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to the regulation of the NO-cGMP pathway in the brain, 
correlation of ADMA level with CBF and cognitive altera-
tions observed during HE progression in patients and/or 
animal models of HE.

Keywords  Hepatic encephalopathy · Asymmetric 
dimethylarginine · l-Arginine · Nitric oxide synthase · 
Cerebral blood flow

Abbreviations
ALF	� Acute liver failure
ADMA	� Asymmetric dimethylarginine
BH4	� Tetrahydrobiopterin
BDE	� Bile duct excision
BDL	� Bile duct ligation
CAT	� Cationic amino acid transporter
CBF	� Cerebral blood flow
CLF	� Chronic liver failure
cGMP	� Cyclic guanosine monophosphate
DDAH	� Dimethylarginine dimethylaminohydrolase
eNOS	� Endothelial NOS
HE	� Hepatic encephalopathy
iNOS	� Inducible NOS
nNOS	� Neuronal NOS
NO	� Nitric oxide
NOS	� Nitric oxide synthase
PCS	� Portacaval shunt
PPVL	� Partial portal vein ligation
PRMT	� Protein arginine methyltransferase
SDMA	� Symmetric dimethylarginine
TAA	� Thioacetamide
TIPS	� Transjugular intrahepatic portosystemic shunt

Abstract  The methylated derivative of l-arginine, asym-
metric dimethylarginine (ADMA) is synthesized in differ-
ent mammalian tissues including the brain. ADMA acts 
as an endogenous, nonselective, competitive inhibitor of 
all three isoforms of nitric oxide synthase (NOS) and may 
limit l-arginine supply from the plasma to the enzyme via 
reducing its transport by cationic amino acid transporters. 
Hepatic encephalopathy (HE) is a relatively frequently 
diagnosed complex neuropsychiatric syndrome associated 
with acute or chronic liver failure, characterized by symp-
toms linked with impaired brain function leading to neuro-
logical disabilities. The l-arginine—nitric oxide (NO) path-
way is crucially involved in the pathomechanism of HE via 
modulating important cerebral processes that are thought to 
contribute to the major HE symptoms. Specifically, activa-
tion of this pathway in acute HE leads to an increase in NO 
production and free radical formation, thus, contributing to 
astrocytic swelling and cerebral edema. Moreover, the NO-
cGMP pathway seems to be involved in cerebral blood flow 
(CBF) regulation, altered in HE. For this reason, depressed 
NO-cGMP signaling accompanying chronic HE and ensu-
ing cGMP deficit contributes to the cognitive and motor 
failure. However, it should be remembered that ADMA, 
a relatively little known element limiting NO synthesis in 
HE, may also influence the NO-cGMP pathway regulation. 
In this review, we will discuss the contribution of ADMA 
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Hepatic Encephalopathy

Hepatic encephalopathy (HE) is a complex neuropsychiat-
ric disorder that results from impaired liver function, i.e. 
insufficient clearance of toxins from blood, which in excess 
enter the brain. The impaired liver function results from 
acute or chronic liver failure (ALF vs. CLF) and is associ-
ated with a wide range of neurological alterations, includ-
ing cognitive and motor disturbances mainly accompanying 
CLF [1]. A rapid progress of HE due to ALF, leads to cere-
bral edema and increased intracranial pressure followed by 
cerebral herniation and death [2].

The cellular and molecular mechanisms underlying 
HE are extremely complex and have not been elucidated 
enough, yet. However, there is a consensus that HE is 
mainly associated with an interference of ammonia with 
various aspects of brain metabolism, leading to imbalance 
of neural transmission [3–5]. HE is also named a primary 
“astrogliopathy”, because ammonia affects astrocytes, 
housekeepers of the central nervous system, thus impairing 
astrocyte-neuronal interactions, and contributing to neuro-
transmitter imbalance.

