol (40 mL) was heated and
stirred at room temperature for 2–4 h with TLC. The resulting product was collected via
filtration and recrystallized from the appropriate solvent to give (18a) or (18b).

3.47. Synthesis of 6-methoxy-3,5-dimethyl-3,4a,5,11a-tetrahydro-4H-furo[3′,2′:6,7]chromeno[2,
3-d]pyrimidin -4-imine (18a)

The compound was obtained from the reaction of (17a) (3.14 g, 0.01 mol) and methy-
lamine as white crystals, crystallized from dioxane (82%), M.p. > 350 ◦C. IR (ν, cm−1)
KBr: broad 3250 (NH), 3045 (CH-aryl), 2960 (CH-aliph), 1636 (C=N), 1589 (C=C), 1H NMR
(DMSO-d6, ppm) δ 1.25 (d, 3H, J = 6.85 Hz, CH3), 3.23 (m, 1H, CH, pyran ring), 3.30
(t, 1H, J = 6.88 Hz, CH, pyran ring), 3.38 (s, 3H, CH3), 3.80 (s, 3H, OCH3), 5.50 (d, 1H,
J = 6.87 Hz, CH, pyran ring), 6.82 (d, 1H, J = 2.44 Hz, furan), 7.30 (s, 1H, benzene), 7.70 (s,
1H, pyrimidine ring), 7.80 (d, 1H, J = 2.43 Hz, furan), 9.65 (s, 1H, NH, D2O exchangeable);
13C NMR (DMSO-d6) δ 20.4, 27.8 (2C, 2CH3), 29.5, 52.4 (2C, 2CH, pyran ring), 60.9 (1C,
OCH3), 90.1 (1C, CH-pyran ring), 91.7 (1C, CH, benzene), 103.6, 105.5, 106.7, 146.4, 152.1,
152.7, 154.3, 155.8, 157.6 (9C, Ar-C); MS (70 eV, %) m/z 299 (M+, 98%); Anal. Calc. (Found)
for C16H17N3O3 (299.33): C, 64.20 (64.29); H, 5.72 (5.65); N, 14.04 (14.10).

3.48. Synthesis of 6,10-dimethoxy-3,5-dimethyl-3,4a,5,11a-tetrahydro-4H-furo[3′,2′:6,7] chromeno
[2,3-d]pyrimidin-4-imine (18b)

The compound was obtained from the reaction of (17b) (3.44 g, 0.01 mol) and methy-
lamine as brownish crystals, crystallized from DMF (78%), M.p. > 350 ◦C. IR (ν, cm−1)
KBr: broad 3245 (NH), 3048 (CH-aryl), 2967 (CH-aliph), 1632 (C=N), 1581 (C=C), 1H NMR
(DMSO-d6, ppm) δ 1.28 (d, 3H, J = 6.87 Hz, CH3), 3.26 (m, 1H, CH, pyran ring), 3.35 (t, 1H,
J = 6.86 Hz, CH, pyran ring), 3.40 (s, 3H, CH3), 3.93 (s, 6H, 2OCH3), 5.58 (d, 1H, J = 6.82 Hz,
CH, pyran ring), 6.85 (d, 1H, J = 2.41 Hz, furan), 7.66 (s, 1H, pyrimidine ring), 7.85 (d, 1H,
J = 2.40 Hz, furan), 9.62 (s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ 20.6, 28.1
(2C, 2CH3), 30.2, 52.7 (2C, 2CH, pyran ring), 61.8 (2C, 2OCH3), 90.5 (1C, CH-pyran ring),
105.4, 106.1, 110.6, 127.2, 145.1, 145.7, 146.2, 147.1, 152.5, 156.9 (10 C, Ar-C); MS (70 eV, %)
m/z 329 (M+, 95%); Anal. Calc. (Found) for C17H19N3O4 (329.36): C, 62.00 (62.10); H, 5.81
(5.75); N, 12.76 (12.70).

3.49. Synthesis of 4-imino-(6-methoxy or 6,10-dimethoxy)-5-methyl-4a, 11a-dihydro-4H-furo [3′,
2′:6,7]chromeno [2,3-d]pyrimidin-3(5H)-amine (19a,b)

General procedure: A mixture of compound (17a) (3.14 g, 0.01 mol) or (17b) (3.44 g,
0.01 mol) and hydrazine hydrate (1 mL, excess) was created in absolute ethanol (45 mL). The
reaction solution was refluxed for 3–5 h with TLC, the reaction mixture was concentrated,
and the precipitate product that separated out was filtered off and recrystallized from the
suitable solvent to give (19a) or (19b).

