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Tumor mutation burden (TMB) is a widely recognized stratification biomarker

for predicting the efficacy of immunotherapy; however, the number and

universal definition of the categorizing thresholds remain debatable due to

the multifaceted nature of efficacy and the imprecision of TMB measurements.

We proposed a minimal joint p-value criterion from the perspective of

differentiating the comprehensive therapeutic advantages, termed TMBcat,

optimized TMB categorization across distinct cancer cohorts and surpassed

known benchmarks. The statistical framework applies to multidimensional

endpoints and is fault-tolerant to TMB measurement errors. To explore the

association between TMB and various immunotherapy outcomes, we

performed a retrospective analysis on 78 patients with non-small cell lung

cancer and 64 patients with nasopharyngeal carcinomas who underwent anti-

PD-(L)1 therapy. The stratification results of TMBcat confirmed that the

relationship between TMB and immunotherapy is non-linear, i.e., treatment

gains do not inherently increase with higher TMB, and the pattern varies across

carcinomas. Thus, multiple TMB classification thresholds could distinguish

patient prognosis flexibly. These findings were further validated in an

assembled cohort of 943 patients obtained from 11 published studies. In

conclusion, our work presents a general criterion and an accessible software

package; together, they enable optimal TMB subgrouping. Our study has the

potential to yield innovative insights into therapeutic selection and treatment

strategies for patients.

KEYWORDS
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1 Introduction

Immune checkpoint inhibitors (ICI) revolutionized cancer

therapy (1–4). Research findings demonstrate that tumor

mutation burden (TMB) as a stratification biomarker in

immuno-oncology helps predict patient prognosis (5, 6). TMB

is the number of somatic mutations per megabase (mut/Mb,

mainly single-nucleotide variants and short indels). These

mutations result in the capacity to generate surface

neoantigens that activate T lymphocytes (7), boosting tumor

immunogenicity (8, 9). Positive associations between elevated

TMB levels and benign ICI prognosis have occurred (10–12).

The NCCN guidelines and the FDA prioritized TMB as the

recommended test for patients receiving immunotherapy

(13, 14).

For clinical decision-making, physicians tend to categorize

TMB as a baseline to separate patients into distinct risk groups

with varying therapeutic benefits (15). However, due to

controversial clinical results, standardized TMB thresholds and

the proper number of patient subgroups have not been

definitively established. Specifically, i) the available quantile-

based benchmarks (e.g., median, quartiles) fail to reflect the

underlying biology of TMB and accurately locate the thresholds

(16). For example, certain investigations showed that quantile-

based TMB cutoffs could not clearly distinguish responders and

their prospective clinical benefits (17–19). ii) The typical clinical

endpoints for immuno-oncology involve objective tumor

response rate (ORR) and time-to-event (TTE), with the TMB

biomarker linked to both (20). Inconsistent TMB thresholds
Frontiers in Immunology 02
arise when statistical studies on the same cohort of patients use

different endpoints, leaving clinicians uncertain (21). Instead of

basing a general TMB threshold on a single endpoint that

discloses only partial therapeutic benefits, a thorough

assessment of the disease’s multifaceted efficacy is needed

(22, 23).

Furthermore, iii) the effects of different endpoints may vary

in magnitude or orientation (24). Such contradiction suggests

that the connection between TMB and ICI advantages may not

be uniformly distributed and may differ across carcinomas. As

shown in Figures 1B, E, the associations between TMB and

unidimensional outcomes have only one inflection point. When

the intensities or directions of the impact of TMB on the distinct

endpoints disagree, multiple TMB thresholds permit

significantly diverse clinical performances in patient

subgroups, either from the three-dimensional space

(Figures 1A, D) or a joint perspective (Figures 1C, F).

