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Microbial communities are the simplest possiblemodel of multicellular tissues, allowing studies of cell-cell inter-
actions to be done with as few extraneous factors as possible. For instance, the eukaryotic microbe Dictyostelium
discoideum proliferates as single cells, and when starved, the cells aggregate together and form structures of
~20,000 cells. The cells use a variety of signals to direct their movement, inform each other of their local cell den-
sity and whether they are starving, and organize themselves into groups of ~20,000 cells. Mathematical models
and computational approaches have been a key check on, and guide of, the experimental work. In this mini-
review, I will discuss diffusion calculations andMonte Carlo simulations that were used for Dictyostelium studies
that offer general paradigms for several aspects of cell-cell communication. For instance, computational work
showed that diffusible secreted cell-density sensing (quorum) factors can diffuse away so quickly from a single
cell that the local concentration will not build up to incorrectly cause the cell to sense that it is in the presence
of a high density of other cells secreting that signal. In another example, computation correctly predicted amech-
anism that allows a group of cells to break up into subgroups. These are thus some examples of the power and
necessity of computational work in biology.

© 2019 The Author. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
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1. Introduction

Microbial communities exit in environments ranging from deep sea
vents to soil to the surfaces and interiors of plants and animals. In some
of these communities, the cells can communicate with each other, typ-
ically by releasing or secreting factors that other cells can sense. For
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instance, in communities of the eukaryote Dictyostelium discoideum,
cells can sense the local density of otherDictyostelium cells, sense the lo-
cation of the center of the community, sense the local density of starving
cells, and sense attractive signals that guide cells to form multicellular
aggregates. For all of these processes, computational approaches have
played a key role in our understanding of these remarkable aspects of
the behavior of a microbial community.

Dictyostelium cells are small eukaryotic cells which live on soil sur-
faces and phagocytose and digest nutrients such as bacteria and other
microorganisms [1]. The amoebae are motile, and while moving to
find food (the cells can sense and move towards individual bacteria),
the cells tend to disperse. As the cells proliferate, the community ex-
pands, and eventually the cells overgrow the available nutrients and
starve. The starved cells then aggregate using relayed pulses of extracel-
lular cyclic adenosine monophosphate (cAMP) as a chemoattractant,
and form multicellular aggregates that then form 1–2 mm tall fruiting
bodies consisting of a mass of spore cells held up by a thin column of
stalk cells. The spores are dispersed by the wind, and if the spore
lands in a moist environment, it will become an amoeba that can start
a new community of cells. Dictyostelium is a premier system for study-
ing secreted signals and the physics of development for several reasons.
The first is the simplicity of cells differentiating into just two main cell
types and forming structures that can be seen with the naked eye. Sec-
ond, there are a wide variety of genetic tools [2–7], mutations that
completely block development often do not inhibit proliferation, and
mutants can be stored frozen. Third, cells grow as plaques on lawns of
bacteria on agar plates, allowing easy visual screening for developmen-
talmutations. Finally, the cells grow at room temperature, allowing easy
microscopy of live cells, and grow in an inexpensive serum-free defined
medium, facilitating purification of secreted factors.

2. Results

2.1. Theoretical and ComputationalWorkWas and Is an Integral Part of Un-
derstanding Dictyostelium Aggregation

Some of the earliest computational/ theoretical work to understand
the behavior of cells in a microbial community was used to model how
starved Dictyostelium cells aggregate [8–20]. In a field of starved Dictyo-
stelium cells, some cells will begin secreting pulses of cAMP. Nearby
cells (a second cohort) will sense the cAMP, and simultaneously secrete
a pulse of cAMP and move towards the source of the first cAMP pulse.
Cells further away from the source of the original cAMP pulse, but near
the second cohort, sense the cAMP from the second cohort, relay the
cAMP pulse to cells even further away, andmove towards the second co-
hort. The pulses repeat and spread through the field every ~6min, and to
avoid extracellular cAMP concentrations building up and swamping the
cAMP receptors on cells, the cells secrete a cAMP-degrading enzyme.
With this mechanism, 10 μm diameter cells over a ~1 cm diameter field
can aggregate together. Computational work has guided and checked all
aspects of the studies on this mechanism, from the extracellular signal
concentrations, to the receptor interactions, down to detailed models of
how a slight gradient of cAMP sensed by cells activates specific proteins
in the signal transduction mechanism which regulate specific proteins
in the cytoskeleton to direct cell movement towards the source of the
pulse of cAMP [8–20]. Computational approaches have even successfully
modeled the morphogenesis of the aggregated cells into structures that
are about to form fruiting bodies [21]. Because the vast scope of this com-
putationalwork is beyondwhat could fairly be addressed in aminireview,
this will not be addressed in this minireview.