Dysregulation of nitric oxide (NO) production and sub-
sequent derangement of guanidine triphosphate conver-
sion to cyclic guanidine monophosphate (cGMP) [6, 7] is 
a common denominator of most of the symptoms accom-
panying ALF and CLF progression. At low nM concen-
trations, NO is an important intracellular messenger that 
activates soluble guanylate cyclase (sGC), initiating the 
cGMP production. In acute HE, ammonia-induced over-
stimulation of ionotropic (mainly NMDA) glutamate recep-
tors and activation of nitric oxide synthase (NOS) leads to 
an increase in NO synthesis further contributing in the gen-
eration of reactive oxygen and nitrogen species (ROS/RNS) 
in the brain [8–11]. On the other hand, decreased cGMP 
signaling in the brain has been identified as a key cause of 
cognitive dysfunction and memory impairment associated 
with chronic HE [12].

Asymmetric Dimethyl l‑Arginine (ADMA), 
an Endogenous Nitric Oxide Synthase Inhibitor

In 1992 asymmetric (NG, NG) dimethylarginine (ADMA) 
was first described as an endogenous inhibitor of NOSs 
[13]. ADMA, its symmetric isoform (NG, NG) dimethyl-
arginine (SDMA) and NG-monomethyl-l-arginine (mono-
methylarginine; l-NMMA) can regulate NO synthesis by 
inhibiting NOS and/or can compete for cationic amino 
acid transporters, which supply NOS with l-arginine 
[14]. ADMA is a pan-inhibitor of all three NOS isoforms, 
being a potent noncompetitive inhibitor of neuronal and 
endothelial NOS and a week inhibitor of inducible NOS. 

All methylated derivatives of l-arginine are ubiquitous in 
mammalian cells, exported from their site of origin, and 
imported from the plasma at distant sites by cationic amino 
acid transporters in exchange for l-arginine and other cati-
onic amino acids [14, 15]. Since their discovery, the role 
of these compounds in the regulation of NO production 
has attracted increasing attention. Interestingly, next to its 
association with cardiovascular disease, ADMA seems also 
to play a role in other clinical conditions, such as critical 
illness, diabetes mellitus, kidney failure and hepatic fail-
ure [16, 17]. Although circulating l-arginine levels may 
be >100 times higher than those of ADMA, recent inves-
tigations have shown that in peripheral endothelial cells (a) 
intracellular ADMA: l-arginine ratio (an index of NO bio-
availability) is significantly higher than the ratio measured 
in plasma and (b) significant NOS inhibition is achieved at 
physiological levels of endogenous methylarginines [18]. 
Faraci et al. [19] found that 50% of rat brain NOS activity 
was inhibited by infusion of ADMA even at low or physi-
ological ADMA concentrations [19]. It is now well estab-
lished in vitro and in vivo that micromolar concentrations 
of ADMA and l-NMMA, can compete with l-arginine for 
cell membrane transport sites. Considering that human 
body generates approximately 300  μmol (approximately 
60  mg) of ADMA per day [14], which results in plasma 
ADMA concentration between 0.4 and 0.7  µM [20], and 
that ADMA is mainly released from myelin basic proteins 
highly expressed in neuronal tissue, the above evidences 
suggest that endogenous methylarginines may contribute to 
the regulation of NO levels.