Clinicians are uncertain about the optimal number of risk

groups to stratify patients. Simultaneously, several unobserved

common features lead to a natural correlation between tumor

response and event time, and the strength of this association

varies among regimens and cancer types (25–27). Consequently,

the favorable joint probabilities cannot be derived by simply

multiplying the probabilities of individual endpoints, which is

also a challenge in TMB categorization. Finally, iv) the imprecise

nature of TMB markers is another cause of threshold disputes

(16). Due to technical restrictions, the variant calling tools will

never be perfectly accurate, regardless of the various TMB

calculation methodologies (28, 29). TMB is inevitably subject
B C

D E F

A

FIGURE 1

The association between TMB marker and ICI benefits. (A–C) When the TMB effects on the response endpoint and survival endpoint have
different magnitudes: the association between TMB and ICI clinical benefits in space, the association between TMB and tumor response, the
survival benefit in plane, and the association between TMB and joint benefit in the plane. (D–F) When the TMB effects on the response endpoint
and survival endpoint point in different directions: the association between TMB and ICI clinical benefits in space, the association between TMB
and tumor response, the survival benefit in the plane, the association between TMB and joint benefit in the plane.
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to measurement error. In statistical models that support clinical

decision-making, we must account for lessening the instability

and bias arising from TMB errors in patient categorization (30).

Therefore, we present TMBcat, a generalized framework

based on the minimal joint p-value criterion, which can

optimize identifying the number of patient subgroups and the

corresponding TMB thresholds across all cancers. The

framework jointly models multidimensional endpoints while

accounting for TMB measurement inaccuracies, yielding the

most statistically significant TMB classification based on the

minimal p-value. The optimized TMB categorization stratifies

the patient population significantly and maximizes the

discrepancy in clinical performance between subgroups (31).

To verify the viability of TMBcat, we collected a cohort of 78

patients with non-small cell lung cancer (NSCLC) and 64

patients with nasopharyngeal carcinoma (NPC) who received

ICI treatment. We applied the proposed framework to identify

TMB thresholds and revealed novel correlation patterns

regarding TMB metrics and immunotherapy efficacy. In some

cases, the association between TMB and improved outcomes was

non-linear, i.e., the positive correlation was not perfectly

straight-line but followed a curved upward pattern varying

across regimens or carcinomas, making it more informative to

assign patients to multiple categories. Furthermore, we validated

these findings in an assembled cohort of 943 patients. The results

show that the proposed framework can provide innovative

insights into therapeutic refinement for patients. The source

code to reproduce the results can be downloaded from https://

github.com/YixuanWang1120/JM_TMBcat.
2 Materials and methods

2.1 A general statistical criterion for
TMB categorization

The categorization of TMB indicators facilitates the use of

information regarding the relationship between ICI benefits and

predictive TMB characteristics in making treatment decisions

for clinicians. Therefore, TMB thresholds should distinguish

patients with distinct risks. It is, therefore, necessary to establish

a general statistical criterion to determine the optimal TMB

thresholds and the number of patient subgroups. Our

optimization objective is to achieve categorization with the

minimum p-value, which maximizes the difference in the

probabilities of joint ORR&TTE benefit between subgroups. By

integrating multidimensional endpoints to model the joint

distribution and compensate for TMB measurement errors,

joint p-values can characterize patients’ clinical performances

with a single metric. Meanwhile, the p-value is the only CFDA-

approved metric representative of statistical significance with

good interpretability and is acceptable to clinicians. An

optimization target of minimizing the p-value can ultimately
Frontiers in Immunology 03
produce a significant TMB classification that distinguishes ICI

therapeutic advantages.
2.1.1 Mixed-endpoint joint probability
considering TMB errors

Given n patients, for patient i (i=1,…,n), Ri represents the

status of tumor response (Ri=1,0 for complete response (CR) and

partial response (PR), stable disease(SD) and progressive disease

(PD), respectively) and Ti denotes the observed event time,

which is the minimum of the true event time T*i and the

censoring time Ci, that is, Ti  = min(T*i ,Ci). di = I(T*i ≤ Ci)

defines the event indicator, where I(·) is the indicator function.

To comprehensively characterize the therapeutic advantages of

ICI for patients based on the recorded data, we merged the ORR

and TTE endpoints to profile each patient’s prognosis.

For ORR endpoint, the probability of favorable tumor

response for patient i is expressed as Pr(Ri = 1|TMBi). For

TTE endpoint, the survival probability up to time t for patient i is

Pr(T*i > tjTMBi) = Si(t), where Si(t) denotes the survival

function. Due to some shared unobserved features, different

endpoints may be intimately connected in practice as they all

come from the same patient. Including multiple endpoints in the

analysis can, first, increase the power of statistical tests and,

second, provide a more comprehensive picture of disease

efficacy, for which a single measure does not offer sufficient

representation. Therefore, the joint probability incorporating

ORR and TTE endpoints is preferable for the comprehensive

efficacy assessment for patients undergoing immunotherapy.

