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Abstract Photodynamic therapy (PDT) is an established

palliative treatment for perihilar cholangiocarcinoma that is

clinically promising. However, tumors tend to regrow after

PDT, which may result from the PDT-induced activation of

survival pathways in sublethally afflicted tumor cells. In

this study, tumor-comprising cells (i.e., vascular endothe-

lial cells, macrophages, perihilar cholangiocarcinoma cells,

and EGFR-overexpressing epidermoid cancer cells) were

treated with the photosensitizer zinc phthalocyanine that

was encapsulated in cationic liposomes (ZPCLs). The post-

PDT survival pathways and metabolism were studied

following sublethal (LC50) and supralethal (LC90) PDT.

Sublethal PDT induced survival signaling in perihilar

cholangiocarcinoma (SK-ChA-1) cells via mainly HIF-1-,

NF-rB-, AP-1-, and heat shock factor (HSF)-mediated

pathways. In contrast, supralethal PDT damage was asso-

ciated with a dampened survival response. PDT-subjected

SK-ChA-1 cells downregulated proteins associated with

EGFR signaling, particularly at LC90. PDT also affected

various components of glycolysis and the tricarboxylic acid

cycle as well as metabolites involved in redox signaling. In

conclusion, sublethal PDT activates multiple pathways in

tumor-associated cell types that transcriptionally regulate

cell survival, proliferation, energy metabolism, detoxifica-

tion, inflammation/angiogenesis, and metastasis.

Accordingly, tumor cells sublethally afflicted by PDT are a

major therapeutic culprit. Our multi-omic analysis further

unveiled multiple druggable targets for pharmacological

co-intervention.
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Introduction

Photodynamic therapy (PDT) is a non-to-minimally inva-

sive treatment modality for solid cancers that entails the

photosensitization of a tumor using light-sensitive com-

pounds called photosensitizers. After the photosensitizer

molecules have sufficiently accumulated in the target tis-

sue, the tumor is illuminated with light to activate the

photosensitizer molecules [1]. Activated photosensitizers

interact with molecular oxygen through energy or electron
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transfer, leading to the photochemical production of singlet

oxygen and superoxide anion, respectively. These reactive

oxygen species (ROS) subsequently attack biomolecules in

the vicinity of their production site and induce a state of

hyperoxidative stress in the illuminated tumor cells in case

of an optimal PDT regimen. The oxidative damage in turn

results in tumor cell death, microvascular shutdown and

corollary tumor hypoxia and hyponutrition, and induction

of an anti-tumor immune response (reviewed in [2]),

altogether culminating in tumor destruction and removal.

Some types of cancers respond well to PDT and are

associated with excellent cure rates, including esophageal

carcinoma [3] and basal cell carcinoma [4]. In contrast, the

cure rates for nasopharyngeal carcinoma [5] and superficial

recurrent urothelial carcinoma HCl [6, 7] are suboptimal

with respect to PDT and warrant improvement. Moreover,

non-resectable perihilar cholangiocarcinomas respond bet-

ter to PDT than to any other last-line treatment such as

chemotherapy [8], but all available treatments (including

PDT) are currently palliative and not curative. The recal-

citrant nature of these tumor types to PDT is believed to

stem from the use of photosensitizers with suboptimal

spectral properties and poor pharmacokinetics as well as

the activation of cell survival pathways by tumor cells

following PDT [2, 9].

To resolve these issues with a single therapeutic

modality, we have developed a 4th-generation photosen-

sitizer-based PDT platform that aims to target

pharmacologically relevant locations in the tumor, namely

the tumor cells [10], the tumor endothelium [11–13], and

the tumor interstitium [14]. The platform employs a 2nd-

generation photosensitizer (zinc phthalocyanine, ZnPC)

encapsulated in targeted liposomes (making it a 3rd-gen-

eration photosensitizer, which was employed in this study)

with co-encapsulated molecular inhibitors of survival

pathways (making it a 4th-generation photosensitizer)

[2, 9–14]. Previously, we demonstrated that PDT of human

skin and bile duct cancer cells with liposomal ZnPC and

acriflavine, an inhibitor of hypoxia-inducible factor 1a
(HIF-1a) [15], increases therapeutic efficacy by down-

modulation of HIF-1a-driven survival signaling following

PDT [11, 13]. In light of this combined therapy and the

broader scope of applicability of the PDT platform tech-

nology, it is imperative to map post-PDT survival pathways

[9] for every liposomal formulation so as to identify

druggable targets beyond those already tested [9]. So far

we have mapped PDT-activated survival pathways with

respect to the interstitially targeted ZnPC-liposomes [16],

but not yet for the endothelium- and tumor cell-targeting

liposomes.

Of the three different liposomal formulations that were

developed, the most promising is the tumor endothelium-

targeting ZnPC formulation. These liposomes, which are

cationic and PEGylated, are taken up by cultured

endothelial cells [14], macrophages (manuscript in prepa-

ration), and tumor cells [11, 13, 14], enabling multi-

targeted delivery of the photosensitizer to key locations.

Moreover, the liposomes are relatively non-toxic in the

absence of light (this study), but become highly toxic to

cultured cells upon illumination in the low nanomolar

photosensitizer concentration range [11, 13]. Finally, ZnPC

distributes to multiple intracellular loci after uptake of the

liposomes [17, 18], from which different cell death path-

ways but also cell survival pathways are activated [2]. In

preliminary experiments it was discovered that epidermal

growth factor receptor (EGFR), a receptor overexpressed in

a multitude of cancers [19] including perihilar cholangio-

carcinoma [20, 21], was afflicted by PDT with ZnPC-

liposomes. EGFR constitutes an important druggable target

in cancer therapy, as evidenced by the approval status of

the monoclonal antibodies cetuximab and panitumumab, as

well as the kinase inhibitors gefitinib and erlotinib [22].

This study therefore examined the cell survival pathways

induced by ZnPC-encapsulating PEGylated cationic lipo-

somes (ZPCLs) in tumor parenchymal and non-parenchymal

cell types using a multi-omics approach: transcriptomics,

(phospho)proteomics, and metabolomics. The cells that

were employed are human umbilical vein endothelial cells

(HUVECs) as a model for vascular endothelium; RAW

264.7 murine macrophages as a model for tumor-resident

macrophages; human biliary adenocarcinoma (SK-ChA-1)

cells as model for PDT-recalcitrant perihilar cholangiocar-

cinomas; and EGFR-overexpressing human epidermoid

carcinoma (A431) cells to further elaborate on the prelimi-

nary experimental results. The studies were performed at

supralethal light dose (90% lethal concentration, LC90),

reflective of cells fully affected by PDT, and at sublethal

light dose (LC50), representative of cells in the distant and

peripheral portions of the illuminated tumor, where the

fluence rates are insufficient due to light absorption and

scattering [23]. Therapeutically, the low-fluence sites are the

most important tumor regions because survival signaling is

expected to predominate, which may negatively impact

therapeutic outcome and facilitate tumor recurrence as has

been observed in PDT-treated patients [24].

