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Background

Taller adult height is associated with lower risks of ischemic heart disease in mendelian ran-

domization (MR) studies, but little is known about the causal relevance of height for different

subtypes of ischemic stroke. The present study examined the causal relevance of height for

different subtypes of ischemic stroke.

Methods and findings

Height-associated genetic variants (up to 2,337) from previous genome-wide association

studies (GWASs) were used to construct genetic instruments in different ancestral popula-

tions. Two-sample MR approaches were used to examine the associations of genetically

determined height with ischemic stroke and its subtypes (cardioembolic stroke, large-artery

stroke, and small-vessel stroke) in multiple ancestries (the MEGASTROKE consortium,

which included genome-wide studies of stroke and stroke subtypes: 60,341 ischemic stroke

cases) supported by additional cases in individuals of white British ancestry (UK Biobank

[UKB]: 4,055 cases) and Chinese ancestry (China Kadoorie Biobank [CKB]: 10,297 cases).

The associations of genetically determined height with established cardiovascular and other

risk factors were examined in 336,750 participants from UKB and 58,277 participants from

CKB. In MEGASTROKE, genetically determined height was associated with a 4% lower risk

(odds ratio [OR] 0.96; 95% confidence interval [CI] 0.94, 0.99; p = 0.007) of ischemic stroke

per 1 standard deviation (SD) taller height, but this masked a much stronger positive associ-

ation of height with cardioembolic stroke (13% higher risk, OR 1.13 [95% CI 1.07, 1.19], p <
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0.001) and stronger inverse associations with large-artery stroke (11% lower risk, OR 0.89

[0.84, 0.95], p < 0.001) and small-vessel stroke (13% lower risk, OR 0.87 [0.83, 0.92], p <
0.001). The findings in both UKB and CKB were directionally concordant with those

observed in MEGASTROKE, but did not reach statistical significance: For presumed cardi-

oembolic stroke, the ORs were 1.08 (95% CI 0.86, 1.35; p = 0.53) in UKB and 1.20 (0.77,

1.85; p = 0.43) in CKB; for other subtypes of ischemic stroke in UKB, the OR was 0.97 (95%

CI 0.90, 1.05; p = 0.49); and for other nonlacunar stroke and lacunar stroke in CKB, the ORs

were 0.89 (0.80, 1.00; p = 0.06) and 0.99 (0.88, 1.12; p = 0.85), respectively. In addition,

genetically determined height was also positively associated with atrial fibrillation (available

only in UKB), and with lean body mass and lung function, and inversely associated with low-

density lipoprotein (LDL) cholesterol in both British and Chinese ancestries. Limitations of

this study include potential bias from assortative mating or pleiotropic effects of genetic vari-

ants and incomplete generalizability of genetic instruments to different populations.

Conclusions

The findings provide support for a causal association of taller adult height with higher risk of

cardioembolic stroke and lower risk of other ischemic stroke subtypes in diverse ancestries.

Further research is needed to understand the shared biological and physical pathways

underlying the associations between height and stroke risks, which could identify potential

targets for treatments to prevent stroke.

Author summary

Why was this study done?

• Taller people have lower risks of ischemic stroke and heart disease, but higher risks of

atrial fibrillation. However, little is known about the effects of height on the risks of dif-

ferent subtypes of ischemic stroke (cardioembolic stroke, large-artery stroke, and small-

vessel stroke).

• Understanding the shared biological and physical pathways underlying the associations

between height and stroke risks could identify potential targets for treatments to prevent

stroke.

• Mean height and the rates of different stroke subtypes vary considerably across different

income and ancestry populations, and, therefore, investigation across diverse ancestries

is important.

What did the researchers do and find?

• We used a mendelian randomization (MR) approach to study the association between

genetic variants for height and risk of ischemic stroke subtypes in populations with dif-

ferent ancestries.

• Genetic variants associated with taller height were associated with higher risks of cardi-

oembolic stroke and lower risks of large-artery and small-vessel stroke.
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• The findings were consistent across populations of different genetic ancestries and use

of different analytical methods.

What do these findings mean?

• The findings support a causal association of taller adult height with higher risks of atrial

fibrillation and cardioembolic stroke and lower risks of other ischemic stroke subtypes.

• Further research is needed to clarify the biological and physical pathways underlying

the associations of height with ischemic stroke subtypes, which could identify novel tar-

gets for treatments to prevent stroke.

Introduction

Taller people have lower risks of atherosclerotic diseases, ischemic stroke, and heart disease,

AU : Anabbreviationlisthasbeencompiledforthoseusedthroughoutthetext:Pleaseverifythatallentriesarecorrect:but higher risks of atrial fibrillation and venous thromboembolism [1–3]. The associations of

height with ischemic stroke subtypes have not been reported, but it would be of interest to

know whether these vary between atherosclerotic and cardioembolic stroke subtypes. In obser-

vational studies, any such associations could reflect confounding by socioeconomic status or

other known or unknown correlates of height that are risk factors for cardiovascular diseases.

Alternatively, the associations could be causal and could possibly be mediated through physical

effects of height on body structure (including lean body mass or lung function) [4–7].

Increasingly, mendelian randomization (MR) analyses have been used to assess the causal

relevance of risk factors for diseases by using genetic variants associated with risk factors of

interest as instrumental variables [8]. The allocation of genetic variants to gametes (and hence

offspring) is determined rAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:andomly at meiosis. Therefore, the random distribution of variants

for a trait, such as height, between individuals can be used to minimize the effects of confound-

ing by risk factors and provide support for the causal relevance of the trait for disease out-

comes. Previous MR studies have reported that genetically determined differences in adult

height were inversely associated with ischemic heart disease [4] and hypertension [2], but posi-

tively associated with atrial fibrillation [2,3], venous thromboembolism [2], and vasculitis [2].

However, the associations of genetically determined height with ischemic stroke and ischemic

stroke subtypes have not been reliably established as previous studies have focused analyses on

total stroke rather than on individual stroke pathological types and their main subtypes [2,9].

The present study examined the observational and genetic associations (using MR

approaches) of height with (i) ischemic stroke and subtypes of ischemic stroke in the MEGA-

STROKE consortium (an international collaboration on the genetics of stroke) and in 2 large

prospective studies conducted in the United Kingdom and China [10,11]; and (ii) established

cardiovascular risk factors and anthropometric traits in the 2 large prospective studies.