3.50. Synthesis of 4-imino-6-methoxy-5-methyl-4a, 11a-dihydro-4H-furo [3′,2′: 6,7]chromeno [2,
3-d]pyrimidin-3(5H)-amine (19a)

The compound was obtained from the reaction of (17a) (3.14 g, 0.01 mol) and hydrazine
hydrate as yellowish crystals, crystallized from methanol (76%), M.p. > 350 ◦C. IR (ν, cm−1)
KBr: broad 3425 (NH2), 3260 (NH), 3052 (CH-aryl), 2964 (CH-aliph), 1637 (C=N), 1590
(C=C), 1H NMR (DMSO-d6, ppm) δ 1.27 (d, 3H, J = 6.78 Hz, CH3), 3.31 (m, 1H, CH, pyran
ring), 3.39 (t, 1H, J = 6.90 Hz, CH, pyran ring), 3.84 (s, 3H, OCH3), 5.60 (d, 1H, J = 6.91 Hz,
CH, pyran ring), 6.40 (s, 2H, NH2, D2O exchangeable), 6.73 (d, 1H, J = 2.41 Hz, furan), 7.26
(s, 1H, benzene), 7.65 (s, 1H, pyrimidine ring), 7.77 (d, 1H, J = 2.40 Hz, furan), 9.70 (s, 1H,
NH, D2O exchangeable); 13C NMR (DMSO-d6) δ 19.4 (1C, CH3), 26.9, 51.2 (2C, 2CH, pyran
ring), 60.2 (1C, OCH3), 85.5 (1C, CH-pyran ring), 91.1 (1C, CH, benzene), 103.8, 105.4, 106.5,
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146.2, 147.3, 152.6, 154.1, 155.9, 156.8 (9C, Ar-C); MS (70 eV, %) m/z 300 (M+, 100%); Anal.
Calc. (Found) for C15H16N4O3 (300.32): C, 59.99 (59.90); H, 5.37 (5.45); N, 18.66 (18.58).

3.51. Synthesis of 4-imino-6,10-dimethoxy-5-methyl-4a,11a-dihydro-4H-furo [3′,2′:6,7] chromeno
[2,3-d]pyrimidin-3(5H)-amine (19b)

The compound was obtained from the reaction of (17b) (3.44 g, 0.01 mol) and hydrazine
hydrate as yellow crystals, crystallized from ethyl-acetate (71%), M.p. > 350 ◦C. IR (ν, cm−1)
KBr: broad 3422 (NH2), 3258 (NH), 3051 (CH-aryl), 2962 (CH-aliph), 1633 (C=N), 1581
(C=C), 1H NMR (DMSO-d6, ppm) δ 1.25 (d, 3H, J = 6.76 Hz, CH3), 3.29 (m, 1H, CH, pyran
ring), 3.41 (t, 1H, J = 6.87 Hz, CH, pyran ring), 3.94 (s, 6H, 2OCH3), 5.68 (d, 1H, J = 6.85 Hz,
CH, pyran ring), 6.35 (s, 2H, NH2, D2O exchangeable), 6.70 (d, 1H, J = 2.42 Hz, furan), 7.61
(s, 1H, pyrimidine ring), 7.85 (d, 1H, J = 2.39 Hz, furan), 9.75 (s, 1H, NH, D2O exchangeable);
13C NMR (DMSO-d6) δ 20.2 (1C, CH3), 28.3, 52.4 (2C, 2CH, pyran ring), 61.9 (2C, 2OCH3),
86.1 (1C, CH-pyran ring), 106.1, 106.8, 110.3, 126.8, 145.5, 146.1, 146.7, 147.4, 147.7, 157.2
(10C, Ar-C); MS (70 eV, %) m/z 330 (M+, 90%); Anal. Calc. (Found) for C16H18N4O4 (330.34):
C, 58.17 (58.25); H, 5.49 (5.41); N, 16.96 (16.88).

3.52. Synthesis of (12-methoxy or 8,12-dimethoxy)-13-methyl-6a,13a-dihydro-13H-furo [3′,2′: 6,
7]chromeno [3,2-e][1,2,4]triazolo [1,5-c]pyrimidine (20a,b)

General procedure: A mixture of compound (19a) (3.00 g, 0.01 mol) or (19b) (3.30 g, 0.01
mol), excess of triethyl-orthoformate (6 mL), and acetic anhydride (30 mL) was refluxed for
4–6 h under control (TLC). The solvent was removed under reduced pressure; the separated
solid was filtered off and recrystallized from the proper solvent to give triazolopyrimidines
(20a) and (20b).