The most important results of the study were that (1)

ZPCLs were not toxic in vitro, which is key for clinical

translation, (2) sublethal PDT was associated with exten-

sive survival signaling, which is detrimental to therapeutic

outcome, (3) PDT resulted in downregulation of proteins

involved in EGFR signaling and cell adhesion, in particular

after optimal PDT, and (4) sublethal and optimal PDT both

downregulated metabolic pathways involved in energy

production, including glycolysis and the tricarboxylic acid

(TCA) cycle. The latter two findings are chiefly advanta-

geous for therapeutic efficacy.
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Materials and methods

Chemicals

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and

3b-[N-(N0,N0-dimethylaminoethane)-carbimoyl]cholesterol

(DC-cholesterol) were purchased from Avanti Polar Lipids

(Alabaster, AL, USA). b-Mercaptoethanol, cholesterol,

chloroform, 1,2-distearoyl-sn-glycero-3-phosphoethanola-

mine-polyethylene glycol (DSPE-PEG, average PEG

molecular mass of 2000 amu), ZnPC (97% purity), acetoni-

trile, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES), potassium carbonate (K2CO3), pyridine, sodium

chloride (NaCl), sodium deoxycholate, sodium fluoride,

sodium orthovanadate, sulforhodamine B (SRB), tris(hy-

droxymethyl)aminomethane (Tris), and Triton X-100 were

obtained fromSigma-Aldrich (St. Louis,MO,USA).Glycerol

was purchased from Fisher Scientific (Hampton, NH, USA),

and sodium dodecyl sulfate (SDS) and bromophenol blue

were obtained from Bio-Rad Laboratories (Hercules, CA,

USA). Methanol, perchloric acid (O4), and sodium hydroxide

(NaOH) were from Merck (Darmstadt, Germany).

All lipids were dissolved in chloroform and stored under

a nitrogen atmosphere at -20 �C. ZnPC was dissolved in

pyridine at a 178-lM concentration and stored under

nitrogen at room temperature (RT) in the dark.

Cell culture

Human epidermoid carcinoma (A431) cells and murine

macrophages (RAW 264.7) were cultured in Dulbecco’s

modified Eagle’s medium (DMEM, Lonza, Walkersville,

MD, USA) supplemented with 10% fetal bovine serum

(FBS) (Bodinco, Alkmaar, the Netherlands), 100 U/mL

penicillin, 100 lg/mL streptomycin, and 2 mM L-glu-

tamine (all from Lonza). Human umbilical vein endothelial

cells (HUVECs) were isolated as described in [25] and

maintained in EndoGro-LS complete culture medium

(Merck Millipore, Billerica, MA, USA). HUVECs were

grown in Primaria cell culture flasks (Corning Life Sci-

ences, Tewksbury, MA, USA). Human perihilar

cholangiocarcinoma (SK-ChA-1) cells were cultured in

Roswell Park Memorial Institute (RPMI) 1640 culture

medium (Lonza) supplemented with 10% FBS, 100 U/mL

penicillin, 100 lg/mL streptomycin, 2 mM L-glutamine,

and 143 lM b-mercaptoethanol. All cells were maintained

at standard culture conditions (37 �C, 5% CO2, 95% air,

humidified atmosphere).

Preparation of ZPCLs

ZPCLs were composed of DPPC, DC-cholesterol, choles-

terol, and DSPE-PEG (66:25:5:4, molar ratio) and prepared

by the lipid film hydration technique as described previously

[13, 16]. Physiological buffer composed of 10 mM HEPES,

0.88% (w/v) NaCl, pH = 7.4, 0.293 osmol/kg [14] was used

as hydration solution. ZnPC was incorporated in the lipo-

somal formulation at a ZnPC:lipid molar ratio of 0.003.

Liposomal formulations were purged with nitrogen gas and

stored at 4 �C in the dark. Under these conditions the lipo-

somal ZnPC remains stable for at least 56 days [13].

PDT protocol

Cells were seeded in either 6-well (2 mL per well) or

24-well (0.5 mL medium per well) culture plates (Corning

Life Sciences) as specified in the corresponding subsec-

tions and grown under standard culture conditions.

HUVEC, RAW 264.7, SK-ChA-1, and A431 cells were

seeded at a density of 0.5 9 105 cells/mL, 0.5 9 106

cells/mL, 0.25 9 106 cells/mL, and 0.5 9 106 cells/

mL, respectively, and cultured until confluence in 24 h

(48 h for SK-ChA-1 cells). HUVECs were cultured in

Primaria culture plates (Corning Life Sciences) throughout

the study. After reaching confluence, cells were washed

with PBS and incubated with ZPCLs in serum-free sup-

plemented phenol red-free medium for 1 h (drug-light

interval) at 37 �C under standard culture conditions. Con-

trol cells received an equal volume of physiological buffer.

The concentrations of ZPCLs that were used for the dif-

ferent cell types are specified in Table S1. Next, cells were

washed with PBS and fresh fully supplemented phenol red-

free medium was added. Cells were either returned to the

incubator (control and dark toxicity) or irradiated with a

671-nm diode laser (CNI, Changchun, China) at a laser

power of 500 mW with a fluence of 15 J/cm2. The spot size

was set to the exact dimensions of the well (6-wells plate:

9.5 cm2, 24-wells plate: 1.9 cm2). During the application

of PDT, cells were maintained at 37 �C using a hotplate

(Cat. No. 97042-616, VWR, Radnor, PA, USA).

Cell metabolic activity and viability assays

Cell metabolic activity was assessed using the water-sol-

uble tetrazolium salt (WST-1) reagent (Roche Diagnostics,

Basel, Switzerland). Cells were seeded in 24-wells plates

and cultured until confluence. After a predetermined time

interval following PDT, the culture medium was removed

and 300 lL of WST-1-containing serum-free and phenol

red-free medium (at a 1:25 volume ratio) was added to the

wells. After 30 min of incubation under standard culture

conditions, the absorbance was read at 450 nm using

600 nm as a reference wavelength (BioTek Synergy HT

multi-well plate reader, Winooski, VT, USA). Data were

normalized to the average value of the control cells that

was set at a metabolic activity of 100%.
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After the measurement, the wells were washed with PBS

and the protein content was determined with the SRB total

protein assay as described by Vichai et al. [26]. SRB

absorbance was read at 564 nm using 690 nm as a refer-

ence wavelength (BioTek Synergy HT). Data were

normalized to the average value of the control cells that

was set at a viability of 100%.

Whole genome expression analysis

Cells were seeded in 6-wells plates and cultured until

confluence. Cells were treated using the PDT protocol as

described in ‘‘PDT protocol’’ (n = 3 per group). Total

cellular RNA was extracted using 1 mL of TRIzol (Life

Technologies, Carlsbad, CA, USA) according to the man-

ufacturer’s protocol. RNA samples were purified using the

NucleoSpin RNA kit (Machery-Nagel, Düren, Germany)

and eluted in 30 lL RNAse-free water. The quality control,

RNA labeling, hybridization, and data extraction were

performed at ServiceXS (Leiden, the Netherlands). The

procedure can be found in [16]. Samples for human cell

lines were randomly assigned to three Human-HT12 v4

arrays. For the RAW 264.7 cell line, MouseWG-6 v2

arrays were used with control and vehicle samples on one

chip and LC50 and LC90 samples on a second chip.

Microarray data preprocessing and analysis

Microarray data preprocessing and analysis were per-

formed as described previously [16]. In short, each cell line

was analyzed separately with Bioconductor packages

(version 2.13) using the statistical software package R

(version 3.1.0). Normalization was performed starting from

the Illumina sample and control probe profiles by a

normexp-by-control background correction, quantile nor-

malization, and log2 transformation (limma package).