Methods

This study is reported using the Strengthening the Reporting of Observational Studies in Epi-

demiology using Mendelian Randomization (STROBE-MR) [12] guideline (S1 Checklist). The

study did not have a prospective protocol or published analysis plan. Analyses were planned
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prior to study initiation, but some were subsequently revised to reflect availability of new data

or in response to reviewer comments (S1 Methods).

MEGASTROKE

MEGASTROKE consortium data included 29 genome-wide studies of stroke and stroke sub-

types [13]. Ischemic stroke cases were defined using standard diagnostic criteria based on clin-

ical and imaging findings and were further classified into subtypes using the Trial of ORG 10

172 in Acute Stroke Treatment (TOAST) criteria [13,14]. Analyses were conducted using

meta-analyzed, heterogeneity-filtered summary results from multiple ancestries (60,341 ische-

mic stroke cases—including 9,006 cardioembolic stroke, 6,688 large-artery atherosclerotic

stroke, and 11,710 small-vessel stroke subtypes—and up to 454,450 controls) and separately

for the subset of Europeans (34,217 ischemic stroke cases) [13]. Summary results for separate

non-European ancestries were not made available by the consortium.

UK Biobank

The UK Biobank (UKB) is a prospective study of 502,506 men and women, aged 40 to 69 years

living in the UK, who were enrolled between 2006 and 2010 [10,15]. All participants provided

written informed consent to participate in a study defined by a protocol approved by the

North West Multi-centre Research Ethics Committee on May 10, 2016 (reference: 16/NW/

0274). Details of the study methods and baseline characteristics have been previously reported

(S2 Methods) [10,15]. Participants were followed up for a mean of 8 years through linkage to

death registries and hospital admission records. Criteria for diagnosis of ischemic stroke cases

(ICD-10: I63) were prespecified and included both cases recorded prior to enrollment and

incident cases recorded during follow-up (S2 Methods). Ischemic stroke cases with a history of

atrial fibrillation, based on either a self-reported diagnosis at baseline or an admission to hospi-

tal (ICD-10: I48) prior to onset of the stroke, were classified as having presumed cardioembolic

stroke (S2 Methods). The remaining noncardioembolic ischemic stroke cases were classified as

other subtypes of ischemic stroke. Genotyping using Affymetrix arrays with imputation into

multiple reference panels was available for 483,420 participants passing quality control (S2

Methods). After exclusions for non-white British ancestry (n = 78,674) and relatedness

(n = 67,201; kinship coefficient�0.125), a total of 336,750 UKB participants were included in

the present genetic analyses (S1 Fig).

China Kadoorie Biobank

The China Kadoorie Biobank (CKB) is a prospective study of 513,214 men and women, aged

30 to 79 years, who were enrolled from 10 (5 urban and 5 rural) geographically defined regions

of China between 2004 and 2008 [11]. All participants provided written informed consent to

participate in a study defined by a protocol that was approved by the Oxford Tropical Research

Ethics Committee on February 3, 2005 (reference: 025–04) and by the Ethics Review Commit-

tee of the Chinese Center for Disease Control and Prevention on July 8, 2004 (approval notice:

005/2004). Details of the study methods and baseline characteristics have been previously

reported (S3 Methods) [11]. Compared to participants in UKB, those in CKB were on average

5 years younger (mean age 51.6 [standard deviation (SD) 10.6] versus 56.4 [8.1] years) and

were less highly educated (S1 Table). Participants were followed up for a mean of 10 years

through linkages to death and stroke registries and health insurance claims records. Adjudica-

tion of stroke was undertaken by review of clinical findings from medical records and brain

imaging reports (available for >92% of stroke cases with retrieved records) by specialist clini-

cians using a defined protocol (S3 Methods). Presumed cardioembolic strokes were identified
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from confirmed ischemic stroke cases based on the Causative Classification System criteria

[16]. Other confirmed ischemic stroke cases were further classified by brain infarct size into

lacunar and other nonlacunar stroke subtypes. Data on atrial fibrillation were not systemati-

cally recorded at baseline or during follow-up in CKB, but electrocardiographic evidence of

atrial fibrillation and other major and minor sources of cardioembolism were recorded by

adjudicating physicians. Genotyping using Affymetrix arrays with imputation into the 1000

Genomes reference panel (S3 Methods) was available for 100,706 participants passing quality

control, comprising a sample of 76,020 participants selected to be representative of the CKB

population [17] and an additional 24,686 selected for nested case–control studies of incident

cardiovascular or respiratory disease (S3 Methods). After relatedness exclusions (n = 28,233;

kinship coefficient >0.05), the present genetic analyses involved 58,277 CKB participants

(53,346 from the population-based subset and 4,931 additional ischemic stroke cases included

only in analyses of ischemic stroke outcomes; S2 Fig).

Height

Participants in CKB were on average shorter (10 cm in men, 8 cm in women; S1 Table) than

those in UKB and the SDs of directly measured height in UKB and CKB, respectively, were 6.8

cm and 6.5 cm in men, and 6.3 cm and 6.0 cm in women. Separately in UKB and CKB, follow-

ing the methodology used in the Genetic Investigation of Anthropometric Traits (GIANT)

consortium, a measured height phenotype was constructed: Within strata by sex (and by

region in CKB), directly measured height (S2 and S3 Methods) was adjusted for age and age2,

and the residuals were transformed using an inverse normal transformation, yielding a mea-

sured height phenotype in study and sex-specific SD units. This transformed height phenotype

(referred to as “height” or “measured height”) was used for all analyses (unless “directly mea-

sured” is explicitly stated).

Blood pressure, blood lipids, and other anthropometric traits

Systolic and diastolic blood pressure were measured using standard instruments and protocols.

Blood lipids (low-density lipoprotein [LDL] cholesterol, high-density lipoprotein [HDL] cho-

lesterol, triglycerides, and apolipoprotein B) [17] were available in a subset of CKB participants

(S2 Fig). Fat body mass was estimated as weight multiplied by percentage body fat measured

by bio-impedance (S2 and S3 Methods). Lean body mass was estimated as weight minus fat

body mass. Lung function measures (forced vital capacity [FVC] and forced expiratory volume

in 1 second [FEV1]) were restricted to those with reliable values (S2 and S3 Methods, S2 Fig).