ADMA Metabolism

Free methylated arginine derivatives are formed endog-
enously by the sequential processes of protein methyla-
tion and proteolysis by intracellular proteases and/or the 
proteasomal system [21]. The methylation of protein argi-
nine residues is catalyzed by protein-methyl transferase 
(PRMT) family enzymes of which at least 11 mammalian 
isoforms have been described [22]. PRMT-1 is the main 
ADMA-generating enzyme. There are two known meta-
bolic pathways for the removal of ADMA in mammals: 
(1) hydrolysis of ADMA to citrulline and dimethylamine 
in the cytoplasm by dimethylarginine dimethylaminohy-
drolases (DDAH-1 and DDAH-2) and (2) transamination 
of ADMA to α-keto-δ-(N,N-dimethylguanidino) valeric 
acid (DMGV) by alanine-glyoxylate aminotransferase 
2 (AGXT-2) [23]. The role of the kidney and the liver in 
the metabolism of ADMA has been extensively studied 
and both organs have been proven to play a key role in 
the elimination of ADMA. The liver removes the major-
ity (~80%) of ADMA exclusively via its degradation by 
DDAH, while the kidney uses both metabolic degradation 
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by DDAH and urinary excretion to eliminate ADMA. 
DDAHs co-localize with different NOS isoforms [24], 
providing further indirect evidence that these enzymes 
may be involved in controlling the local availability of NO 
and downstream responses. DDAH-1 is highly expressed 
in the brain, suggesting its specific function in this organ. 
The coexistence of neuronal NOS (nNOS) and DDAH-1 in 
brain tissues suggests that ADMA may play some special 
role in the central nervous system and may be more than 
just an inert metabolic product. Inhibition of DDAH leads 
to an increase in ADMA levels and thus to a decrease in 
NO production. Since this pathway is regulated by complex 
feedback mechanisms, it probably has the ability to act as 
a stop signal for excessive NO production, thus potentially 
curbing its pathogenic action, while leaving physiological 
NO functions intact. Much less is known about the physi-
ological role of AGXT-2 in ADMA metabolism. AGXT-2 
is a pyridoxal phosphate-dependent aminotransferase that, 
in the rat, is expressed at high levels in the kidney [25] and 
brain [26]. AGXT-2 can also utilize ADMA as a donor of 
amino groups, leading to the formation of DMGV [27–29]. 
In this context, down-regulation of DDAH could result in 
an increased contribution of AGXT-2 to the metabolism of 
ADMA in pathophysiological conditions.

ADMA in Liver Dysfunction: Implications 
to the HE

A growing body of data suggests that increased concentra-
tion of ADMA, which is relatively stable and can be accu-
rately measured in the plasma, accompanies liver dysfunc-
tions in a wide sense and HE (for consolidated data see 
Table 1).

Elevated plasma concentrations of ADMA are observed 
in patients with severe acute alcoholic hepatitis [33] and 
acute liver failure [32]. In patients with compensated alco-
holic or hepatitis C virus related chronic liver diseases, 
increased peripheral ADMA have been also reported [34, 
35]. Recent data confirmed this observation in a wide 
cohort of cirrhotic patients [30], likewise in patients with 
transjugular intrahepatic portosystemic shunt (TIPS) [49].

Studies on the thioacetamide (TAA)-induced rat model 
of ALF revealed ADMA elevation in the plasma and both 
in the brain cortex tissue and extracellular space with 
parallel lowering of liver DDAH activity [37, 38, 50]. In 
addition, in the BDL rat model, ADMA level significantly 
raises in the peripheral blood, whereas the concentration 
of l-arginine decreases [51]. Of note in this context, the 
PRMT-1 protein content was elevated in the liver of BDL 
rats [52, 53], but reduced in BDL rat brain [46]. There is a 
consensus that essential cause of ADMA elevation during 
liver failure is related to the lowered DDAH activity in the 

liver which may or may not be in line with lowered DDAH 
protein expression [29, 43, 54]. Recent data have revealed 
that DDAH-1 is predominantly present in the parenchymal 
liver hepatocytes while loss of protein is seen during liver 
fibrosis in cirrhotic patients, BDL rats and CCl4 treated rats 
[55].

Whether elevated ADMA concentration in the plasma 
can be considered a potent clinical marker of liver dysfunc-
tion and/or an accompanying factor in HE diagnosis, still 
remains an open question. Nevertheless, even more inter-
esting are possible cerebral and/or systemic consequences 
of elevated ADMA. As already mentioned, HE is a very 
complex syndrome in which ADMA may exert its action 
in different ways, for instance by influencing vascular con-
striction leading to the CBF regulation, oxidative stress, 
cognitive function and inflammation. The authors of this 
review are aware that the presented list must stay “open” 
due to possible alternative approaches to ADMA function 
and ambiguously defined pathophysiological processes.