2.2. Computational Approaches to Understanding how Cells Sense the
Number or Density of Other Cells

A longstanding idea in developmental biology is that an organism
could regulate the size of a tissue containing type X cells, or regulate
the number of type X cells throughout the organism, if the type X cells
secrete a characteristic diffusible factor x, simultaneously sense the con-
centration of x, and slow or stop proliferatingwhen the concentration of
x reaches a threshold. Such factors are called chalones, and there is good
evidence that these regulate the size of tissues such as the spleen in
mammals [22–25]. Unfortunately, most chalones have eluded identifi-
cation, and we have been using Dictyostelium to purify and elucidate
chalones. A key test for a chalone is that at equilibrium in the tissue or
body, the type X cells should be secreting the chalone at a rate sufficient
to reach the steady-state concentration of the chalone where it inhibits
type X cell proliferation. In a body with an available extracellular vol-
ume V, with a number of X cells NX secreting x at a rate of ϕ molecules
per minute, and x having an average lifetime of τ minutes, the steady
state x concentration is simply [x] = NXϕτ/V. Biochemical purification
of x from cells and assessment of the x lifetime can then be compared
to measurements of the effect of different concentrations of x on cell
proliferation to check that x is indeed acting as a chalone.

Because mammalian chalones have eluded identification, we have
used the advantages of Dictyostelium to identify a variety of factors
that Dictyostelium cells use to inhibit their own proliferation, as well as
to sense the composition of a Dictyostelium community. However,
Dictyostelium cells grow as communities on surfaces that tend to be
much larger than the size of the colony of cells, such as the surface of
soil or the surface of a leaf, typically starting from a single spore, so
rather than there being a simple confined environment as in a body,
the geometry is typically a disk of cells on a relatively large surface,
and this makes the signal concentration calculations needed to check
that the signal is acting in the hypothesized manner considerably
harder. For a cell on a surface that momentarily secretes a signal x, the
concentration of xwill be a steadilywideningGaussiandistribution cen-
tered on the location of the cell. For a cell continuously secreting x, the
concentration will thus be an integral over time of a series of Gaussian
distributions; narrow distributions at short times, and wide distribu-
tions at longer times. These integrals are related to error functions,
and cannot be solved in closed form. However, they can be converted
to infinite series such as

x½ � ¼ −ϕ
4πDh

0:5772156649þ ln
r2

4Dt

� �
þ
X∞
n¼1

−r2
.

4Dt

� �n

n!n

2
64

3
75
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for cells on a thick layer of a permeablematerial such as dirt or agar [26].
In the above equations, [x] is the concentration of x at a distance r from
the cell at a time t after the cell started secreting x at a rate of ϕ mole-
cules per minute, and D is the diffusion coefficient of x. This can easily
be solved with a few lines of code, and to calculate [x] at a point A in
or near a community of cells (Fig. 1), a few more lines of code can
sum the contribution from every cell in the community to the local con-
centration of x at point A [26,27]. A simple albeit somewhat messy cor-
rection can then bemade to adjust for the presence of receptors for x on
cells, which by binding x reduce the concentration of x [26]. Because the
amount of x bound to a cell is a function of the number of receptors per
cell, the KD of the receptor for x, and the local concentration of x, this
needs to be calculated for each cell in the community to generate a
newdistribution of x concentrations. This then changes the x concentra-
tions needed to calculate the amount bound to cells, so the procedure
needs to be done iteratively. Using these computational approaches, we
showed that a factor secreted by Dictyostelium cells indeed acts as a cell
density sensing factor, activating cells when there are physiological