3.53. Synthesis of 12-methoxy-13-methyl-6a,13a-dihydro-13H-furo [3′,2′:6,7]chromeno
[3,2-e][1,2,4]triazolo [1,5-c]pyrimidine (20a)

The compound was obtained from the reaction of (19a) (3.00 g, 0.01 mol) and triethy-
lorthoformate as brownish crystals, crystallized from dioxane (68%), M.p. > 350 ◦C. IR
(ν, cm−1) KBr: broad 3045 (CH-aryl), 2937 (CH-aliph), 1633 (C=N), 1582 (C=C), 1H NMR
(DMSO-d6, ppm) δ 1.23 (d, 3H, J = 6.80 Hz, CH3), 3.22 (m, 1H, CH, pyran ring), 3.31 (t, 1H,
J = 6.87 Hz, CH, pyran ring), 3.82 (s, 3H, OCH3), 5.40 (d, 1H, J = 6.83 Hz, CH, pyran ring),
6.10 (s, 1H,CH, triazole ring), 6.71 (d, 1H, J = 2.35 Hz, furan), 7.15 (s, 1H, benzene), 7.72
(s, 1H, pyrimidine ring), 7.83 (d, 1H, J = 2.33 Hz, furan); 13C NMR (DMSO-d6) δ 21.8 (1C,
CH3), 27.3, 52.7 (2C, 2CH, pyran ring), 60.6 (1C, OCH3), 90.8 (1C, CH, benzene), 95.2 (1C,
CH-pyran ring), 102.9, 105.1, 106.3, 139.7, 146.5, 151.4, 152.2, 152.6, 154.1, 156.2 (10C, Ar-C);
MS (70 eV, %) m/z 310 (M+, 85%); Anal. Calc. (Found) for C16H14N4O3 (310.31): C, 61.93
(61.84); H, 4.55 (4.63); N, 18.06 (18.14).

3.54. Synthesis of 8,12-dimethoxy-13-methyl-6a,13a-dihydro-13H-furo [3′,2′:6,7]chromeno [3,2-e]
[1,2,4]triazolo [1, 5-c]pyrimidine (20b)

The compound was obtained from the reaction of (19b) (3.30 g, 0.01 mol) and triethy-
lorthoformate as pale brown crystals, crystallized from DMF (64%), M.p. > 350 ◦C. IR
(ν, cm−1) KBr: broad 3050 (CH-aryl), 2940 (CH-aliph), 1630 (C=N), 1580 (C=C), 1H NMR
(DMSO-d6, ppm) δ 1.28 (d, 3H, J = 6.84 Hz, CH3), 3.26 (m, 1H, CH, pyran ring), 3.37 (t, 1H,
J = 6.85 Hz, CH, pyran ring), 3.90 (s, 6H, 2OCH3), 5.45 (d, 1H, J = 6.81 Hz, CH, pyran ring),
6.05 (s, 1H,CH, triazole ring), 6.88 (d, 1H, J = 2.31 Hz, furan), 7.76 (s, 1H, pyrimidine ring),
7.88 (d, 1H, J = 2.37 Hz, furan); 13C NMR (DMSO-d6) δ 21.2 (1C, CH3), 27.8, 53.1 (2C, 2CH,
pyran ring), 62.3 (2C, 2OCH3), 99.1 (1C, CH-pyran ring), 105.5, 106.4, 110.6, 126.8, 139.9,
145.2, 146.1, 146.6, 147.3, 151.5, 152.7 (11C, Ar-C); MS (70 eV, %) m/z 340 (M+, 80%); Anal.
Calc. (Found) for C17H16N4O4 (340.34): C, 60.00 (60.10); H, 4.74 (4.66); N, 16.46 (16.55).
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3.55. Synthesis of (4-methoxy or 4,13-dimethoxy)-5-methyl-5a,7,8,9,10,11a-hexahydro-5H-furo
[3′,2′:6,7]chromeno [2,3-b]quinolin-6-amine (21a,b)

General procedure for the preparation [37]: aluminum chloride (1.33 g, 0.01 mol)
was suspended in dry 1, 2-dichloroethane (20 mL) at room temperature under an argon
atmosphere. After stirring the suspension for a few minutes, the corresponding compound,
(4a) (2.58 g, 0.01 mol) or (4b) (2.88 g, 0.01 mol), and cyclohexanone (1.03 mL, 0.01 mol)
were added to the mixture and the reaction mixture was heated under reflux for 23–27 h.
The reaction was monitored via TLC. After accomplishment of the reaction, an aqueous
solution of sodium hydroxide (10%) was added dropwise to the mixture until the aqueous
solution became basic. After stirring for 60 min, the final precipitate was filtered, washed
with water, and recrystallized from the suitable solvent to give (21a) or (21b).