ADMA and Endothelial Function: A Contribution 
to the CBF Regulation

Cerebral blood flow (CBF) reflects brain energy demand 
and as such may be used as a potential indicator of an early 
decrease in brain activity. A global decrease in brain energy 
metabolism is one of the primary events associated with the 
pathogenesis of HE. Reduced cerebral oxygen consumption 
and CBF was observed in cirrhotic patients with an acute 
episode of overt HE, but not in cirrhotic patients without 
HE [56]. The increased CBF in cortical regions could be 
a common effect of the TIPS procedure, while decreased 
global CBF following TIPS might indicate the development 
of overt HE [57, 58]. Additionally, a pronounced decrease 
in the CBF in the cerebral cortex and whole brain was dem-
onstrated in our laboratory in the rat TAA model of ALF 
[unpublished data, 59]. On the other hand, the increased 
CBF was reported to correlate with raised intracranial pres-
sure and inflammatory markers in patients with ALF [60]. 
In general, the values of CBF reported in ALF are variable. 
A high CBF was demonstrated in patients with ALF in the 
late stage of the disease but before the development of cer-
ebral herniation [61]. Contrary, Almdal et al. [62] reported 
low CBF in patients in more advanced stages of HE [62]. A 
study in 30 patients in various stages of HE suggested that 
the CBF was likely to be low [63]. Simultaneous measure-
ment of ICP and CBF in eight patients revealed that ICP 
>24 mmHg was correlated with high CBF [64]. Felipo [2] 
in his comprehensive review presented the hypothesis that 
CBF was differently regulated in the cerebral cortex and 
cerebellum as well as at the early and late stages of HE [2]. 
However, this assumption is not entirely consistent with all 
the available data presented above.
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The restriction of CBF may be one of effects of ADMA. 
NO is arguably the most important endogenous vasodilator 
regulating the perfusion of the brain, significantly influenc-
ing the tone of conductive and resistance arteries as well 
as venous vessels [65]. Exogenous ADMA causes concen-
tration- and endothelium-dependent contractions of the 
human middle cerebral artery [66]. Similar study was con-
ducted on rings of human middle cerebral artery from 26 
autopsies, where the effects of exogenously administered 
ADMA were prevented by l-arginine [67]. On the one 
hand, ADMA might contribute to brain injury by reduc-
tion of CBF while on the other, ADMA might be involved 
in NOS-induced oxidative stress and excitotoxic neuronal 
death. After ischemic stroke, the inhibition of inducible 
NOS (iNOS) and nNOS have been suggested to be neuro-
protective while eNOS inhibition might reduce CBF after 
brain injury [68]. Taken together, the effects of ADMA, 
which acts as a nonselective NOS inhibitor and a mediator 
of oxidative stress via uncoupling of iNOS and eNOS, may 
be multifarious, either detrimental or beneficial. The expla-
nation of this issue requires further studies.

ADMA and Oxidative‑Nitrosative Stress

A growing body of evidence suggests that methylated 
derivatives of l-arginine can regulate NOS-derived super-
oxide production by an uncoupled nNOS [69] or eNOS 
[70]. Oxygen species can oxidize tetrahydrobiopterin (BH4) 
to dihydro-(BH2), which uncouples eNOS. Since ROS 
may increase intracellular ADMA levels, this is a potential 
positive feedback mechanism to perpetuate oxidative stress 
[71]. However, the effects of ADMA on nNOS are different 
from eNOS. In the presence of BH4, superoxide production 
by nNOS was independently inhibited by both ADMA and 
l-arginine, whereas neither ADMA nor l-arginine altered 
superoxide formation by eNOS in the absence of BH4 
[69]. It was also reported that ADMA adduction to murine 
epithelial cells induced rapid increases in superoxide pro-
duction, inhibited NO synthesis, and caused peroxynitrite 
formation. These effects of ADMA were exerted via uncou-
pling of iNOS [72].

Considering this, it is tempting to speculate that the 
observed induction of oxidative stress in HE may be 
modulated by ADMA. In  vivo evidence for ammonia-
induced oxidative stress in the brain has been obtained 
in animal models of acute ammonia intoxication [11, 73] 
and in cultured astrocytes acutely exposed to ammonia 
in vitro [74]. Recent works also documented an induction 
of oxidative stress in cirrhotic rats mainly via an overpro-
duction of superoxide associated with a significant reduc-
tion in NO bioavailability accompanying the increased 
levels of nitrosylated proteins [75]. Oxidative stress may 
directly modulate ADMA level via its impact on ADMA 

metabolizing enzymes. In BDL rats, elevation in plasma 
and hepatic ADMA levels were positively correlated with 
disease severity and oxidative stress markers [52]. Also, 
both PRMT-1 protein expression and oxidative stress mark-
ers were elevated in the liver of this model [52]. However, 
a study on hepatocytes did not confirm an association of 
PRMT-1 expression and ROS activation [54].