Fig. 1. Calculating the concentration of a secreted factor. For the cell (diamond shape) at
the beginning of the red arrow in a disk-shaped community of cells, computation to
sum an infinite series until the terms become arbitrarily small gives the concentration of
the factor at the point A at a distance r from the cell at some time after the cells have
begun secreting the factor. Subsequent computation of the contribution of all other cells
in the community, and summation of these contributions, gives the total concentration
of the factor at point A. The computation can then be repeated for a series of points
starting at the center of the community and moving radially outwards to give the
concentration profile of the factor across and beyond the community. Iterative
corrections then can adjust for receptors on cells decreasing the free concentration of
the factor.
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numbers and surface densities of cells in a community, and not activat-
ing the cells at low densities or low total numbers where cells had been
observed to not begin the developmental step that we thought the fac-
tor mediated [26]. Note, however, that this computation does not take
into account the lifetime of the secreted factor. A finite lifetime of the
factor would tend to decrease the concentration of the factor at each
point. A testable prediction is that because molecules of the factor far
from a cell would tend to be older than molecules of the factor close
to the cell, a finite lifetime of the factor would tend to decrease factor
concentrations (on a percent basis) far froma cellmore than thepercent
decrease close to the cell. Other parameters that could be added to this
model are secretion and breakdown rates of the factor that depend on
the factor concentration or the concentration of a different factor, and
boundary conditions instead of the infinite 2- or 3- dimensional mani-
fold [28,29].

In another instance, we had found that a secreted factor acts as a
chemorepellent, allowing cells at the edge of a community of cells to
sense the gradient between the high concentrations of the factor in
the community and the low concentration outside the community,
and use this gradient to move away from the community to find new
sources of food [30]. A recombinant version of the factor also acted as
a chemorepellent in gradient chambers [30], but to make sure we
were using biologically relevant gradients, we did concentration
Fig. 2.Examples of diffusion calculations. A) Concentrations of a factor such asAprA secretedby a
secreting the factor. B)More complex concentration profiles cannot be easily solved in closed f
community secrete a fast-diffusing chemoattractant, and a slowly-diffusing hydrolase that break
of the hydrolase has some probability ofmoving is a randomdirection, aswell as a probability o
attractant. Because of the stochastic nature of these probabilities, the graph shows some noise
calculations as described above to determine the physiological concen-
tration range and slope (d[x]/dr), where r is the distance moving radi-
ally outwards from the colony (Fig. 2A) [27].

2.3. Computation Solves the Problem of a Cell Tricking itself

A puzzling aspect of the idea that a secreted factor can allow cells to
sense their local density was that one can envision a solitary cell contin-
uously secreting a cell-density sensing factor, and the local concentra-
tion of the factor slowly increasing, so that after some time the cell
would sense a high concentration of the factor and ‘think’ that it was
in the presence of a high density of cells secreting the same factor
when it wasn't. From the above equations, as t → ∞, the series terms
vanish. For the cells on a thick permeable material, at large t, [x] ap-
proaches a constant value, and we calculated that this was far below
the threshold concentration of a signalwewere studying [26]. However,
for cells in a thin layer of liquid, at large t, the -ln(r2/4DT) continues to
increase, and we used computation to show that for the factor we
were studying, during physiological time scales, the [x] in the vicinity
of an isolated cell secreting x would be well below the threshold for ac-
tivity [26].

2.4. Computational Approaches to Understand howCells Sense the Location
of Other Cells

As described above, the simplest way to allow cells to sense where
the bulk of the cells in a microbial community are, and thus how to
move away from the community, is to have all the cells in the commu-
nity secrete a chemorepellent (Fig. 1 and Fig. 2A). However, there are
other possible ways to let cells sense how to move away from the com-
munity. Using Monte Carlo methods to model the diffusion of a small
(and thus easily diffusible) chemoattractant (in this case, cAMP) and a
relatively slowly diffusing 60 kDa protein that inactivates the chemoatt-
ractant (Fig. 2B), we found that a protein could act as a chemorepellent
in a wide variety of geometries by inactivating a chemoattractant, gen-
erating a chemoattractant gradient that is low near the source of the
inactivating protein, and high elsewhere. The work in Fig. 2B used arbi-
trarily chosen secretion rates and enzyme kinetics, and diffusion coeffi-
cients for cAMP and a 60 kDa hydrolase in a thin layer of water on a flat
2-dimensional impermeable surface. The model started with a point
source (origin) of the attractant and hydrolase on a 2-dimensional
grid. At each time step of the model, the point source generated some
number of attractant molecules and some number of hydrolase mole-
cules. At each grid square, including the origin, each molecule of the
low molecular mass attractant had a high probability of moving to an
adjacent grid square in a random direction; eachmolecule of the hydro-
lase had a lower probability of moving to an adjacent grid square. Then
ll cells in a community as shown in Fig. 1, for the indicated times after the cells have started
orm, but can easily be donewith Monte Carlo approaches. In this example, all the cells in a
s down the chemoattractant. At each location of thehydrolase, at eachmoment, amolecule
f breaking down amolecule of the attractant that depends on the local concentration of the
.
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at each grid square, for each molecule of the attractant, there was a
probability proportional to the number of hydrolase molecules at that
grid square that the attractant molecule would be destroyed and re-
moved from the count of attractant molecules at that grid square.
Using actual diffusion coefficients, enzyme kinetics, and secretion
rates, one could then play with the parameters and determine if such
a mechanism could be feasible. As with the diffusing chalones, adding
variable secretion rates, variable breakdown rates, and boundary condi-
tions could be used to make such models more accurate.