Compared with UKB participants, those in CKB had lower mean levels of systolic blood pres-

sure (7.3 mm Hg), diastolic blood pressure (4.7 mm Hg), LDL cholesterol (1.2 mmol/L), HDL

cholesterol (0.3 mmol/L), apolipoprotein B (0.2 g/L), body mass index (BMI; 4 kg/m2 in men

and 3 kg/m2 in women), and lean body mass (14 kg in men and 7 kg in women), but higher

mean levels of triglycerides (0.3 mmol/L; S1 Table).

Instruments for genetically determined height

Genetic instruments for a 2-sample MR approach were constructed separately for MEGA-

STROKE, UKB, and CKB, due to differences in ancestry and overlap in participants in

genome-wide association studies (GWASs) of height. For MEGASTROKE, height-associated

single nucleotide polymorphisms (SNPs) from the GIANT GWAS report in 2018 [18] (which

also included data from the whole of UKB) were used for both multiple and European ancestry

analyses (S2 Table). For UKB, the genetic instrument was constructed from height-associated

SNPs obtained from an earlier (2014) GIANT study that was independent of UKB [19]. For
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CKB, both the European ancestry–based GIANT GWAS (2018) [18] and a smaller GWAS

from Biobank Japan [20], involving participants of East Asian ancestry, were used to optimize

the genetic instrument for height by benefitting from a larger discovery population and a more

proximal genetic ancestry [21,22].

The SNPs selected from these GWAS studies (together with their published single-variant

effect sizes on height) were those associated with height at genome-wide significance and also

available in MEGASTROKE, UKB, or CKB (S4 Methods). The SNPs from each GWAS were

linkage disequilibrium (LD) pruned (r2 < 0.05) using LD estimates from UKB for GIANT and

from CKB for Biobank Japan (i.e., where r2 between SNPs was�0.05, the SNP with the lowest

p-value for association with height in the GWAS was retained). Palindromic SNPs were vali-

dated by comparing allele frequencies for individual participant data (UKB and CKB). For

MEGASTROKE, palindromic SNPs were replaced with high LD proxies (r2 > 0.9).

After LD pruning, 641 height-associated SNPs from GIANT were available for analysis in

UKB (S4 Methods). Likewise, 2,337 height-associated SNPs from GIANT (European ancestry)

and 517 SNPs from Biobank Japan (East Asian ancestry) were available for analysis in CKB. In

MEGASTROKE, after LD pruning (at p< 0.05) and replacing palindromic SNPs with proxies,

the number of height-associated SNPs from GIANT remaining for analysis available in each of

the multiple ancestry summary data sets was 2,265 for ischemic stroke, 2,270 for cardioembolic

and large-artery stroke, and 2,084 for small-vessel stroke. The SNPs used in MEGASTROKE,

UKB, and CKB are listed in S1–S3 Data Tables.

For UKB and CKB, genetic risk scores for each individual were constructed as the sum of

the number of each height-associated effect alleles weighted by their published single-variant

effect sizes on height (S4 Methods, S2 and S3 Data Tables). For CKB, the genetic risk score was

the simple average of weighted genetic risk scores constructed from 2,337 GIANT (2018) [18]

and 517 Biobank Japan [20] height-associated SNPs (other percentages of the 2 genetic risk

scores, including either score alone, were assessed in sensitivity analyses but had less explana-

tory power; S3 Table). The effects of SNPs on height in UKB and CKB estimated separately for

each SNP using linear regression adjusted for age, age2, sex, region (in CKB only), genomic

principal components (40 in UKB and 14 in CKB), and genotyping array type were also com-

pared with the published effect sizes on height.

The genetic risk score in UKB explained 17.0% of the variance of height (S4 Methods, S3

Table) and the effect sizes of the SNPs in UKB were highly correlated with the effect sizes in

the source GWAS [19] (r = 0.96; Fig 1). In CKB, the genetic risk scores from GIANT, Biobank

Japan, and the average genetic risk score, respectively, explained 11.4%, 11.0%, and 15.2% of

the variance of height (S3 Table). SNP effect sizes in CKB were less strongly correlated with

effect sizes in GIANT (r = 0.65) [18], but were more strongly correlated with effect sizes in Bio-

bank Japan (r = 0.90, respectively; Fig 1). One unit of the respective genetic risk score was asso-

ciated with 0.91 SD of measured height in UKB and 1.05 SD in CKB.

Genetic analyses

Since only GWAS summary results on stroke were available from MEGASTROKE [13] (and

not individual participant data), causal effects were estimated by inverse-variance–weighted

random-effects SNP-level meta-analysis [23] (S5 Methods, S3 and S4 Figs, S4 Data Table). For

UKB and CKB, individual participant data were used to construct genetic risks scores for each

individual, and the ratio method for single instruments was applied to estimate the genetically

instrumented causal effects on outcomes per 1 SD of measured height. When using the ratio

method, the second order variance term that is formally used in an instrumental variable esti-

mate was ignored because the contribution from this term would be negligible given the
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strength (large F-statistics) of the instruments [23,24]. Specifically, logistic regression was used

to assess associations of each genetic risk score with the stroke outcomes (after adjustment for

age, age2, sex, region in CKB, genomic principal components, and genotyping array type).

Subsequently, the coefficients from these regressions were divided by the regression coefficient

of measured height on the genetic risk score (0.91 SD of measured height in UKB and 1.05 SD

in CKB) to estimate the causal effects [23]. The genetic instruments used in the different popu-

lations were all strongly associated with height (F-statistic of 69,096 for UKB and 9,589 for

CKB and an average F-statistic of 109 per genetic variant in MEGASTROKE). All effects pre-

sented as associations of genetically determined height are the instrumented effects per 1 SD

higher measured level of height (S3 Fig).