The derivation of joint probability Pr(Ri = 1, T*i > T0jTM
Bi) entails examining the correlation structure between various

clinical outcomes; indeed, ignoring such an association can lead

to higher type I and type II errors (32). The underlying

dependency between tumor response and the survival process

is commonly illustrated by the introduction of random effects.

This study proposes a joint statistics model with increased

generality in correlation capture, and via a generalized linear

mixed model (GLMM) formulation for the efficient estimation

of model parameters. We formed a multinomial logistic

regression to engage with multicategorical tumor response and

a Cox proportional hazard regression for the survival process.

The random effect u on the ORR endpoint and random effect v

on the TTE endpoint are set to account for intra-subject

correlation, assumed to follow a multivariate normal

distribution. Specifically, we extend the GLMM approach of

McGilchrist (33) to facilitate efficient statistical inference.

Pr Ri = 1,T*i > T0; q̂
� �

= Pr Ri = 1jû i; q̂
� �

Pr T*i > T0 ∣ v̂ i; q̂
� �

Pr û i, v̂ i; q̂
� �

(1)

where T0 is a prespecified survival time, q̂ is the maximum

likelihood estimate (MLE) of the joint likelihood, û i and v̂ iare

the point estimates of random effects on respective endpoints
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obtained by the empirical Bayes method. Details on joint

modeling of ORR and TTE endpoints and the solution of the

joint probability is available in Section S1.1–1.2 of

the Supplementary Materials; such an approach can bring the

statistical alpha level closer to the nominal level and can provide

additional information about the relationship.

In addition, the observations of TMB inevitably harbor

measurement errors. We hypothesize the observed TMB is

subject to the additive measurement error model: TMBi = TMB*i
+ei, (i=1,…,n). The error term ei is independent and identically

normal distributed with mean zero and variance s 2
e , and is

independent of endpoints Ri, Ti, di. Because the true TMB* is

not observed, the MLE based on true data cannot be used for joint

probability calculation directly from the perspective of

inconsistency. To reduce the biasing effect caused by

measurement errors and obtain a more robust TMB threshold,

we integrated the widely applicable corrected-score with the joint

model, resulting in approximately consistent estimators based on

the observed data. The corrected ORR&TTE joint probability is as

follows:

Pr Ri = 1,T*i > T0; ~q
� �

= Pr Ri = 1 ∣ ~ui; ~q
� �

Pr T*i > T0 ∣~vi; ~q
� �

Pr ~ui,~vi; ~q
� �

(2)

where ~q , ~ui and ~vi is the approximately consistent estimators

under the corrected-joint framework. The complete process is in

Section S1.3 of the Supplementary Materials.
2.1.2 Selection of the optimal thresholds
Given that k is the number of thresholds set for categorizing

the predictive biomarkers TMB into k+1 intervals, let Cutk=

(TMB1,… TMBk) denote the vector of k thresholds ordered

from smaller to larger. When the number of distinct TMB

values within the range of clinical meaningfulness is m, all

possible combinations of thresholds then have up to Ak
m kinds,

where Ak
m is the number of permutations of k thresholds selected

from m TMB values. Then, we propose that the vector of k

thresholds Cutk=(TMB1, … TMBk) that maximizes the

difference in ORR&TTE joint benefit between k+1 subgroups

of patients is thus the optimal thresholds. Patients are

subsequently separated into k+1 subgroups based on TMB

thresholds, Sj={ Rjr,Tjr,djr,TMBjr; r=1,…,nj, j=1,…,k+1 }, where

nj denotes the number of patients in subgroup j and Sjnj=n. The
joint probability characterizes the positive prognosis of patients

with both remission of tumor lesions and prolonged survival

time, allowing for a more comprehensive evaluation of the

patient’s treatment outcomes. Our optimization objective is

the categorization with the minimum p-value, which

maximizes the difference in the probability of the joint

ORR&TTE benefit between subgroups. Thus, given the

threshold vector Cutk and patient subgroups{ S1,… ,Sk+1 }, we
Frontiers in Immunology 04
measure the joint probability difference Dk between k+1

subgroups from the distance metric.