Previous works indicated DDAH sensitivity to oxida-
tive stress [76, 77]. The proposed mechanism of the inhi-
bition of DDAH activity was associated with imbalanced 
pro-oxidant/antioxidant state of sulfhydryl groups in the 
active site of the enzyme. Indeed, the expression and activ-
ity of DDAH in hepatocytes in  vitro were suppressed by 
superoxide and H2O2 in a time-dependent manner [54]. 
This assumption has been confirmed by reduction of the 
increased ADMA level and restoration of DDAH activity 
after administration of compounds with antioxidant proper-
ties, such as melatonin [52], l-histidine [37] or vitamin E 
which suppressed hepatic ADMA level and oxidative stress 
determined in the hepatic circulation in the rat BDL model 
[53].

ADMA and Cognitive Impairment

Manifestations of intellectual dysfunction in HE patients 
include psychomotor slowing, impaired attention and 
reduced ability to perform calculations [78, 79]. As HE 
worsens, impairment of speech and orientation, followed 
by temporal and spatial disorientations appears [80]. The 
most comprehensive research of Bajaj et al. [30], based on 
various cognitive tests, reported the association of ADMA 
concentration with cognitive dysfunction and inflammation 
in cirrhosis independently of the severity of liver disease 
[30]. Moreover, those authors showed that ADMA levels 
were significantly higher in patients who developed HE 
after TIPS placement compared to those who remained free 
of HE [30]. Memory impairment was also widely described 
in rats with CLF [12, 81, 82]. Furthermore, there are data 
indicating that the glutamate-NO-cGMP pathway in the 
cerebellum modulates some of types of learning, particu-
larly the ability to learn a Y maze task [2]. Therefore, the 
brain ADMA and its related enzymes, involved in endog-
enous NO production, can be a potential cause of these 
disturbances. Interestingly, ADMA may contribute to brain 
dysfunction in patients with Alzheimer’s disease and stroke 
[83, 84]. Elevated peripheral ADMA may play a role in 
spatial deficit in BDL rats. However, authors of that study 
also found increased plasma ADMA levels in one of the 
studied groups of rats without accompanying cognition 
impairment [23]. On the other hand, spatial memory altera-
tions were also observed in portacaval shunt (PCS), por-
tal hypertension and chronic TAA intoxication models in 
which ADMA elevation was not precisely confirmed [85].
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With a high probability, cognitive deficits in HE and 
chronic liver disease are linked to changes in CBF [86, 
87]. It is also possible that high ADMA levels are likely to 
uncouple eNOS, leading to superoxide generation [34, 43] 
and may provide an additional mechanism leading to the 
worsened spatial performance.

ADMA and Inflammation

Systemic inflammation is associated with enhanced plasma 
ADMA levels and follows endothelial dysfunction in vari-
ous inflammatory diseases, such as atherosclerosis and 
rheumatoid arthritis (RA) [88, 89]. Higher levels of methy-
larginines also correlated with an increase in mortality of 
patients with sepsis [90]. More recently an important role 
of inflammation, as an accompanying factor during HE 
development, has been postulated [91]. Elevated blood lev-
els of pro-inflammatory cytokines [interleukin-1b (IL-1b), 
interleukin-6 (IL-6), tumor-necrosis factor-alpha (TNFα)] 
correlate positively with the severity of HE [92–94]. 
ADMA levels were markedly higher in ALF patients com-
pared to age-matched controls, and better correlated with 
the levels of pro-inflammatory cytokines in pre-transplan-
tation patients undergoing hepatic venous catheterization. 
Following liver transplantation, both ADMA levels and 
pro-inflammatory markers were reduced [32]. Compari-
son of patients with decompensated alcoholic cirrhosis and 
acute hepatitis to the patients with alcoholic cirrhosis alone 
revealed that former ones demonstrated a much higher 
increase in inflammatory response markers and ADMA 
blood level. Furthermore, these observations were in line 
with down-regulation of DDAH-2 protein expression and 
up-regulation of PRMT-1 protein in the liver [33]. Our 
group showed in the TAA-induced ALF model an increase 
in both plasmatic/brain ADMA and TNF-α. Moreover, 
increase of TNF-α mRNA was observed in the brain cortex 
[37]. Elevated plasma and brain TNF-α level with accom-
panying increase of ADMA protein were also described in 
cirrhosis rats [43].