To investigate the potential for factors to contribute to pleiotropy, cross-sectional associa-

tions of genetically determined height with established cardiovascular risk factors, and anthro-

pometric traits were assessed in UKB and CKB using linear or logistic regression as

appropriate, with adjustment for age, sex, region in CKB, genomic principal components, and

genotyping array type. For these cross-sectional associations, anthropometric traits and lung

function were standardized (by dividing by their SD within each sex) in the UKB and CKB

populations. The ratio method was then applied to regression results and, as for the disease

outcomes, the genetically instrumented effects presented. As t-statistics closely approximate z-

statistics in large samples, they are referred to as z-statistics in this report. These were used to

assess the strength and direction of the associations of height with cardiovascular and anthro-

pometric factors to permit comparisons of z-statistics up to about ±500, which is beyond the

convenient ranges for p-values (z-statistics of ±1.96 and of ±37 correspond to 2p = 0.05 and 2p

� 1 × 10−300, respectively).

Sensitivity analyses

As MR inference relies on various assumptions (including instrumental variable assumptions)

[24], additional sensitivity analyses in MEGASTROKE included weighted median analyses,

MR–Egger analyses to assess any possible pleiotropic effects of height on other factors, and

Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR–PRESSO) analyses to

correct for pleiotropy, if any, by removal of outliers (S6 Methods) [25]. As there is some

Fig 1. Effects of height-associated SNPs on height in UKB and CKB. For UKB (336,750 participants), the effects on height were estimated for 641

SNPs from GIANT (2014) [19]. For CKB (53,346 participants), the effects on height were estimated for 2,189/2,337 SNPs from GIANT (2018) [18] and

499/517 SNPs from Biobank Japan [20] with minor allele frequency�0.005 in CKB. The effect sizes on height were adjusted for age, age2, sex, region

(in CKB only), genomic principal components, and genotyping array type. SNPs with minor allele frequencies of<0.005 were not shown. In UKB, the

genetic risk score explained 17.0% of the variance of height and, in CKB, the genetic risk scores from GIANT (2018) [18], Biobank Japan [20], and the

average genetic risk score, respectively, explained 11.4%, 11.0%, and 15.2% of the variance of height. CAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1 � 3:Pleaseverifythatallentriesarecorrect:KB, China Kadoorie Biobank; GIANT, Genetic

Investigation of Anthropometric Traits; SD, standard deviation; SNP, single nucleotide polymorphism; UKB, UK Biobank.

https://doi.org/10.1371/journal.pmed.1003967.g001
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overlap of the populations in MEGASTROKE with those in GIANT (2018) [18] (S6 Methods)

but not with UKB, the sensitivity analyses were repeated using effect sizes on height estimated

in UKB. A further sensitivity analyses excluded SNPs that were associated at p< 0.001 in the

large pan-ancestry UKB GWAS analyses [26] with age at completion of education, diabetes,

atrial fibrillation, hypertension, systolic blood pressure, diastolic blood pressure, LDL choles-

terol, HDL cholesterol, triglycerides, or apolipoprotein B (S6 Methods). An additional sensitiv-

ity analysis in MEGASTROKE used more stringent pruning criteria (r2 < 0.001) for SNP

inclusion to provide greater comparability with recent literature. In CKB, the analyses of

genetically determined height with ischemic stroke subtypes were repeated using separate

genetic instruments constructed from GIANT (2018) [18] SNPs and from Biobank Japan [20]

SNPs.

Observational analyses

Observational analyses were restricted to participants with no prior history of ischemic heart

disease or stroke in UKB (S1 Fig) and CKB (S2 Fig, S7 Methods). Hazard ratios (HRs) for the

associations of measured height (grouped and as a linear term) with incident ischemic stroke

and ischemic stroke subtypes postrecruitment were estimated by Cox regressions stratified by

age at risk (in 5-year groups), sex, and region (10 regions in CKB), with adjustment for possi-

ble baseline confounders (S7 Methods). Cross-sectional associations of measured height with

cardiovascular and anthropometric factors at baseline were assessed using linear or logistic

regression as appropriate and adjusted for age (in 5-year groups), sex, year of birth, and region

in CKB. All statistical analyses were conducted in SAS (version 9.4) and R (version 3.3.3) and

are available upon request.

Results

Genetically determined height was inversely associated with ischemic stroke in MEGA-

STROKE in both multiple ancestries (odds ratio [OR]: 0.96; 95% confidence interval [CI]:

0.94, 0.99; p = 0.007) per 1 SD taller height, n = 60,341 cases) and the European ancestry subset

(0.96 [0.93, 0.99]; p = 0.02; n = 34,217; Fig 2). The genetic associations with ischemic stroke in

UKB (OR: 0.98 [95% CI 0.91, 1.06]; p = 0.66; n = 4,055) and CKB (0.94 [0.88, 1.00]; p = 0.05;

n = 10,297) were also consistent with the results in MEGASTROKE (Fig 2). However, the

results for overall ischemic stroke masked directionally opposing associations with different

subtypes of ischemic stroke.

In MEGASTROKE, genetically determined height was positively associated with cardioem-

bolic stroke (OR per 1 SD taller height: 1.13 [95% CI 1.07, 1.19]; p< 0.001; n = 9,006), but was

inversely associated with large-artery stroke (0.89 [0.84, 0.95]; p< 0.001; n = 6,688) and small-

vessel stroke (0.87 [0.83, 0.92]; p< 0.001; n = 11,710) in multiple ancestries and were similar

in the European ancestry subset (Fig 2). The findings in both UKB and CKB were directionally

concordant with the associations observed in MEGASTROKE, but did not reach statistical sig-

nificance: For presumed cardioembolic stroke, the ORs were 1.08 (95% CI 0.86, 1.35; p = 0.53;

n = 454 cases) in UKB and 1.20 (0.77, 1.85; p = 0.43; n = 133 cases) in CKB; for other subtypes

of ischemic stroke, the corresponding ORs were 0.97 (95% CI 0.90, 1.05; p = 0.49; n = 3,601) in

UKB, while in CKB, they were 0.89 (0.80, 1.00; p = 0.06; n = 2,205) for other nonlacunar stroke

and 0.99 (0.88, 1.12; p = 0.85; n = 2,138) for lacunar stroke (Fig 2, S4 Table).