2.5. Monte Carlo Simulations Predicted how a Stream of Cells Can Break
into Groups

A basic question in developmental biology is how cells can sense the
size of a group or tissue.WhenDictyostelium cells starve, they aggregate
into groups of roughly 2 × 104 cells. However, antisense repression or
homologous recombination disruption of the gene smlA causes cells to
form large numbers of small aggregates [7,31–37]. We found that the
smlA phenotype is due to these cells oversecreting a factor that reduces
group size.We purified the factor and named it Counting Factor (CF). CF
is a complex of proteins that is secreted by developing wild-type cells.
Deletion of any of the components of CF causes aggregation streams to
not break up, resulting in the formation of huge fruiting bodies. I was
baffled by how a stream of cells could break into groups, and I wrote
computer simulations of streams and played with various parameters
[38,39]. The simulations predicted that if a secreted factor such as CF in-
creases random cell motility and decreases cell-cell adhesion, the
streams break apart (Fig. 3). Experiments then showed that the predic-
tions were correct. In mutants with no CF activity, random motility is
low and cell-cell adhesion is high, and streams stay intact even if there
are too many cells in the stream [38,39]. With high CF (smlA¯ cells),
high random motility and low cell-cell adhesion cause streams to
break. Decreasing cell-cell adhesion with antibodies against adhesion
proteins caused streams to break excessively, while decreasingmotility
caused streams to stay intact [38,39]. This was an example where com-
puter simulations led experiments, rather than vice versa. Adding vari-
able secretion rates, variable breakdown rates, boundary conditions,
Fig. 3. Example of a Monte Carlo simulation used to understand how a stream of
aggregating Dictyostelium cells can break up into groups. Dots represent cells. A) shows
an initial stream, B) the stream after cells have dispersed due to random motility being,
on average, stronger than cell-cell adhesion, and C) cells in the dispersed stream, after
decreasing their random motility strength relative to the strength of cell-cell contacts,
tend to aggregate back into groups.
and different initial distributions of cells could be used to make such
models more accurate.

2.6. Computational Work on Microbial Communities Led to Potential
Therapeutics

As described above, computational approaches were an integral
part of work to understand how cell-density sensing signals and
chemorepulsion signals help cells in microbial communities exchange
information. An attempt to determine if human white blood cells use
a chalone mechanism similar to the Dictyostelium cell-density sensing
mechanisms led to the identification of a potential therapeutic for
fibrosing diseases that recently showed better efficacy in pulmonary
fibrosis patients than current standard of care [40–44]. Computation
of a predicted structure of the Dictyostelium chemorepellent AprA
using I-TASSER [45] identified a human protein called DPPIV as a poten-
tial orthologue [46,47]. DPPIV was found to be a chemorepellent
for human and mouse neutrophils, and in mouse models of the
neutrophil-exacerbated diseases acute respiratory distress syndrome
and rheumatoid arthritis, local application of DPPIVwas able to amelio-
rate inflammation by moving neutrophils out of the area of inflamma-
tory damage [46,48]. Computational work on signaling in microbial
communities thus helped to transition this work to potential
therapeutics.

3. Conclusion

As illustrated by the above examples, computational work has play-
ed a key role in our understanding of cell-cell communication in micro-
bial communities, and this has, in turn, led to potential therapeutics for
several different diseases.
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