Dk ≜Differences between  S1,…, Sk+1f g
= Distances between Pr Rr = 1,T*r > T0j ∣TMBr

� �
j
, j = 1,…, k + 1, r = 1,…, nj

(3)

Comparison of intergroup discrepancy based on the variance-
based distance. First, we construct a variance-based statistical

test to determine the distance between the joint probability

means of two or more populations. There are two

fundamental explanations for the disparity between the joint

probability of various subgroups: i), between-group variations

caused by the classification conditions, given as the sum of

squares of the deviation between the variable means in each

subgroup and the overall mean, given as the sum of squares

between-group, SSb, with the degrees of freedom dfb. ii),

individual differences in the joint probabilities of patients,

which become within-group differences, denoted as the sum of

the squares of the deviations between the variable mean in each

subgroup and the variable values in that subgroup, denoted as

the sum of squares within-group, SSw, with intergroup degrees of

freedom dfw. Thus, the intergroup distance between joint

probabilities is determined by the between-group variance and

the within-group variance.

Dk =
variability between groups
variability within groups

=
SSb=dfb
SSw=dfw

=
ok+1

j=1 �pj − �p
� �2�nj
h i

=k

ok+1
j=1onj

r=1 pjr − �pj
� �2

=n − k − 1

(4)

where pjr denotes the joint ORR&TTE probability for patient r in

subgroup j, �pj denotes the mean joint ORR&TTE probability for

subgroup j, and �p denotes the overall mean. When the joint

probabilities of the patient population satisfy the following

assumptions: independence of records; normality; equality of

variances (or “homogeneity”), i.e., the variance of records in

groups should be the same, then the statistic Dk follows an F-

distribution with k, n – k - 1 degree of freedom. At this point, the

p-value can be calculated from the F(k, n – k – 1) quantile. The

test of difference is equivalent to one-way ANOVA.

When the joint probabilities of populations do not fulfill the

hypothetical premise of independence, normality, and

homogeneity, the nonparametric rank statistic is used to

compare more than two populations. The total n patients

across all k+1 groups are ranked based on the calculated joint

ORR&TTE probability pi for ith patient. Tied probabilities are

allocated the average of ranks they would have received if not

tied. The diversity among joint probability subgroups is

determined by the between-group rank variance and the

within-group rank variance. The rank sum variance between

groups should be close to the rank variance of the entire sample.

Thus, the test statistic is:
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Dk =
between-group rank-sum variance
rank variance of the entire sample

= 12
n n+1ð Þo

k+1

j=1

RA2
j

nj
− 3 n + 1ð Þ

(5)

where RAj is the rank sum for the jth subgroup, RAj =

onj
r=1rank(pjr). When n is sufficiently large (the number of

observations per subgroup exceeds 5, nj > 5), Dk follows an

approximate c2 distribution with k degree of freedom. At this

point, the p-value can be calculated from the c2(k) quantile, and
the test of difference is equivalent to the Kruskal-Wallis test.

Comparison of intergroup discrepancy based on the
similarity-matrix-based distance. In addition, we constructed

a nonparametric test to measure the intergroup distance based

on the concept of the similarity matrix. The dissimilarity

between groups is measured via the distance between patients,

and then whether the target grouping is meaningful is judged by

testing whether the distance between groups is considerably

greater than the distance within groups. An n × n similarity

matrix is calculated for the joint probability of n patients, where

there are various methods for measuring distances, including

Euclidean distance, Mahalanobis distance, and Minkowski

distance. When the joint probability is one-dimensional, we

recommend the standard Euclidean distance. When the study

expects to refine the joint probability to be a two-dimensional

vector pi = [pRi, pTi]
T, we recommend the Mahalanobis distance

considering the covariance matrix V:

dil = d pi, plð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi − plð Þ V−1ð Þ(pi − pl)

T
q

(6)

The yielded similarity matrix is then translated into a rank

matrix, and the distance statistic is:

Dk = between-group dissimilarity − within-group dissimilarity

=
rb − rw

1
4 n n − 1ð Þ½ �

(7)

where rb denotes the mean rank of between-group dissimilarities,

and rw denotes themean rank of within-group dissimilarities. The

computational complexity of the n × n similarity-matrix-based

distance is O(n)2.

rb = rank dilð Þ, patients i, l belong to different subgroups
rw = rank dilð Þ, patients i, l belong to the same subgroup

(8)

As the distance metric does not obey a parametric

probability distribution, we obtained the p-values by

permutation test or boostrapping algorithm.