ADMA and Suggested Therapeutic Strategies

A few treatment strategies used to cure hypertension, 
chronic kidney disease, hyperlipidemia or diabetes addi-
tionally reduce the increased level of ADMA. These 
include inhibitors of the renin-angiotensin-aldosterone 
system [95, 96], statins [97], fibrates and niacin [98, 99] or 
thiazolidinediones [100]. Also, antioxidants [53] or aspi-
rin [101] contribute to the regulation of abnormal ADMA 
level in various disorders. So far, homocysteine-lowering 
therapy, despite a few promising attempts, has not been 
very successful in reduction of ADMA [95, 102]. The link-
age between anti-inflammatory drugs and ADMA lowering 

therapy was recently reported in RA. Three-week treatment 
with etanercept or adalimumab reduced in those patients 
ADMA level in plasma [103]. However, previous study did 
not reveal an impact of 18-month methotrexate or adali-
mumab treatment on ADMA serum levels in RA patients 
[104].

Supplementation of l-arginine has also been suggested 
to be able to eliminate the negative ADMA impact [105]. 
Theoretically, in the presence of pathophysiologically rel-
evant concentrations of ADMA and physiological concen-
tration of l-arginine, the eNOS activity decreases which 
results in the NO formation rates below the physiologi-
cal level. In such conditions, supplementation with exog-
enous l-arginine displaces the competitive inhibitor and 
restores the physiological l-arginine/ADMA ratio [106]. 
l-Arginine is the principal substrate of NOS and several 
early studies in human and animal models reported the ben-
eficial effects of acute and chronic l-arginine supplemen-
tation on endothelial NO production [107, 108]. However, 
there are inconsistent results in a clinical context. It was 
reported that five of 17 published human studies showed 
no vascular health benefits of oral l-arginine supplemen-
tation [109]. Moreover, Wilcken et  al. [10] reported that 
l-arginine affected ADMA metabolism providing a relative 
stable ADMA/l-arginine ratio despite frequent changes in 
the plasma level of l-arginine [110]. They concluded that 
the regulatory role of l-arginine on ADMA might explain 
the unexpected results in some l-arginine supplementation 
studies.

Taking into consideration that intracellular ADMA is 
mainly regulated by PRMT and DDAH, the use of spe-
cific PRMT inhibitors or DDAH agonists might be a more 
reasonable therapeutic strategy. However, due to a high 
degree of sequence conservation across the PRMT family, 
creation of specific PRMT inhibitors is challenging [111]. 
In addition, PRMT enzymes are involved in complex cel-
lular physiology and PRMT inhibition may give rise to side 
effects. The development of PRMT-1-specific inhibitors is 
a key objective in the search for more efficient therapeutic 
strategies. Initial experiments demonstrated that irreversi-
ble PRMT inhibition by S-adenosyl-l-homocysteine hydro-
lase blocks methylation in the cell and has both preventive 
and therapeutic potential in an animal model of arthri-
tis [112]. It appears that future efficient PRMT inhibitors 
will rather normalize than completely inhibit the PRMT-1 
function, restoring ADMA to normal levels. Since ADMA 
inhibits NOS activity, this could result in restoration of NO 
production, overcoming many important secondary effects 
of diseases.