Probes with a detection P value of[0.05 (non-expressed)

on all arrays for the cell line under study were filtered out.

Differential expression between the experimental condi-

tions was assessed with a moderated t test using the linear

model framework (limma package). Resulting P values

were corrected for multiple testing using the Benjamini-

Hochberg false discovery rate. Corrected P values B0.05

were considered statistically significant. Probes were

reannotated using the Bioconductor IlluminaHumanv4.db

and lluminaMousev2.db packages. The microarray data

have been deposited in NCBI Gene Expression Omnibus in

a MIAME compliant format and are accessible under GEO

series accession number GSE84758. Microarray data were

confirmed using quantitative reverse transcription poly-

merase chain reaction (qRT-PCR) since the qRT-PCR data

were in agreement with the microarray data (Fig. S1). This

also strongly suggests that, for the RAW 264.7 cells,

potentially confounding effects due to systematic differ-

ences between chips and biological effects of interest

(comparison of LC50/LC90 versus control/vehicle) are

limited. In addition, a ROAST gene set test [27] was per-

formed on the downstream targets of each survival

pathway (Table S2) to statistically determine whether a

survival pathway was either upregulated or downregulated

using 10,000 rotations with Benjamini-Hochberg-based

multiple testing correction of the mid P values.

qRT-PCR

RNA was extracted as described in ‘‘Whole genome

expression analysis’’. cDNA synthesis and qRT-PCR

reactions were performed as described previously [16].

Primer sequences can be found in Table S3. The quanti-

tative analysis of the qRT-PCR data was performed

according to Ruijter et al. [28] to calculate the starting

concentration (N0) of each cDNA template. Gene expres-

sion levels were normalized to the expression level of the

reference gene ribosomal protein S18 (RPS18). Log2 fold-

changes of the target genes were calculated based on the

mean values of the control group.

Proteomics

Harvesting

SK-ChA-1 cells were seeded in 6-wells plates and cultured

until confluence. Cells were treated using the PDT protocol

as described in ‘‘PDT protocol’’ (n = 12 per group).

Ninety minutes post-PDT, cells were washed three times

with 2 mL PBS and 150 lL of lysis buffer [8 M urea, 0.5%

sodium deoxycholate, 50 mM NH4HCO3, supplemented

with cOmplete Mini protease inhibitor cocktail and phos-

STOP (both from Roche)] was added to each well that was

ensued by 30-min incubation on ice. Lysates were scraped,

collected, pooled (to yield n = 4 per treatment group), and

centrifuged for 15 min at 20,0009g. The supernatant was

stored at -80 �C for further analysis. Protein concentra-

tions were determined with the bicinchoninic acid (BCA)

assay (Thermo Fisher Scientific, Waltham, MA, USA).

Affinity purification and digestion

For each sample, 400 lg of proteins was reduced by

incubating with 2 lL of 1 M DTT at 56 �C for 25 min,

alkylated by adding 4 lL of 200 mM IAA for 30 min at RT

in the dark, and digested by Lys-C (enzyme:protein ratio of

1:75) for 4 h at 37 �C. Samples were then diluted four

times with 50 mM NH4HCO3 and digested overnight at

37 �C with trypsin (enzyme:protein ratio of 3:100). Next,

100 lL of acetic acid was added to each sample to
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precipitate sodium deoxycholate, after which the samples

were centrifuged for 15 min at 20,0009g. The obtained

digests were desalted using 1 cc Sep-Pak C18 cartridges.

Phosphoenrichment was performed with Ti-IMAC micro-

columns with 250 lg of digests following the protocol

previously described in detail [29], while the rest of the

digests was kept for proteome analysis.

NanoLC–MS/MS analysis

Phosphoproteome and proteome were analyzed by

NanoLC-MS/MS using an Agilent 1100 HPLC system

(Agilent Technologies, Santa Clara, CA, USA) coupled to

a Q Exactive Plus Orbitrap (Thermo Scientific) mass

spectrometer. Peptides were trapped at 5 lL/min in 100%

solvent A (0.1 M acetic acid in water) on an in-house

packed 20 mm 9 100 lm ID trapping column (ReproSil-

Pur C18-AQ, 3 lm, Dr. Maisch, Ammerbuch, Germany)

and then transferred to an in-house packed 50-cm 9 50-lm
ID analytical column (Poroshell 120 EC-C18, 2.7 lm,

Agilent Technologies) maintained at 40 �C. The gradient

used for proteome analysis ranged from 10% to 40% sol-

vent B [0.1 M acetic acid in 8:2 (v/v) acetonitrile/water] in

180 min at *100 nL/min, whereas the gradient for phos-

phopeptides ranged from 4% to 40% in 120 min. The

eluent was sprayed via distal coated emitter tips (New

Objective, Woburn, MA, USA) connected to the analytical

column. The Q Exactive Plus was operated in data-de-

pendent mode, automatically switching between MS and

MS/MS. Full-scan MS spectra (from m/z 350 to 1500) were

acquired in the Orbitrap with a resolution of 60,000 at m/

z 400 (after accumulation to a target value of 500,000). The

20 most intense ions at a threshold above m/z 500 were

successively selected and fragmented in HCD cells at

normalized collision energy of 35% after accumulation to a

target value of 10,000.

Protein quantification and identification

Data analysis was performed using MaxQuant (version

1.5.2.8) [30] and the integrated search engine Andromeda

[31]. For peptide and protein identification, raw files were

searched against the human Swissprot database (20,201

entries) with carbamidomethylated cysteine as fixed mod-

ification and phosphorylation of serine, threonine, and

tyrosine and oxidation of methionine as variable modifi-

cations. Trypsin/P was set as the proteolytic enzyme for

which up to two missed cleavage sites were allowed. Pre-

cursor tolerance was set to 4.5 ppm and fragment ion

tolerance to 0.05 Da. Peptide identifications required a

minimal length of 7 amino acids and all data sets were

adjusted to 1% PSM FDR. For label-free quantification

(LFQ), match between runs was selected with a maximum

shift time window of 3 min and the intensities of razor and

unique peptides were summed up. Resulting protein

intensities were then normalized to obtain LFQ intensities.

To facilitate further data analysis, the results were imported

into Perseus (version 1.5.2.4). Replicates were grouped per

condition, and proteins or phosphopeptides identified in

less than 3 out of 4 replicates were discarded. A two-tailed

t-test was used to assess statistical significance. Phospho-

peptide and protein P values were corrected by

permutation-based FDR correction (FDR 5%). Phospho-

peptides were filtered for a localization probability of

[0.75 (class 1 sites). Regulated proteins were analyzed

using Reactome within the Cytoscape environment and

regulated phosphorylation sites were analyzed by Phos-

phopath [32] within Cytoscape. The mass spectrometry

proteomics data have been deposited to the Pro-

teomeXchange Consortium via the PRIDE partner

repository with the dataset identifier PXD004320.