Then, the optimal threshold vector Cutk enables significant

discrimination of ICI benefits between patient subgroups can be

expressed as:

Cutk = TMB1,…,TMBkð Þ = arg  max 
k∈Ak

m

Dk (9)
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To solve eq. (9), TMBcat provides a global assessment of

every conceivable way of dividing a patient cohort into k+1 TMB

level expressions, ultimately using the minimal p-value principle

to produce the most significant thresholds Cutk. After selecting

the appropriate distance metric statistic Dk based on cancer

characteristics, we assessed all possible permutations of Cutk
across a range of clinically meaningful values, with a total of Ak

m

species. Specifically, for each possible form of Cutk, the

differences statistic Dk and the corresponding p-value are

calculated. We can determine the optimal Cutk by locating the

minimal p, namely, the highest Dk-statistic.

Cutk = arg  min 
k∈Ak

m

 p-value of  Dk (10)

The TMBcat framework defines the distance statistic Dk as a

measure of intergroup discrepancy in the comprehensive

prognoses to distinguish immunotherapy patient populations.

We provide various calculations of Dk depending on the features

of the different carcinomas. Under immunotherapy, different

tumors have different clinical manifestations as well as the focus

of the therapeutic regimen, where tumor remission and survival

prolongation are not equally emphasized in certain cancer types.

For example, tumor response is the treatment priority in GI

cancers as tumor lesion expansion has a tremendous negative

impact on patient survival. However, breast cancer, thyroid

carcinoma, and skin cancer, among others, are more likely to

result in the prolonged survival of patients. Therefore, when

assessing a patient’s ICI treatment outcome, the favorable

prognostic probability may be a one-dimensional joint

probability pi, which is applicable to variance-based distance,

or it may be in the form of a weighted vector pi=[w1pRi,w2pTi]
T,

where Dk should be calculated by the similarity-matrix-based

distance. At this point, our TMBcat is a general framework

suitable for pan-cancer analysis, and the appropriate discrepancy

metric statistic can be replaced based on the specific clinical

characteristics of the tumor.
2.1.3 Selection of the optimal number
of thresholds

We determined the optimal number of TMB thresholds

based on intergroup discriminations obtained for Cutk=l and

Cutk=l+1. The criterion used to assess the need for an additional

optimal cut-off point is whether it would enhance the composite

intergroup discrimination index. The values of Dk=l and Dk=l+1

across Cutk=l and Cutk=l+1 cannot be used directly for comparison

because of the non-uniform degrees of freedom. In light of this,

we based our judgment on the p-value, representing the statistical

significance. When the minimal p-value may decrease by the

inclusion of one patient subgroup, an additional threshold is

required:

p-value of  Dk=l < p-value of  Dk=l+1 (11)
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Finally, a step-by-step tutorial on TMBcat is shown in

Algorithm 1.
Fron
∈

Data: observed sample information S = {Ri, Ti, δi,

TMBi, i = 1,…, n}

Result: the optimal TMB categorization number and

corresponding thresholds

1 Jointly modeling the ORR&TTE endpoints for each

patient i;

2 Calculate the joint probability pi for each patient

i;

3 Give the thresholds number k and an optional number

of TMB values m

4 for any possible permutation Ak
m do

5 calculate the inter-group differences Dk:

6 if choosing parametric variance-

distance then

7 Dk =
ok+1

j=1 ½(�pj − �p)2 � nj�=k
ok+1

j=1onj
r=1(pjr − �pj)

2=n − k − 1

8 p-value obtained by ANOVA

9 end

10 if choosing non-parametric variance-distance

then

11 Dk =
12

n(n+1)ok+1
j=1 − 3(n + 1)