The primary route of elimination of hepatic ADMA 
involves its hydrolysis by DDAH-1. The farnesoid X recep-
tor (FXR) belongs to a family of nuclear hormone recep-
tors that have an important role in maintenance of bile, 
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lipid and glucose balance [113]. A synthetic FXR agonist 
was shown to significantly increase hepatic DDAH-1 gene 
expression in diabetic rats [114] allowing for the determi-
nation of DDAH-1 as an FXR target gene. Subsequently, 
further studies in rodent models of cirrhosis and hyper-
tension have determined the efficacy of FXR agonist in 
increasing DDAH-1 expression [55, 115, 116]. DDAH-1 
augmentation was associated with a decrease in portal pres-
sure, reduced fibrosis and decreased hepatic ADMA levels. 
Furthermore, Balasubramaniyan et  al. [43] demonstrated 
that administration of ornithine phenylacetate in the BDL 
model of chronic liver cirrhosis decreased the abnormal 
brain ADMA level by restoring DDAH-1 expression con-
comitantly with reduction of brain ammonia and inflamma-
tion [43].

Finally, therapeutic up-regulation of AGXT-2 may have 
advantages compared with the up-regulation of DDAH-1 
or DDAH-2, because the latter two enzymes may exert 
cancer-promoting effects that are independent of ADMA 
[117]. Pharmacological approaches aimed to increase the 
activity of AGXT-2 could have potential therapeutic value 
in pathological conditions in which ADMA acts as a medi-
ator of pathogenesis.

The question arises which of the above-mentioned 
therapeutic strategies could be beneficial in treatment of 
hepatic encephalopathy? Some doubts have been raised 
as to whether 10–24% decreases in plasma ADMA levels 
induced by these agents in different diseases can be ben-
eficial. Furthermore, the increase in ADMA level in most 
diseases (except for renal failure and severe shock) is rela-
tively minor and it is unclear if this is sufficient to induce a 
significant NOS blockade. However, any potential strategy 
able to lower high plasma ADMA levels should be consid-
ered beneficial in the therapy of HE patients.

Summary and Perspectives

The molecular background underlying HE is still not com-
pletely understood and current treatment is rather symp-
tomatic than mechanism-based. The observations that 
elevated ADMA levels predict future outcomes in cohort 
studies associated with cardiovascular diseases demon-
strated the potential for methylarginines to act as a marker 
also in liver failure accompanying HE pathology. To date 
only circumstantial and correlative evidences for the role 
of ADMA as a mediator of selected processes in HE are 
available (Fig. 1). The increased circulating ADMA levels 
may be associated primarily with endothelial dysfunction 
that somehow can be translated into changes in CBF con-
sidered as a causative and/or predictive factor of overt HE. 
However, the exact mechanism, by which direct effects of 
ADMA in the brain are translated into CBF changes dur-
ing HE has not been elucidated in detail. Next, a direct link 
between increased plasma ADMA concentration and cog-
nitive impairment cannot be definitely confirmed due to a 
limited number of reports and correlative assumption. For-
mation of NO is regulated by both l-arginine availability 
and the presence of the NOS inhibitor ADMA, which may 
be represented by their ratio (l-arginine/ADMA). However, 
the application of the l-arginine/ADMA ratio is much lim-
ited due to the fact that l-arginine levels vary in a wider 
range than ADMA levels in the circulation, and, therefore, 
the ratio needs not reflect the intracellular situation. ADMA 
appears to regulate the cellular tissue level of NO and, thus, 
its biological impact both by inhibiting NO production and 
enhancing NO bio-inactivation by ROS. The primary role 
of NO synthesis in the pathogenesis of HE, plus a degree 
of tissue/cell specificity of the enzymes controlling meth-
ylarginine levels suggest that the modulation of ADMA 
metabolism may be considered also as a potential target for 

Fig. 1   A potential contribu-
tion of the elevated ADMA 
level to the cerebral impairment 
occurring in the HE. Acute or 
chronic liver failure results in 
the increased level of ADMA 
in peripheral tissues and in the 
brain, due to its decreased deg-
radation by the enzyme DDAH, 
among other things. High level 
of ADMA contributes to the 
restriction of the cerebral blood 
flow, oxidative stress, cognitive 
impairment and inflammation
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future therapeutic interventions. However, the modulation 
of DDAH and/or AGXT-2 activity and/or expression is still 
under research. Elucidation of the significance of ADMA 
in HE will require a significant broadening of the scope of 
research.
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