Sensitivity analyses in MEGASTROKE also demonstrated reliable concordant estimates

irrespective of the methodology used for estimation, which included weighted median method,

MR–Egger, and MR–PRESSO (S5 Table). Importantly, there was no evidence of directional

pleiotropy for ischemic stroke or its subtypes (p> 0.08 for nonzero MR–Egger intercepts).
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The MR–PRESSO analyses identified only a few outlying SNPs (n� 4), and their exclusion

had no impact on the causal estimates. MR results remained similar when a restricted genetic

instrument was used that consisted of the 1,515 (67%) of SNPs not associated at p< 0.001 with

potentially pleiotropic risk factors for stroke (S6 Table). There was no evidence of bias due to

sample overlap as the causal estimates based on UKB effect sizes on height were largely

unchanged. In addition, the application of a stricter level of LD pruning (r2 < 0.001) had little

impact on the causal estimates (S6 Table). In CKB, sensitivity analyses of the component

genetic instruments for height yielded similar results to the combined instrument in the main

analyses (S7 Table).

Taller measured height was inversely and log-linearly associated with risk of ischemic stroke

in both UKB (HR per 1 SD taller measured height: 0.98 [95% CI 0.95, 1.02]; p = 0.33; n = 3,698)

and CKB (0.96 [0.95, 0.97]; p< 0.001; n = 37,947), although the association was not statistically

significant in UKB (Fig 3). The associations of measured height with ischemic stroke subtypes

in UKB and CKB were statistically significant (except for presumed cardioembolic stroke in

CKB) and similar to the genetic associations in MEGASTROKE in terms of direction: For pre-

sumed cardioembolic stroke, the HRs were 1.17 (95% CI 1.07, 1.28; p< 0.001; n = 495 cases) in

UKB and 1.09 (0.99, 1.28; p = 0.09; n = 410 cases) in CKB; for other subtypes of ischemic stroke

in UKB, the HR was 0.96 (95% CI 0.92, 0.99; p = 0.02; n = 3,203); and for other nonlacunar

stroke and lacunar stroke in CKB, they were 0.93 (0.91, 0.96; p< 0.001; n = 7,503) and 0.96

(0.94, 0.99; p = 0.002; n = 6,840), respectively (Fig 2, S8 Table).

Fig 2. Associations of measured and genetically determined height with ischemic stroke and its subtypes in MEGASTROKE, UKB, and CKB. The

numbers of events reported for MEGASTROKE were the maximum number of cases available in the genetic summary data. In MEGASTROKE and CKB, “All

ischemic stroke” includes additional unsubtyped ischemic strokes. For UKB and CKB, respectively, the SDs of directly measured height were 6.8 cm versus 6.5

cm for men and 6.3 cm versus 6.0 cm for women. Genetic associations in UKB and CKB were adjusted for age, age2, sex, region (in CKB only), genomic

principal components, and genotyping array type, and observational associations were stratified by age at risk (in 5-year groups), sex, and region (in CKB only)

and adjusted for additional potential confounders (S6 Methods). CI, confidence interval; CKB, China Kadoorie Biobank; SD, standard deviation; UKB, UK

Biobank.

https://doi.org/10.1371/journal.pmed.1003967.g002
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The associations of genetically determined and measured height with established cardiovas-

cular risk factors, anthropometric traits, and education are shown in Tables 1 and 2 and S9

Table. Almost all of the associations between genetically determined height and risk factors

were directionally concordant and broadly consistent between UKB and CKB, the exceptions

being the following: diabetes, where the CIs were wide and overlapped; smoking, which was

not associated in either population; and tertiary education, which was positively associated

with genetically determined height in UKB but not associated in CKB (Table 1, S9 Table; the

generally lower z-statistics in the genetic comparisons in CKB reflect the smaller number of

participants studied). Both genetically determined and measured height were strongly associ-

ated with lean body mass (in UKB, 0.5 to 0.6 SD higher lean body mass per 1 SD taller geneti-

cally determined height, z = 98 [p< 0.001] in men, z = 87 [p< 0.001] in women) and with

lung function (0.3 to 0.4 SD higher FEV1 or FVC, z = 50 to 65 [p< 0.001]).

Fig 3. Associations of measured height with ischemic stroke and its subtypes in UKB and CKB. In UKB, the category “Other

ischemic stroke subtypes” includes all ischemic strokes not classified as “Presumed cardioembolic stroke,” whereas in CKB, the

category includes all subtyped ischemic strokes not classified as “Presumed cardioembolic stroke.” For UKB (482,928 participants)

and CKB (490,067 participants), respectively, the SDs of directly measured height were 6.8 cm versus 6.5 cm for men and 6.3 cm

versus 6.0 cm for women. HRs were stratified by age at risk (in 5-year groups), sex, and region (in CKB only) and adjusted for

additional potential confounders (S6 Methods). Tenths of measured height were used to examine the shape of the associations of

height with ischemic stroke subtypes, except for presumed cardioembolic stroke where thirds were used due to the lower number of

cases. When tenths of height were plotted, consecutive pairs of the middle 6 tenths were combined (to give 7 groups). HRs were

presented as floating absolute risks relative to the middle height category (whereby standard errors were assigned approximately

independently to each category to avoid restricting comparisons to any arbitrary reference groups). CI, confidence interval; CKB,

China Kadoorie Biobank; HR, hazard ratio; SD, standard deviation; UKB, UK Biobank.

https://doi.org/10.1371/journal.pmed.1003967.g003
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Table 1. Associations of genetically determined height with cardiovascular risk factors and anthropometric traits in UKB and CKB.