Western blotting

Western Blotting was performed to validate the (phos-

pho)proteomic data (Fig. S2). For these purposes, SK-ChA-

1 cells were seeded in 6-wells plates, cultured until con-

fluence, and treated by PDT as described in ‘‘PDT

protocol’’ (n = 3 per group). Ninety minutes after PDT,

cells were washed twice with ice-cold PBS, placed on ice,

and lysed in ice-cold RIPA buffer (50 mM Tris, 150 mM

NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 1%

SDS) supplemented with cOmplete Mini protease inhibitor

cocktail, 10 mM sodium fluoride, and 1 mM sodium

orthovanadate. The samples were centrifuged for 15 min at

14,0009g (4 �C) and the supernatant was stored for further

analysis. Protein lysates were mixed with 4 9 SDS sample

buffer (200 mM Tris (pH = 6.8), 8% SDS, 40% glycerol,

0.02% bromophenol blue) and boiled for 5 min at 95 �C.
Next, samples (20–30 lg) were loaded on a TGX 10%

precast gel (Bio-Rad Laboratories) and electrophoresis was

performed at 150 V. The gels were blotted onto Amersham

Hybond P 0.45 PVDF membranes (GE Healthcare, Little

Chalfont, UK) for 2 h at 250 mA at 4 �C. The membranes

were blocked for 1 h with 5% BSA (Sigma-Aldrich) in

0.1% Tween 20 Tris-buffered saline (TBST, 20 mM Tris,

150 mM NaCl, pH = 7.6), after which the membranes

were incubated overnight with the primary antibody at

4 �C on a rocker. The primary antibodies used were (di-

lution factor, catalogue number, company): EGFR [1:1000,

#4267, Cell Signaling (Danvers, MA, USA)], phospho-

ERK (1:1000, #4370, Cell Signaling), phospho-p38 MAPK

(1:500, #9216, Cell Signaling), p38 MAPK (1:1000, #9228,

Cell Signaling), COX IV (1:1000, #4844, Cell Signaling),

and ERK [1:1000, sc-2711270, Santa Cruz Biotechnology

(Dallas, TX, USA)]. All primary antibodies were diluted
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with 5% BSA in TBST. Next, the membranes were washed

three times in TBST and incubated with an HRP-conju-

gated secondary antibody [1:2000, Dako Cytomation

(Glostrup, Denmark)] for 1 h at RT. Subsequently, mem-

branes were washed three times with TBST. The enhanced

chemiluminescence (ECL) kit (Thermo Scientific) was

used as substrate and protein bands were visualized on an

ImageQuant LAS 4000 luminometer (GE Healthcare).

Metabolomics

SK-ChA-1 cells were seeded in 6-wells plates and cultured

until confluence. Cells were treated using the PDT protocol

as described in ‘‘PDT protocol’’ (n = 3 per group). After

90 min, the cells were washed with 1 mL cold PBS and the

cells were lysed in 1 mL lysis buffer (40% acetonitrile,

40% methanol, 20% water). The cells were scraped and

transferred to 2-mL centrifuge tubes that were shaken for

10 min at 4 �C. Next, the samples were centrifuged for

15 min at 20,0009g (4 �C), after which the supernatant

was aspirated and stored at -80 �C. LC-MS analysis was

performed on an Exactive mass spectrometer (Thermo

Scientific) coupled to a Dionex Ultimate 3000 autosampler

and pump (Thermo Scientific). The MS operated in

polarity-switching mode with spray voltages of 4.5 and

-3.5 kV. Metabolites were separated using a Sequant

ZIC-pHILIC column [2.1 9 150 mm, 5 lm, guard column

2.1 9 20 mm, 5 lm (Merck)] using a linear gradient of

acetonitrile and eluent A (20 mM (NH4)2CO3, 0.1%

NH4OH in ULC/MS grade water [Biosolve, Valkenswaard,

the Netherlands)]. The flow rate was set to 150 lL/min.

Metabolites were identified and quantified using LCquan

software (Thermo Scientific) on the basis of exact mass

within 5 ppm and further validated in accordance with the

retention times of standards. Peak intensities were nor-

malized based on total ion count.

Nucleotide profiles

SK-ChA-1 cells were seeded in 6-wells plates and cultured

until confluence. Cells were treated using the PDT protocol

as described in ‘‘PDT protocol’’ (n = 3 per group). After

90 min, the cells were washed twice with PBS, placed on

ice, and nucleotides were extracted using 200 lL of ice-

cold 0.4 M HClO4. After 10-min incubation on ice, the

samples were centrifuged for 5 min at 10,0009g (4 �C)
and the nucleotide-containing supernatant was neutralized

using 7.5 lL of 5 M K2CO3. The wells were washed twice

with 150 lL 0.2 M NaOH to remove residual proteins,

which was added to the protein-containing dry pellet as

obtained in the previous centrifugation step. In addition,

300 lL of 0.8 M HClO4 was added to the protein fraction.

After mixing thoroughly, the samples were centrifuged for

5 min at 10,0009g (4 �C) and the protein-containing pellet

was dissolved in 200 lL of 0.2 M NaOH. Protein content

was determined using the bicinchoninic acid assay protein

kit (Thermo Scientific).

Nucleotide extracts were analyzed by high-performance

liquid chromatography (HPLC) using a Partisphere 5-lm
SAX cartridge column (Cat. No. 4621-0505, Hichrom,

Reading, United Kingdom). Nucleotides were eluted with a

gradient from 100% buffer A (100-fold dilution of buffer

B) to 70% buffer B (0.75 M NaH2PO4
-, pH = 4.55) in

50 min at a flow rate of 1 mL/min.

Statistical analysis

Statistical analysis was performed in GraphPad Prism 6

(GraphPad Software, La Jolla, CA, USA). Normality was

tested with the D’Agostino Pearson omnibus test. Differ-

ences between normally distributed variables were

analyzed with a one-way ANOVA with Bonferroni post

hoc test. Intergroup differences were indicated with (*) and

differences between the treated groups and the control

group at the same time point were indicated with (#).

Differences between a condition and the previous condition

at the same time point are, when relevant, indicated with

($) (pertains only to Fig. 1). A single, double, and triple

sign indicate a P value of B 0.05, B0.01, and B 0.001,

respectively. Data are presented as mean ± SD

throughout the manuscript.

Results

PDT induces photosensitizer concentration-

and time-dependent cell death

To correlate the transcriptomic-, (phospho)proteomic-, and

metabolomic responses to the extent of PDT-induced cell

death, the viability of HUVEC, RAW 264.7, SK-ChA-1,

and A431 cells was determined first as a function of time

after PDT at previously calculated LC50 and LC90 con-

centrations (details can be found in Table S1). The effect of

PDT on cells was assessed with the WST-1 and SRB

assays. WST-1 is a measure of mitochondrial metabolic

activity [33] and therefore represents a parameter of early

onset cell demise. In contrast, SRB stains total protein and

is therefore used as a parameter of late, fully executed cell

death.

The ZPCLs exhibited no deleterious effect on metabolic

activity (Fig. 1a–d) or cell viability (Fig. 1e–h) in any of

the cell types in the absence of laser irradiation, indicating

that the ZPCLs imparted no dark toxicity. The loss of

metabolic activity (Fig. 1a–d) and extent of cell death

(Fig. 1e–h) were more pronounced in the LC90 group
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versus the LC50 group and occurred in a time-dependent

manner. The loss of metabolic activity is in line with the

localization of ZnPC to mitochondrial membranes [2] and

the post-PDT induction of mitochondrial permeability

transition [12]. Typically, cells were most afflicted at the

longest incubation time, underscoring that metabolic per-

turbations and execution of cell death pathways are

progressive during at least 24 h after PDT. Unexpectedly,

the LC90 HUVECs showed significantly higher cell via-

bility 24 h after PDT compared to 2 h post-PDT (Fig. 1e).

HUVECs in the LC90 group were also more resilient to

treatment 24 h following PDT than HUVECs in the LC50

group (Fig. 1e).