3.56. Synthesis of 4-methoxy-5-methyl-5a,7,8,9,10,11a-hexahydro-5H-furo [3′,2′:6,7]chromeno [2,
3-b]quinolin-6-amine (21a)

The compound was obtained from the reaction of (4a) (2.58 g, 0.01 mol) and cyclohex-
anone as pale yellow crystals, crystallized from DMF (75%), M.p. > 350 ◦C. IR (ν, cm−1)
KBr: broad 3415 (NH2), 3057 (CH-aryl), 2963 (CH-aliph), 1638 (C=N), 1589 (C=C). 1H NMR
(DMSO-d6, ppm) δ 1.32 (d, 3H, J = 6.83 Hz, CH3), 1.45–2.25 (m, 8H, cyclohexane ring), 3.30
(m, 1H, J = 6.85 Hz, CH, pyran ring), 3.40 (t, 1H, J = 6.88 Hz, CH, pyran ring), 3.87 (s, 3H,
OCH3), 5.38 (d, 1H, J = 6.68 Hz, CH, pyran ring), 6.65 (s, 2H, NH2, D2O exchangeable), 6.88
(d, 1H, J = 2.37 Hz, furan), 7.29 (s, 1H, benzene), 7.70 (d, 1H, J = 2.39 Hz, furan); 13C NMR
(DMSO-d6) δ 19.1 (1C, CH3), 22.3, 25.5, 26.8, 30.9 (4C, 4CH2, cyclohexane ring), 31.6, 55.5
(2C, 2CH, pyran ring), 60.7 (1C, OCH3), 90.8 (1C, benzene ring), 92.1, 98.4 (2C, pyridine
ring), 103.4, 105.2, 106.1, 146.7, 152.5, 153.3, 154.1, 156.5, 165.2 (9C, Ar-C); MS (70 eV, %) m/z
338 (M+, 93%); Anal. Calc. (Found) for C20H22N2O3 (338.41): C, 70.99 (70.90); H, 6.55 (6.63);
N, 8.28 (8.21).

3.57. Synthesis of 4,13-dimethoxy-5-methyl-5a,7,8,9,10,11a-hexahydro-5H-furo [3′,2′:6,7]
chromeno [2,3-b]quinolin-6-amine (21b)

The compound was obtained from the reaction of (4b) (2.88 g, 0.01 mol) and cyclohex-
anone as yellowish crystals, crystallized from dioxane (73%), M.p. > 350 ◦C. IR (ν, cm−1)
KBr: broad 3412 (NH2), 3059 (CH-aryl), 2966 (CH-aliph), 1631 (C=N), 1582 (C=C). 1H NMR
(DMSO-d6, ppm) δ 1.26 (d, 3H, J = 6.79 Hz, CH3), 1.47–2.27 (m, 8H, cyclohexane ring), 3.35
(m, 1H, J = 6.75 Hz, CH, pyran ring), 3.44 (t, 1H, J = 6.77 Hz, CH, pyran ring), 3.91 (s, 6H,
2OCH3), 5.41 (d, 1H, J = 6.74 Hz, CH, pyran ring), 6.71 (s, 2H, NH2, D2O exchangeable),
6.90 (d, 1H, J = 2.35 Hz, furan), 7.75 (d, 1H, J = 2.31 Hz, furan); 13C NMR (DMSO-d6) δ 19.4
(1C, CH3), 22.5, 25.8, 27.1, 31.3 (4C, 4CH2, cyclohexane ring), 32.2, 55.8 (2C, 2CH, pyran
ring), 61.9 (2C, 2OCH3), 92.6, 98.7 (2C, pyridine ring), 105.3, 105.7, 110.5, 127.5, 145.2, 145.5,
146.4, 146.8, 153.5, 165.7 (10C, Ar-C); MS (70 eV, %) m/z 368 (M+, 90%); Anal. Calc. (Found)
for C21H24N2O4 (368.43): C, 68.46 (68.52); H, 6.57 (6.50); N, 7.60 (7.68).