Baseline

characteristic

UKB (n = 336,750) CKB (n = 53,346) Directional

consistency†

Effect (95% CI) per 1 SD genetically

determined taller height�
Z-

statistic

p-Value Effect (95% CI) per 1 SD genetically

determined taller height�
Z-

statistic

p-Value

Diagnosed prior disease (OR)

Diabetes 0.96 (0.93, 1.00) −2.0 0.05 1.02 (0.93, 1.12) 0.5 0.65 −+

Atrial fibrillation 1.33 (1.25, 1.42) 8.8 <0.001 NA NA NA NA

Hypertension 0.91 (0.90, 0.93) −9.6 <0.001 0.97 (0.90, 1.04) −0.9 0.37 −−
Blood pressure (mm Hg)

Systolic blood

pressure

−1.13 (−1.27, −0.98) −15.1 <0.001 −0.14 (−0.57, 0.29) −0.6 0.55 −−

Diastolic blood

pressure

−0.42 (−0.51, −0.34) −10.0 <0.001 −0.14 (−0.37, 0.10) −1.1 0.28 −−

Blood lipids

LDL cholesterol

(mmol/L)

−0.042 (−0.049, −0.035) −11.1 <0.001 −0.055 (−0.103, −0.007) −2.1 0.03 −−

HDL cholesterol

(mmol/L)

−0.007 (−0.010, −0.004) −4.6 <0.001 −0.006 (−0.028, 0.016) −0.5 0.61 −−

Triglycerides

(mmol/L)

−0.037 (−0.046, −0.029) −8.5 <0.001 −0.061 (−0.172, 0.050) −1.0 0.30 −−

Apolipoprotein B

(g/L)

−0.014 (−0.016, −0.012) −13.5 <0.001 −0.019 (−0.034, −0.005) −2.5 0.01 −−

Lung function (SD units within sex)

FEV1, men 0.312 (0.300, 0.325) 49.8 <0.001 0.220 (0.193, 0.247) 15.2 <0.001 ++

FEV1, women 0.295 (0.284, 0.307) 51.5 <0.001 0.221 (0.200, 0.243) 19.0 <0.001 ++

FVC, men 0.414 (0.402, 0.427) 64.6 <0.001 0.268 (0.240, 0.296) 17.7 <0.001 ++

FVC, women 0.382 (0.371, 0.394) 65.2 <0.001 0.259 (0.236, 0.282) 21.4 <0.001 ++

Anthropometric measures (SD units within sex)

BMI, men −0.070 (−0.083, −0.058) −11.2 <0.001 −0.054 (−0.086, −0.021) −3.1 0.002 −−
BMI, women −0.073 (−0.085, −0.062) −12.6 <0.001 −0.062 (−0.088, −0.037) −4.5 <0.001 −−
Waist to hip, men −0.023 (−0.035, −0.011) −3.8 <0.001 −0.041 (−0.076, −0.007) −2.2 0.03 −−
Waist to hip,

women

−0.021 (−0.033, −0.010) −3.7 <0.001 −0.007 (−0.032, 0.018) −0.5 0.61 −−

Weight, men 0.397 (0.385, 0.409) 64.0 <0.001 0.337 (0.306, 0.367) 20.8 <0.001 ++

Weight, women 0.322 (0.310, 0.333) 55.7 <0.001 0.343 (0.319, 0.367) 26.5 <0.001 ++

Lean body mass,

men

0.589 (0.578, 0.601) 98.0 <0.001 0.488 (0.458, 0.518) 30.1 <0.001 ++

Lean body mass,

women

0.492 (0.480, 0.503) 86.9 <0.001 0.598 (0.574, 0.621) 47.9 <0.001 ++

In UKB, blood lipids measurements were available in 87% to 95% of participants, lung function in 76%, and anthropometric traits in�98% (S1 Fig). In CKB, blood

lipids measurements were available in 8% of participants and lung function in 82% (S2 Fig).

�Effects are the ORs for prior disease or the difference in the characteristic per 1 SD genetically determined taller height, adjusted for age, age2, sex, region (in CKB

only), genomic principal components, and genotyping array type. For UKB and CKB, respectively, the SDs of directly measured height were 6.8 cm versus 6.5 cm for

men and 6.3 cm versus 6.0 cm for women.
†Each pair of signs indicates the direction of the estimated effect for UKB (first sign) and CKB (second sign).

BAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutTables1and2:Pleaseverifythatallentriesarecorrect:MI, body mass index; CI, confidence interval; CKB, China Kadoorie Biobank; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; HDL, high-

density lipoprotein; LDL, low-density lipoprotein; NA, not available; OR, odds ratio; SD, standard deviation; UKB, UK Biobank.

https://doi.org/10.1371/journal.pmed.1003967.t001
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Genetically determined taller height was also associated with lower levels of LDL choles-

terol, HDL cholesterol, and blood pressure in UKB and nonstatistically significant lower levels

in CKB; however, the estimated effect sizes on blood pressure were greater in UKB than in

CKB and the CIs of the estimates did not overlap (−1.13 mm Hg [95% CI −1.27, −0.98;

p< 0.001] versus −0.14 mm Hg [95% CI −0.57, 0.29; p = 0.55]). In UKB, the findings for

Table 2. Associations of measured height with cardiovascular risk factors and anthropometric traits in UKB and CKB.

Baseline characteristic UKB (n = 482,928) CKB (n = 490,067) Directional

consistency†

Effect (95% CI) per 1 SD taller

measured height�
Z-

statistic

p-Value Effect (95% CI) per 1 SD taller

measured height�
Z-

statistic

p-Value

Diagnosed prior disease (OR)

Diabetes 0.85 (0.84, 0.86) −28.5 <0.001 1.06 (1.04, 1.07) 8.4 <0.001 −+

Atrial fibrillation 1.31 (1.28, 1.34) 22.2 <0.001 NA NA NA NA

Hypertension 0.87 (0.87, 0.88) −41.6 <0.001 1.13 (1.12, 1.14) 24.8 <0.001 −+

Blood pressure (mm Hg)

Systolic blood

pressure

−1.16 (−1.21, −1.11) −46.4 <0.001 0.32 (0.27, 0.38) 11.7 <0.001 −+

Diastolic blood

pressure

−0.36 (−0.39, −0.33) −25.3 <0.001 0.44 (0.41, 0.47) 28.5 <0.001 −+

Blood lipids

LDL cholesterol

(mmol/L)

−0.017 (−0.019, −0.014) −13.0 <0.001 0.008 (−0.001, 0.018) 1.7 0.10 −+

HDL cholesterol

(mmol/L)

0.005 (0.004, 0.007) 10.2 <0.001 −0.012 (−0.016, −0.008) −5.8 <0.001 +−

Triglycerides (mmol/

L)

−0.047 (−0.050, −0.044) −31.7 <0.001 0.049 (0.026, 0.071) 4.3 <0.001 −+

Apolipoprotein B (g/

L)