PDT at LC90 has greater transcriptional effects

than at LC50, but the effect size is cell type-

dependent

To gain insight in the early transcriptomic response after

PDT with ZPCLs, non-illuminated and PDT-treated cells

were harvested 90 min after (control) treatment and the

transcriptome was analyzed by whole genome microarray,

summarized in Fig. 2, and correlated to cell viability. This

toxicogenomics approach corroborated the absence of dark

toxicity of ZPCLs (Fig. 2, vehicle vs control), given that of

all screened genes, none were dysregulated compared to

control. The same had been observed previously with the

ZnPC-encapsulating interstitially targeted liposomes [16],

which differ from the ZPCLs in that they lack DC-

cholesterol in the membrane and therefore bear a neutral

surface charge rather than a cationic charge.

In case of the interstitially targeted liposomes, the

milder PDT protocol (irradiation of cells at 50 mW)

induced more profound transcriptional dysregulation than

the severe PDT regimen (500 mW laser irradiation) [16]. In

contrast, the extent of mRNA dysregulation following PDT

with ZPCLs was most pronounced in the LC90 groups

compared to the LC50 groups (Fig. 2). The overlap between

genes dysregulated in both the LC90 and LC50 groups was

also cell type-specific. The highest number of commonly

afflicted genes was observed in RAW 264.7 cells (3363),

followed by A431 (790), SK-ChA-1 (638), and HUVEC

(134) cells.

PDT-mediated induction of survival signaling

The basis of therapeutic recalcitrance towards PDT may

partly originate from the induction of survival signaling

after PDT [16]. PDT activates six major pathways that

encompass a nuclear factor of kappa light polypeptide gene

enhancer in B cells (NF-rB)-mediated inflammatory

response, a proteotoxic stress response via the unfolded

protein response (UPR) and heat shock transcription factor

(HSF)-mediated response, an activator protein 1 (AP-1)-

mediated immediate early gene response, a HIF-1-medi-

ated hypoxia-induced stress response, and a nuclear factor

(erythroid-derived 2)-like (NFE2L2)-mediated antioxidant

response [9]. The pathways have been described in detail in

Fig. 1 Cell viability after ZPCL-PDT. HUVEC, RAW 264.7, SK-

ChA-1, and A431 cells were incubated with ZPCLs (concentrations

can be found in Table S1) and treated with PDT. Two hours (white

bar), 6 h (light gray bar), and 24 h (dark gray bar) after PDT, cell

viability was determined using the a–d WST-1 and e–h SRB assay

(n = 8 per group). Readers are referred to the experimental section

for the significance of the statistical symbols. Metab. act., metabolic

activity
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[16, 34]. The microarray expression data were superim-

posed on these pathways [Fig. S3 (with pathways and

transcriptional targets) and Fig. 3 (transcriptional targets

only)].

The downstream targets of the survival pathways were

analyzed with a ROAST gene test to determine whether a

pathway was differentially regulated in response to PDT.

All cell types upregulated the NF-rB, AP-1, and HSF

survival pathways at LC50 and LC90, whereas only the

LC50 groups exhibited upregulation of HIF-1-mediated

signaling (Table S4). Importantly, HIF-1-, UPR-, AP-1-,

and NF-rB-associated genes were less extensively dys-

regulated in the LC90 group of the tumor-derived cell lines

(A431, SK-ChA-1) compared to the LC50 group. In con-

trast, the LC90 group of the non-tumor derived cells (RAW

264.7, HUVEC) displayed more HSF-mediated signaling

than the LC50 group. Altogether, these findings indicate

that PDT induced extensive survival signaling in all cell

types tested, whereby survival signaling was more promi-

nent in cells treated by sublethal PDT.

NF-rB-mediated inflammatory response

NF-rB mediates an inflammatory response following PDT

[35, 36]. As shown in Fig. 3, the transcription of various

pro-inflammatory cytokines that are under the control of

NF-rB, including interleukin 1A (IL1A), IL1B, IL6, and

chemokine (C-X-C motif) ligand 8 (CXCL8), increased

following PDT in the human cell types. Murine Il1b and

Cxcl2 were also considerably induced following PDT in

RAW 264.7 cells. Sublethal PDT resulted in upregulation

of vascular endothelial growth factor (VEGF) in SK-ChA-1

Fig. 2 Gross transcriptional response 90 min after ZPCL-PDT. The

Venn diagrams show the number of upregulated (red) and downreg-

ulated (green) genes compared to the control group (FDR\ 0.05), as

well as the overlapping genes between the vehicle (dark toxicity),

LC50, and LC90 groups (n = 3 per group). The total number of

upregulated and downregulated genes per PDT regimen (full circle)

equals the sum of all values enveloped by the respective circle

cFig. 3 Transcriptional response following ZPCL-PDT. Expression

analysis of genes that are involved in NF-rB, UPR, HSF, NFE2L2,
HIF-1, and AP-1 signaling as shown by the log2 fold-change (lower

right corner). All comparisons were made between the PDT-treated

groups versus the control group (n = 3 per group). A gene may

correspond to multiple probes as indicated by horizontal splits. Each

gene is divided in two halves corresponding to the LC50 (left) and

LC90 (right) group. Gray boxes signify probes that exhibited poor

quality or were not included in the gene expression analysis
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and A431 cells, which was downregulated in HUVEC

cells. The pro-inflammatory factor prostaglandin-endoper-

oxide synthase 2 (PTGS2, Ptgs2) was also highly

upregulated following PDT in HUVEC, RAW 264.7, and

A431 cells.

Proteotoxic stress response

The proteotoxic stress response can be induced by ROS-

mediated endoplasmic reticulum (ER) stress that leads to

the accumulation of misfolded and unfolded proteins in the

ER [37]. As a result, the UPR is initiated together with the

activation of HSF1 [38]. ZPCL-PDT at both regimens

induced upregulation of the UPR-associated genes DNA-

damage-inducible transcript 3 (DDIT3, Ddit3), activating

transcription factor 3 (ATF3, Atf3), protein phosphatase 1,

and regulatory subunit 15A (PPP1R15A, Ppp1r15a) in all

cell types (Fig. 3). PDT at LC50 triggered upregulation of

DnaJ (Hsp40) homolog, subfamily B, member 9 (DNAJB9)

in all cell types, of which the protein product protects cells

from apoptosis [39]. With respect to HSF signaling, all cell

types exhibited elevated DNAJB1 (Dnajb1) and heat shock

70 kDa protein 1A (HSPA1A, Hspa1a) mRNA levels fol-

lowing PDT (Fig. 3). In contrast to RAW 264.7, SK-ChA-

1, and A431 cells, HUVECs revealed a dose-dependent

effect on the transcript levels of HSPA1A, DNAJB1, JUN,

and FOS, where PDT at LC90 caused the most pronounced

upregulation of these genes.

AP-1-mediated immediate early gene response

In response to various extracellular and intracellular (e.g.,

ROS) stimuli, the immediate early response is activated via

apoptosis signal-regulating kinase 1 (ASK-1) that enables

AP-1-mediated transcription [40]. The AP-1 transcription

factors FBJ murine osteosarcoma viral oncogene homolog

(FOS, Fos) and jun B proto-oncogene (JUNB, Junb) were

upregulated in RAW 264.7, SK-ChA-1, and A431 cells in

both the LC50 and LC90 groups (Fig. 3). Furthermore, the

survival factor heparin-binding EGF-like growth factor

(HGEGF, Hbegf) was strongly upregulated in all cell types

following both PDT regimens. EGFR was downregulated

in HUVEC, SK-ChA-1, and A431 cells, particularly in the

LC90 group.