3.58. Biological Screening (Materials and Methods, In Vitro)

The antimicrobial activity of the newly prepared compounds was tested in vitro
against Gram-negative bacteria Klebsiella pneumoniae (ATCC® 10031™) and Escherichia coli
(ATCC® 25922™); Gram-positive bacteria Streptococcus pyogenes (ATCC® 19615™) and
Staphylococcus aureus (ATCC® 6538™); and the fungi Candida albicans (ATCC® 10231™),
Curvularia lunata, Alternaria alternate, and Aspergillus niger (ATCC® 16888™). The newly
synthesized compounds were dissolved in dimethyl sulfoxide (DMSO) and tested for
their antimicrobial activity by the agar disk diffusion technique. Cefotaxime sodium and
nystatin [9,10,33–35,38–54] were used as standard drugs for the antibacterial and antifungal
assays, respectively. A solution of 100 µg mL−1 of the tested compound and microplate
wells 1 cm in diameter were used. Zones of inhibition were measured with calipers
or automated scanners and paralleled with those of the standards. Cefotaxime sodium
(0.15 µmol mL−1) and nystatin (0.037 µmol mL−1) were used as the standard drugs for
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antibacterial and antifungal activity, respectively. Compound-impregnated disks were
placed on an agar plate containing a standard suspension of microorganisms. The plate was
incubated for 24 h at 37 ◦C. For the assessment of the minimum inhibitory concentration
(MIC) by serial plate dilution [9,10,33–35,38–54], 5 mg of each tested compound was
dissolved in 1 mL of DMSO separately to prepare stock solutions. Serial dilutions were
prepared from each stock solution. The plates were incubated at 37 ◦C for 24 h. MIC is
defined as the lowest concentration (µmol mL−1) of the tested compound that results in
no visible growth on the plates. DMSO was used as the solvent control to ensure that the
solvent had no effect on bacterial growth. The results are shown in Tables 1 and 2.

3.58.1. Ethical Approval and Consent to Participate

No humans or animals were used in this study; nevertheless, all the procedures were
carried out under the approval of the Medical Research Ethics Committee of the National
Research Centre, Department of Chemistry of Natural and Microbial Products, Giza 12622,
Egypt.

3.58.2. Human and Animal Rights

No human or animal subjects were used in the study. The research was conducted
according to ethical standards in vitro.

3.58.3. Chemicals and Drugs

Types of Gram-positive bacteria Staphylococcus aureus and Streptococcus pyogenes,
Gram-negative bacteria Escherichia coli and Klebsiella pneumoniae, and fungi Aspergillus
niger, Alternaria alternate, Curvularia lunata, and Candida albicans were from the National
Research Centre, Department of Chemistry of Natural and Microbial Products, Giza, Egypt,
and cefotaxime sodium, nystatin, and DMSO were purchased from Sigma-Aldrich.

4. Conclusions

In the present research, the furochromone ring system is confirmed to be one of
the most significant heterocyclic compounds in nature. It is found in neurotransmit-
ters such as serotonin and complex alkaloids such as the Khellol glucoside, Bergapten,
Ricchiocarpen, and chromenes. Likewise, a number of important synthetic drugs con-
tain a chromene ring. Therefore, we prepared new heterocyclic compounds of furo
[3,2-g] chromene -6-carbonitrile such as furochromeno [2,3-d]pyrimidines ((5), (6), (8),
(11), (12), (14–16), (18), (19)), N-(6-cyano-5-methyl-furo [3,2-g]chromene) acetamide (7),
N-(6-cyano- 5-methyl-furo[3,2-g]chromene)-phenylacetamide (13), N-(6-cyano-furo[3,2-
g]chromene) formimidate (17), furochromeno [2,3-e][1,2,4]triazepin-amine (9), furo[3,2-
g]chromene- 6-carboxamide (10), furochromeno [3,2-e][1,2,4]triazolopyrimidines (20), and
furo- chromeno[2,3-b]quinolin-6-amine (21) derivatives; these compounds were tested as
antimicrobials in vitro and studied in terms of molecular docking. From observations
of the biological assay data and the molecular docking results, we concluded that the
antibacterial activities of these compounds are clearly derived from the interaction between
the compounds and the amino acid of the protein molecule (enzyme FabH). Hence, these
compounds—furochromenotriazolopyrimidine (20a, b), furochromeno- quinoline (21a, b),
furochromenotriazepine (9a, b) and furochromenopyrimidine (19a, b)—have potential for
inhibiting microbial growth. Furthermore, we confirmed by this study that compounds
(20b) and (21b) are promising antimicrobial agents and could be used for treating a selected
range of microbial infections.
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