−0.009 (−0.009, −0.008) −24.6 <0.001 0.003 (0.000, 0.006) 2.3 0.02 −+

Lung function (SD units within sex)

FEV1, men 0.370 (0.366, 0.374) 173.7 <0.001 0.281 (0.278, 0.284) 168.7 <0.001 ++

FEV1, women 0.355 (0.352, 0.359) 188.1 <0.001 0.280 (0.277, 0.282) 197.9 <0.001 ++

FVC, men 0.452 (0.448, 0.456) 216.4 <0.001 0.311 (0.308, 0.315) 186.6 <0.001 ++

FVC, women 0.425 (0.421, 0.429) 227.3 <0.001 0.305 (0.302, 0.307) 215.1 <0.001 ++

Anthropometric measures (SD units within sex)

BMI, men −0.056 (−0.060, −0.051) −25.8 <0.001 0.040 (0.036, 0.044) 19.1 <0.001 −+

BMI, women −0.119 (−0.123, −0.115) −61.9 <0.001 0.002 (−0.002, 0.005) 0.9 0.36 −+

Waist to hip, men −0.048 (−0.052, −0.044) −22.6 <0.001 0.043 (0.039, 0.047) 19.9 <0.001 −+

Waist to hip, women −0.075 (−0.079, −0.071) −39.3 <0.001 0.003 (−0.001, 0.006) 1.5 0.13 −+

Weight, men 0.410 (0.406, 0.414) 208.9 <0.001 0.436 (0.433, 0.440) 253.2 <0.001 ++

Weight, women 0.274 (0.270, 0.277) 146.9 <0.001 0.407 (0.404, 0.410) 263.7 <0.001 ++

Lean body mass, men 0.608 (0.605, 0.611) 363.3 <0.001 0.586 (0.583, 0.589) 384.1 <0.001 ++

Lean body mass,

women

0.470 (0.466, 0.473) 276.8 <0.001 0.650 (0.648, 0.652) 555.4 <0.001 ++

In UKB, blood lipids measurements were available in 85% to 93% of participants, lung function in 71%, and anthropometric traits in�98% (S1 Fig). In CKB, blood

lipids measurements were available in 4% of participants and lung function in 87% (S2 Fig).

�Effects are the ORs for prior disease or the difference in the characteristic per 1 SD taller measured height, adjusted for age (in 5-year groups), sex, year of birth, and

region (in CKB only).
†Each pair of signs indicates the direction of the estimated effect for UKB (first sign) and CKB (second sign).

BMI, body mass index; CI, confidence interval; CKB, China Kadoorie Biobank; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; HDL, high-

density lipoprotein; LDL, low-density lipoprotein; NA, not available; OR, odds ratio; SD, standard deviation; UKB, UK Biobank.

https://doi.org/10.1371/journal.pmed.1003967.t002
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measured and genetically determined height with systolic blood pressure were highly consis-

tent (Tables 1 and 2), but in CKB, the measured height was positively, rather than inversely,

associated with systolic blood pressure, suggesting that this association might reflect con-

founding in CKB. Both genetically determined and measured height were strongly positively

associated with atrial fibrillation at baseline (available only in UKB) with ORs per 1 SD taller

height of 1.33 (95% CI 1.25, 1.42; p< 0.001) and 1.31 (1.28, 1.34; p< 0.001), respectively

(Tables 1 and 2).

Discussion

In this large MR study of height and ischemic stroke, there were modest inverse associations of

both genetically determined and measured height with overall ischemic stroke in populations

from multiple ancestries. However, these masked much stronger directionally opposing associ-

ations of height with cardioembolic versus other ischemic stroke subtypes. In MEGASTROKE

(multiple ancestries), a 1 SD genetically determined taller height was associated with 13%

higher risk (OR 1.13 [95% CI 1.07, 1.19]; p< 0.001) of cardioembolic stroke, but with 11%

lower (OR 0.89 [0.84, 0.95]; p< 0.001) and 13% lower (OR 0.87 [0.83, 0.92]; p< 0.001) risks of

large-artery stroke and small-vessel stroke, respectively. In UKB and CKB, the different associ-

ations of measured height with ischemic stroke subtypes were concordant with those in

MEGASTROKE. However, the genetic associations in UKB and CKB, although consistent, had

less power to reliably demonstrate differences between the different ischemic stroke subtypes.

Nevertheless, the similar findings from observational and MR approaches across 3 different

populations provide support for height being causally related to ischemic stroke subtypes.

To the best of our knowledge, this is the first large genetic study to examine the associa-

tions of height with ischemic stroke subtypes and furthermore included multiple ancestries. A

previous study reported an OR of 0.88 (95% CI 0.82, 0.95) per 1 SD taller genetically deter-

mined height with ischemic heart disease [4], which is similar to association with large-artery

stroke in the present study and could be a reflection of a shared underlying process affecting

height and atherosclerosis. The present study used MR approaches that minimize biases from

residual confounding and reverse causality that can bias observational studies. Furthermore,

in a range of MR sensitivity analyses, the findings remained consistent irrespective of the

methodology used for estimation and found no evidence to support any major influence of

horizontal pleiotropy. FAU : PleasecheckwhethertheeditstothesentenceForexample; theassociationsof :::arecorrectandamendifnecessary:or example, the associations of genetically determined height with the

stroke subtypes remained similar when SNPs most strongly associated (at p< 0.001) with

length of education, LDL cholesterol, blood pressure and other cardiovascular risk factors

were excluded from the genetic instrument.

The modest impact of excluding SNPs most strongly associated with cardiovascular risk

factors suggests that any mediating effect of such traits is likely to be low. However, LDL cho-

lesterol has previously been shown to be causally associated with increased risk of ischemic

stroke in populations of both European and Chinese ancestries [21], with the strongest associa-

tion observed with large-artery stroke and little association seen with cardioembolic stroke

[27]. Thus, the inverse association of genetically determined height with LDL cholesterol levels

in both UKB and CKB could explain some of the inverse associations of height with large-

artery stroke and, to a lesser extent, with small-vessel stroke, although the mechanism by

which height might cause this is unclear. Genetically determined taller height was also associ-

ated with lower mean levels of blood pressure in both studies (about 1 mm Hg lower in UKB,

but only 0.1 mm Hg in CKB; Table 1); based on the UKB effect, this would be expected to

translate to about 3% proportional lower risk of ischemic stroke and 2% to 5% proportional

lower risk of each ischemic stroke subtype [28]. By contrast with the consistency of the genetic
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associations, the observational associations were not as consistent between UKB and CKB,

possibly reflecting differences in residual confounding in the observational analyses (e.g., by

socioeconomic factors, as blood pressure and height are positively correlated with income in

China [29]) or reverse causality (e.g., due to LDL-lowering medication), illustrating the advan-

tage of MR analyses.