In addition, the effect of PDT on EGFR signaling in

EGFR-overexpressing A431 cells versus SK-ChA-1 cells is

shown in more detail in Fig. S4. This subanalysis revealed

that PDT had an inhibitory effect on the various ErbB

isoforms, which was observed in both cell lines, although

EGFR (ERBB1) was mostly afflicted. Also, known down-

stream targets of EGFR [41] appeared to be more inhibited

in A431 cells compared to SK-ChA-1 cells after supra-

lethal PDT (Fig. S4).

HIF-1-mediated hypoxia-induced stress response

HIF-1 is a transcription factor that is induced by ROS and

hypoxia [42], which promotes the transcription of genes

involved in cell survival and angiogenesis [43]. ZPCL-PDT

caused upregulation of various HIF-1-associated genes,

including VEGFA (not in HUVECs), PTGS2, endothelin 1

(EDN1), myeloid cell leukemia 1 (MCL1), and phorbol-12-

myristate-13-acetate-induced protein 1 (PMAIP1) (Fig. 3).

The effects were more pronounced after sublethal PDT.

PDT also upregulated several HIF-1-associated genes in

RAW 264.7 cells, including Vegfa, Ptgs2, Edn1, and

Pmaip1 but not Mcl1. However, RAW 264.7 cells did not

exhibit any dose-dependent differences as observed in the

human cell types.

NFE2L2-mediated antioxidant response

The NFE2L2-mediated antioxidant response is activated by

oxidative stress and serves to restore the cellular redox

balance. As shown in Fig. 3, the NFE2L2 pathway was

largely unaffected. In fact, PDT reduced the expression of

genes involved in detoxification [e.g., ATP binding cassette

subfamily C member 4 (ABCC4, Abcc4), ATP binding

cassette subfamily G member 2 (ABCG2, Abcg2)] and

antioxidant activity [e.g., epoxide hydrolase 1 (EPHX1,

Ephx1)]. Heme oxygenase 1 (HMOX1, Hmox1) is linked to

cell survival following PDT [44]. In addition to NFE2L2,

HIF-1 (‘‘HIF-1-mediated hypoxia-induced stress

response’’) is also able to mediate transcription of HMOX1

[45]. Its gene expression after PDT was higher in RAW

264.7, SK-ChA-1, and A431 cells but not in HUVEC cells.

This effect was more pronounced in the LC50 cells com-

pared to the LC90 cells as evidenced by the log2 fold-

changes in HMOX1/Hmox1 gene expression: A431 (2.1

versus 1.3, respectively), SK-ChA-1 (2.1 versus 1.4,

respectively), and RAW 264.7 cells (1.7 versus 1.5)

respectively.

PDT upregulates transcription-related proteins

and downregulates proteins linked to EGFR

signaling

To explore the cellular response in a cell line derived from

a tumor that is refractory towards PDT [24], SK-ChA-1

cells were subjected to more in-depth analysis using an

untargeted (phospho)proteomic-based approach 90 min

after PDT. The EGFR-overexpressing A431 cell line was

excluded from the (phospho)proteomic analysis to elimi-

nate redundancy, given that SK-ChA-1 cells also express

high basal levels of EGFR [46]. The differentially

expressed phosphorylated and non-phosphorylated proteins

(compared to non-treated cells) are presented in Table S5.
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A no-liposome, irradiation-only group was excluded

because we have shown previously that red light irradiation

has no effect on cells [14].

The proteome data revealed a dose-dependent response

in the number of differentially expressed proteins (Fig. S5).

To gain more insight in the affected molecular pathways,

the data were analyzed with Reactome [47, 48] (Fig. 4).

Based on the proteomics data, PDT caused downregulation

of various proteins involved in endocytosis in the LC50

group, but more predominantly in the LC90 group [AP-2

complex subunit alpha-1 (AP2A1), AP2M1, AP2B1,

AP3B1]. Furthermore, SK-ChA-1 cells that had been

treated at LC90 upregulated proteins involved in pre-RNA

splicing (serine/arginine-rich splicing factor 4 (SRSF4),

SRSF6) and epigenetic control of transcription [protein

dpy-30 homolog (DPY30), WD repeat-containing protein 5

(WDR5)] (Fig. 4).

Phosphoproteomic data were analyzed with the Phos-

phopath plugin in Cytoscape [32] and only phosphosites

which were differentially regulated in either LC50 or LC90

groups were analyzed. PDT of SK-ChA-1 cells induced

phosphorylation of heat shock protein beta-1 (HSPB1)

(Fig. 5), which is involved in the defense against oxidative

stress [49, 50]. Furthermore, PDT decreased phosphoryla-

tion of proteins involved in EGFR signaling, such as

mitogen-activated protein kinase 1 (MAPK1), son of sev-

enless homolog 1 (SOS1), and catenin delta-1 (CTNND1).

This effect was more evident at LC90 inasmuch as these

cells downregulated the EGFR-associated proteins EGFR

(confirmed by Western blotting, Fig. S2), proto-oncogene

tyrosine-protein kinase Src (SRC), caveolin-1 (CAV1), and

phosphorylated proteins SOS1, related RAS viral (r-ras)

oncogene homolog 2 (RRAS2), MAPK1, and MAPK3.

Altogether, it seems that PDT induced the expression of

transcription-related proteins and downregulated proteins

involved in EGFR signaling.

PDT affects metabolites that are involved in energy

production and redox signaling

Finally, PDT-treated SK-ChA-1 cells were investigated in

terms of metabolomics at 90 min post-PDT. Incubation of

cells with ZPCLs in the absence of light only marginally

affected the metabolomic profile (Fig. 6a, Table S6), again

confirming the in vitro safety of the ZPCLs.

PDT highly influenced almost all studied metabolites,

whereby the effects observed in the LC50 group were

essentially exacerbated in the LC90 group. PDT-subjected

SK-ChA-1 cells upregulated multiple amino acid levels as

well as metabolites involved in nucleotide metabolism. In

contrast, metabolites involved in the TCA cycle and urea

cycle were downregulated, reflecting perturbations in

anaerobic energy production as evidenced by the lactate

and succinate accumulation. Moreover, PDT also affected

metabolites that modulate the redox balance (Fig. 6b).

Glutathione and oxidized glutathione (GSSG) were

downregulated, while nicotinamide adenine dinucleotide

phosphate (NADP?) was upregulated. Possibly as a con-

sequence of the pro-oxidative state, metabolites in the

oxidative branch of the pentose phosphate pathway were

upregulated (Table S6). Lastly, the nucleotide profile was

also determined in PDT-treated cells, which showed

slightly lower uridine triphosphate (UTP), cytidine

triphosphate (CTP), and guanosine triphosphate (GTP)

levels in the LC50 group (Fig. S6). The lower ATP:ADP

ratio in PDT-treated cells may be indicative of dying cells

(Fig. S6).

Discussion

Clinical PDT may be enhanced by pharmacologically

interfering in molecular pathways that mediate resistance

to therapy [2]. During PDT, light intensity attenuates in the

tumor tissue as a result of absorption and scattering, cre-

ating a gradient of cumulative light dose (fluence) across

the tumor. Since PDT-mediated ROS production is pro-

portional to the fluence [14], tumor cells that are more

distal from the light source, or tumor cells that are insuf-

ficiently oxygenated, may experience less oxidative stress

than fully exposed and oxygenated cells [23], allowing the

sublethally afflicted cells to activate survival pathways.

Inasmuch as tumor cell survival may ultimately enable

recurrence and metastasis, it is critical that the tumor bulk

is completely eradicated in a single PDT session.

One potential strategy to optimize PDT is using phar-

macological adjuvants that inhibit post-PDT survival

signaling, which may be co-administered with the photo-

sensitizer [11–13]. This study was conducted to determine

which pathways are activated and hence eligible for phar-

macological targeting. The response of tumor parenchymal

and non-parenchymal cells subjected to sublethal (LC50)

and supralethal PDT (LC90) was therefore investigated in

the acute phase of PDT—a time point where the tran-

scriptome and acute phase proteins were expected to be

dysregulated. SK-ChA-1 and A431 cells were used because

the former are derived from a tumor known to be refractory

to PDT [51, 52] and because both overexpress EGFR,

which was shown to be profoundly affected by PDT. It is

critical to underscore that the post-PDT environment tem-

porally evolves in a dynamic manner at the level of the

transcriptome, lipidome, proteome, and metabolome [53].

In support of this, the extent of PDT-induced cell death

progressively increased at 2, 4, and 24 h after PDT and

transcriptomic and (phospho)proteomic analysis revealed

that mRNA and protein expression was discordant at
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Fig. 4 Differentially expressed proteins observed after ZPCL-PDT of

SK-ChA-1 cells in the LC90 group. Upregulated (in red) and

downregulated (in green) proteins between the PDT-treated groups

and control group (n = 4 per group) were analyzed using Reactome

to assess functional interactions [47, 48]. Arrows indicate activat-

ing/catalyzing reactions, whereas straight and dashed lines indicate

functional and predicted functional interactions, respectively. Proteins

without functional interactions are not displayed in the figure
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90 min post-PDT (Fig. S7). First, mRNA and protein

expression profiles may be more in sync at later time

points, i.e., when the mRNA has been translated to func-

tional proteins. Second, the transcriptome and proteome are

also expected to change over time, potentially necessitating

an acclimating pharmacological inhibition strategy after

PDT. Because the transcriptomic-, (phospho)proteomic-,

and metabolomic temporal changes are vital to therapeutic

outcome, studies in our labs are underway to establish post-

PDT molecular signatures across the 24-hour time span.

In the acute phase, transcriptomic analysis revealed that

PDT-treated tumor cells (SK-ChA-1, A431) were afflicted

at multiple physiological and biochemical junctions and

activated extensive survival signaling via HIF-1, NF-rB,
AP-1, and HSF. Survival signaling was most pronounced in

the low-dose PDT group, which is detrimental to the

desired clinical outcome. Second, PDT-treated SK-ChA-1

cells downregulated proteins involved in EGFR signaling.

Third, metabolomic analysis of PDT-treated SK-ChA-1

cells pointed to downregulation of metabolites involved in

energy metabolism (glycolysis, TCA cycle), altered cellu-

lar redox state, and upregulation of metabolites involved in

nucleotide metabolism and the pentose phosphate pathway.

These latter two findings are expected to be beneficial for

PDT outcome, as EGFR downregulation and perturbed

energy metabolism negatively affect cell viability and

proliferation and hence offset the survival signaling.

The ROAST gene set analysis supports our hypothesis

that suboptimally treated tumor cells (LC50) engage in

more extensive survival signaling in response to PDT.

Especially the HIF-1- and NF-rB-mediated pathways may

be attractive for therapeutic interventions. PDT of SK-

ChA-1 and A431 cells upregulated genes downstream of

HIF-1 and NF-rB (IL1A, IL1B, IL6, CXCL8, VEGFA,

HMOX1) that mediate inflammation, survival, and angio-

genesis [54, 55]. These findings have been echoed in

literature (Table 1). Whereas overexpression of HIF-1 was

associated with therapeutic resistance in 5-aminolevulinic

acid (5-ALA)-PDT-treated human esophageal carcinoma

cells [56], combination therapy of siRNA-mediated

knockdown of HIF-1 with Photosan-PDT significantly

improved therapeutic efficacy in human head-and-neck

cancer (SCC4, SAS) tumor-bearing mice [57]. Corrobora-

tively, treatment of A431 and SK-ChA-1 cells with the

HIF-1 inhibitor acriflavine significantly improved PDT

efficacy [11, 13]. Similarly, it was shown in various studies

Fig. 5 Phosphoproteomic analysis of SK-ChA-1 cells after ZPCL-

PDT. The data (n = 4 per group) were analyzed with the Phospho-

path plugin in Cytoscape [32]. Increased and decreased

phosphorylation of proteins in the PDT-treated groups versus the

control group are indicated in red and green, respectively. Straight

lines and arrows indicate protein interactions (derived from the

Biogrid database [78]) and kinase-substrate interactions (imported

from PhosphoSitePlus [79]), respectively. Wikipathways was used for

pathway analysis [80], where the dataset was queried against this

database to identify pathways. For this figure, EGF, VEGF, insulin,

FAK, and MAPK signaling pathways were selected
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that combined treatment comprising NF-rB inhibitors and

PDT augmented therapeutic efficacy [35, 58, 59].

In addition to the tumor-derived cell lines, murine

macrophages (RAW 264.7) responded fervently to PDT,

inasmuch as these cells significantly upregulated all sur-

vival pathways (except for NFE2L2 in the LC90 group).

This hyperactive state may in part have been caused by the

fact that macrophages become activated upon exposure to

Fig. 6 Metabolomic analysis of SK-ChA-1 cells after ZPCL-PDT.

aMetabolites were classified into pathways and metabolite expression

is depicted as the log2 fold-change (bottom left corner) between

treated and control cells (n = 3 per group). Numerical values can be

found in Table S6. b Log2 fold-change of metabolites in the category

carbohydrate metabolism grouped per pathway. Changes in LC50-

(left) and LC90-treated (right) SK-ChA-1 cells compared to control

cells are depicted. Identical log2 fold-change values are plotted for

3PG and 2PG and for citrate and isocitrate, as these metabolites could

not be resolved. Metabolites indicated in gray could not be quantified.

TCA cycle, tricarboxylic acid cycle; PPP, pentose phosphate path-

way; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; F1,6BP,

fructose-1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; G3P,

glyceraldehyde-3-phosphate; 1,3 BPG, 1,3-bisphosphoglycerate;

3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phospho-

enolpyruvate; 6pG, 6-phosphogluconate; PenP, pentose-phosphate
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dying cells and cell debris [60], including post-PDT [35].

The same pattern was observed for HUVEC cells, but in

contrast to the tumor cell lines, only few differences were

observed between the LC50 and LC90 groups. Unexpect-

edly, after PDT the endothelial cells slightly downregulated

VEGF, which is a growth factor for (tumor) endothelium

that stimulates angiogenesis. Zhang et al. also observed

downregulated VEGF protein levels after hypericin-PDT in

HUVECs [61], which may indicate that PDT is able to

induce growth inhibition of tumor endothelium.