The associations of height with ischemic stroke subtypes may reflect a direct causal effect of

body dimensions on stroke subtypes or the effects of some other correlated anthropometric

trait (such as lean body mass) on the diseases. Previous MR studies have suggested that greater

lung function may act as a possible mediator of the protective effect of height on ischemic

heart disease [5]. In both UKB and CKB, taller height was associated with higher lung function

and so lung function could account for some of the protective effects of height [5].

This study provides novel support for the causal relevance of height for cardioembolic

stroke, the most disabling consequence of atrial fibrillation. Previous studies have supported

the causal relevance of height and lean body mass for atrial fibrillation [6,7] and suggested that

greater lean body mass is the chief anthropometric risk factor (stronger than height) for atrial

fibrillation [7]. Larger left atrial diameter, present in taller people, has also been associated

with higher risks of atrial fibrillation and embolism from cardiac sources [30], but whether

these associations are mediated by lean body mass or some other physical aspect of body

dimensions has not been previously studied. Higher levels of lean body mass have also been

positively associated with other physical measures, such as carotid intima-media thickness, left

ventricular mass, and cardiac wall thickness, but not with atherosclerosis [31].

The opposing associations of height with cardioembolic and other ischemic stroke subtypes

highlight the importance of considering ischemic stroke subtypes as distinct diseases. Studies

examining the associations of risk factors with overall ischemic stroke may incorrectly estimate

medically relevant associations of some risk factors with individual ischemic stroke subtypes.

Many studies (e.g., UKB, with follow-up based on electronic health records) and cardiovascu-

lar trials do not currently have detailed and reliable ischemic stroke subtyping, limiting their

use for causal inference. Subtyping is also important in clinical practice for prevention of

stroke recurrence, where the impact of treatments, such as statins or anticoagulants, may vary

in patients at particular risk for different ischemic stroke subtypes [27].

Men and women in CKB were 10 and 8 cm shorter (about 1.5 SD), respectively, than their

counterparts in UKB (S1 Table). If the MR associations in Fig 2 are assumed to be causal, this

would translate to adults in China having a higher risk of some ischemic stroke subtypes (par-

ticularly for large-artery stroke and small-vessel stroke subtypes) and a lower risk of cardioem-

bolic stroke compared with Europeans. In CKB, genetically determined height was associated

with a modestly, albeit not statistically, significant lower OR for all ischemic stroke subtypes.

The present study also had several limitations. Genotypes associated with height, education,

blood pressure, and several chronic diseases have been shown to be correlated within spouse

pairs (i.e., indicative of assortative mating), which can lead to indirect effects of genotypes in

offspring, in violation of MR assumptions [32]. Family-based studies have reported that such

indirect genetic effects of nontransmitted alleles could explain about 12% of the genetic effect

on height [33]. As desirable traits such as higher income, taller height, and healthy traits tend

to cluster in mates, assortative mating could explain some of the protective associations of tal-

ler height, but is unlikely to explain the adverse associations of height with atrial fibrillation

and cardioembolic stroke.

A further limitation is that studies differed in the methodology used to classify ischemic

stroke subtypes, and reliable subtyping was not available in all of the populations studied. As

cardioembolic stroke has been reported to account for 22% of ischemic stroke cases in a global

meta-analysis [34] and over half of cases in a Canadian registry study [35], the relatively low
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number of presumed cardioembolic stroke cases observed in both UKB and CKB may be an

underestimate of the true incidence of cardioembolic strokes.

While height has been estimated to have a SNP-based heritability of about 50% in both

Europeans [19] and East Asians [20], it is likely that genetic instruments derived in European

populations may not perform as well in other ancestry populations, due to differences in allele

frequencies and LD structure, but can still provide valid causal inferences [21,22]. The genetic

risk scores for height used in UKB (based on an independent largely European ancestry-based

GWAS) explained 19.7% of the variance in height in UKB, but the genetic risk score used in

CKB (based on a large GWAS of height in a European population [18] and a smaller GWAS of

height in a Japanese population) [20] explained only 15.2% of the variance in height in CKB.

The present multiple ancestry analysis in MEGASTROKE may therefore have underestimated

the causal effects of height if the (European ancestry derived) genetic risk score used was asso-

ciated with smaller differences in height in the non-European ancestry populations.

The findings in the present study highlight important differences in the causal pathways

between stroke subtypes and the need to distinguish such subtypes not only in clinical practice,

but also in cardiovascular trials, electronic health records, and population studies. Although

height is not a modifiable risk factor, recognition that taller individuals have increased risk of

cardioembolic stroke may guide clinicians to screen for atrial fibrillation or other risk factors

for cardioembolic stroke when managing an individual’s overall risk [3]. Further research is

needed to understand the shared biological and physical pathways underlying the associations

of height with stroke subtypes. The strong association of genetically determined height with

physical measurements such as lean body mass and lung function and with atrial fibrillation

suggest that these may be mediators of some of the associations with height. Further study,

such as multivariable MR with robust instruments (probably sex specific, because of the sub-

stantial differences in anthropometric measures by sex), could yield further insight into the

direct and indirect effects of height through other factors on the risks of ischemic stroke

subtypes.

In conclusion, the present genetic studies provide novel and reliable findings that support a

causal association of taller adult height with higher risks of atrial fibrillation and cardioembolic

stroke and lower risks of other ischemic stroke subtypes. These findings raise the possibility of

investigating whether including height as a risk factor in risk prediction tools would improve

screening and primary prevention of cardioembolic stroke and of whether understanding the

shared biological and physical pathways involved in height may offer novel targets for treat-

ment to prevent cardioembolic stroke.
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