SK-ChA-1 cells were also subjected to (phospho)pro-

teomic and metabolomic analysis, of which the main

results are summarized in Fig. 7. At the proteomic level,

PDT-mediated phosphorylation of HSPB1, which is a

stress protein that acts as a chaperone to stimulate survival

under stress conditions [50]. PDT at LC90 downregulated

proteins involved in focal adhesion [CAV1, integrin alpha-

2 (ITA2)], adherens junctions (CTNND1, EpCAM), and

tight junctions (phosphorylated ZO1 and ZO3). As reported

in [62–64], PDT may oxidatively damage proteins involved

in cell–cell adhesion, cytoskeletal structure, and focal

adhesion, which appears to be dependent on cell type,

photosensitizer concentration, and light dose. However, it

may also contribute to a higher metastatic potential after

PDT, inasmuch as loss of adhesion proteins is associated

with invasion [62]. Further research is warranted to

establish whether PDT enhances the metastatic potential of

cancer cells, as activation of both survival and metastasis

pathways by PDT may hamper clinical safety of the

procedure.

Supralethal PDT also downregulated various proteins

involved in EGFR signaling, which is an important thera-

peutic target as it is overexpressed in numerous cancer

types [19]. Previous studies have shown that SK-ChA-1

and A431 cells in the absence of PDT are sensitive to

EGFR inhibitors, as these compounds inhibited cell growth

[46, 65]. ZPCL-PDT of SK-ChA-1 cells at LC90 revealed

downregulation of EGFR on both the transcriptomic and

proteomic level. Both SK-ChA-1 and A431 cells exhibited

a reduction in EGFR mRNA levels after PDT and this

effect was enhanced in the LC90 group. Although the exact

mechanism is still unknown, the general trend is that PDT

is able to inhibit and/or degrade EGFR, thereby deterring

tumor growth and inducing apoptosis [66]. However,

exceptions do exist. For instance, Edmonds and co-workers

showed that human ovarian carcinoma (OVCAR-5) and

non-small cell lung cancer (H460) cell lines upregulated

EGFR after PDT with verteporfin (log P = 3.74) [67, 68].

Inhibition of EGFR with erlotinib increased PDT efficacy

and resulted in apoptotic cell death [67], linking pharma-

cological EGFR inhibition to cell demise. Also, a more

recent study demonstrated that erlotinib treatment prior to

PDT induced higher complete response rates in NSCLC

(H460, A549)-xenografted mice [69]. Interestingly, treat-

ment of various cancer cell lines with the photosensitizer

Photofrin (porfimer sodium, log P = 8.5 [2]) alone

downregulated EGFR protein expression, which was

enhanced upon PDT, indicating that Photofrin alone is able

to downmodulate EGFR expression [70]. ZnPC is a highly

lipophilic photosensitizer (log P = 8.5 [2]) that intercalates

into biomembranes [13]. Given that EGFR is a trans-

membrane protein, ZnPC is expected to reside in the direct

vicinity of the transmembrane domain of EGFR, where it

can subsequently cause oxidative modification of EGFR’s

transmembrane structures and impede its functional prop-

erties. The same applies to verteporfin and Photofrin.

However, apparently the site of ROS generation is not

ubiquitously linked to protein dysfunctionalization.

Table 1 Potential druggable targets that were identified in this study

Identified target Druggable

target

General function Inhibitor PDT

efficacy

References

Transcriptomics : HMOX1 HMOX1 Cytoprotective, antioxidative properties SnPPIX : [75]

ZnPPIX : [44, 76]

: AP-1 pathway AP-1 Proliferation, inflammation, apoptosis – n.d. [9]

: HIF-1 pathway HIF-1 Survival, angiogenesis, glycolysis Acriflavine : [11, 13]

HIF-1a siRNA : [57]

: HSF pathway HSF1 Proteostasis, survival – n.d. [9]

: NF-jB pathway NF-jB Inflammation, proliferation, anti-apoptosis NF-jB siRNA : [35]

Dihydroartemisinin : [58]

BAY 11-7082 : [59]

Proteomics : HSPB1 HSPB1 Anti-apoptosis, cell invasion – : ; [50, 77]

Metabolomics : Succinate SUCNR1 Inflammation, HIF-1 stabilization – n.d. [73]

For all the molecular targets, its general function is listed, as well as whether inhibition improves (indicated with :) or hampers (indicated with ;)
PDT efficacy

SnPPIX tin protoporphyrin, ZnPPIX zinc protoporphyrin, siRNA small interfering RNA, n.d. not determined, SUCNR1 succinate receptor 1

Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to… 1147

123



Instead, EGFR expression after PDT is photosensitizer-

dependent, whereby inhibition of EGFR by PDT may

contribute to an anti-cancer effect when photosensitizers

are employed that induce its downregulation, such as

ZnPC, by an as yet undefined mechanism.

The metabolomics data of PDT-treated SK-ChA-1 cells

showed similar trends between the LC50 and LC90 groups,

although the effects were more pronounced in the LC90

group. PDT-treated cells exhibited increased glucose

whereas a number of glycolysis-associated metabolites

were reduced, suggesting that glucose is shuttled into

pathways that branch off glycolysis, such as the pentose

phosphate pathway. Also, the TCA cycle appeared to be

downregulated following PDT, as evidenced by downreg-

ulation of acetyl-CoA, citrate, a-ketoglutarate, and malate.

As a result of ROS production during PDT, the redox status

of a cell may be seriously affected. This is also observed in

PDT-treated SK-ChA-1 cells, as regulators of the redox

response differed (e.g., reduction of glutathione and GSSG,

increase in NADP?). The post-PDT pro-oxidative state

may also explain the upregulation of the pentose phosphate

pathway (Fig. 6b), as the pentose phosphate pathway

contributes to the production of NADPH—a major player

in the antioxidant response [71]. Another important factor

that was increased in PDT-treated SK-ChA-1 cells is suc-

cinate. Mitochondria are a known target of ZnPC-based

PDT [2, 17], after which mitochondria-localized succinate

may be released into the cytoplasm [72]. Succinate has

been shown to mediate ATP generation in mitochondria,

activation of HIF-1, and pro-inflammatory signaling (re-

viewed in [73]). Pharmacological strategies that limit

succinate production could therefore serve as a strategy to

augment PDT efficacy, although succinate build-up in

mitochondria is also a precursor condition for latent

oxidative stress [74] that in turn may promote tumor cell

death.

To our knowledge, this is the first study that explored

the PDT response in such detail at the cellular and

molecular level. Therefore, it may provide novel infor-

mation that could be valuable to design new therapeutic

Fig. 7 Overview of the cellular

response of SK-ChA-1 cells to

supralethal (LC90) PDT. In

response to PDT, SK-ChA-1

cells downregulate proteins

involved in focal adhesion, tight

and adherens junctions, and

EGFR signaling. Metabolic

processes that are dependent on

mitochondria (TCA cycle, urea

cycle) appear to be

downmodulated, whereas the

antioxidant response was

activated. On the transcriptomic

level, SK-ChA-1 cells exhibited

upregulation of AP-1-, HSF-,

and NF-rB-mediated signaling

that may contribute to cell

survival. Straight and dashed

arrows indicate direct and

indirect reactions, respectively.

Phosphorylated proteins are

indicated with (P)
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strategies, possibly based on therapeutic targets that were

found in this study (Table 1). Consistent with earlier

reports, the combined use of PDT and inhibitors of survival

pathways may be an attractive approach to improve ther-

apeutic efficacy in the aforementioned clinically

recalcitrant cancer types.
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