12 p-value obtained by Kruskal-Wallis

13 end

14 if choosing non-parametric similarity-

matrix-distance then

15 Dk =
rb−rw

1
4½n(n−1)�

16 p-value obtained by permutation test

17 end

18 end

19 The optimal Cutk = arg max Dk = arg min p-value of Dk;

20 Give the thresholds number k + 1, repeat step 4-19;

/* Judgment of the optimal number of thresholds

21 if p-value of Dk < p-value of Dk+1 then

22 adding a patient subgroup k = k + 1

23 end

24 return the optimal TMB categorization number k and

corresponding thresholds Cutk
ALGORITHM 1

Tutorial on TMBcat.
2.2 Cohorts assembly

2.2.1 Experimental cohorts
In this study, 64 patients with R/M NPC who have been

treated with anti–PD-(L)1 or anti-CTLA-4 were retrospectively

examined. Patients with R/M NPC were consecutively enrolled in
tiers in Immunology 06
two single-arm, phase I trials (NCT02721589 and NCT02593786)

between March 2016 and January 2018. In addition, 78 Chinese

patients with NSCLC in this study have received anti-PD-(L)1

monotherapy at Sun Yat-sen University Cancer Center between

December 2015 and August 2017. The trial designs for the dosage

escalation and expansion phases have been discussed before (34–

36). Enrollment criteria included: i) aged 18-70; ii) Eastern

Cooperative Oncology Group performance status of 0-1; iii)

histologically or cytologically confirmed NSCLC or NPC with

metastatic disease or locoregional recurrence; iv) failure after at

least one prior line of systemic therapy; v) radiologically evaluable.

Central nervous system metastases, prior malignancy,

autoimmune disease, prior immunotherapy, active tuberculosis

infection, pregnancy, or immunosuppressive agent treatment were

exclusion criteria. The distribution of patient treatments is shown

in Supplementary Table S1. Patient characteristics, library

preparation, sequencing and bioinformatics procedures are

available in Supplementary Materials.

2.2.2 Validation cohorts from public literature
In addition to the above 2 experimental cohorts, we

assembled 11 validation cohorts of 943 different patients from

publicly available databases and studies, encompassing 453

patients with melanoma (16, 21, 37–39), 407 patients with

NSCLC (17, 21, 40, 41), 56 patients with renal cell carcinoma

(RCC) (16), and 27 patients with bladder (17) (specific clinical

characteristics are shown in Supplementary Table S2) as the

validation cohorts. Briefly, all of these studies are retrospective

studies of immunotherapy, and ICI agents include anti-PD-(L)1,

anti-CTLA4, combination anti-CTLA4/anti-PD-(L)1, and only a

few other agents. The primary efficacy information we are

interested in is ORR assessed by Response Evaluation Criteria

in Solid Tumors (RECIST 1.1 (42)) and progression-free survival

(PFS) and/or overall survival (OS) outcomes. For TMB

calculation, the mutation callings are acquired from the three

sequencing platforms. Seven studies perform comprehensive

genomic profiling by WES, two of which are called by the

standard MC3 pipeline. The other four studies are based on

currently available NGS panels for TMB estimation: F1CDx and

MSK-IMPACT, which the FDA has approved as practicable

diagnostic assays. The sequencing pipeline and diverse TMB

thresholds are listed in Supplementary Table S2.
3 Results

3.1 Simulation study for determining
TMB thresholds

To visualize how our proposed TMBcat determines the

optimal TMB thresholds and numbers within a clinically

meaningful range, we simulated two classification scenarios of

consistent versus inconsistent direction of TMB effects on separate
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endpoints. Data are simulated in an oncology trial context, with

underlying random effects correlated among patients’ ORR and

TTE endpoints. The specific modeling process and estimation

procedure are in Section S2 Simulation of the Supplementary

Materials. Through simulation experiments, we illustrate the

applicability of TMBcat for determining TMB categorization.

Given clinical practice and computational complexity, the

number of patient subgroups is generally compared within 2–5

groups, i.e., k = 1-4. The distance metric was tested with the

default parametric ANOVA. Owing to the differential direction

and magnitude of TMB effects on simulated ORR endpoints

versus TTE endpoints, Figure 2 shows the optimal dichotomous

and optimal trichotomous scenarios, respectively.

The data are presented as a right triangular grid, with each

point indicating a particular threshold division. The color

intensity of each truncated point depicts the between-group
Frontiers in Immunology 07
variability of the ORR&TTE joint benefits for patients under that

threshold classification, with darker colors indicating smaller

joint p-values. Such a graphical display can shed light on the

specific biological basis of the connection between TMBmarkers

and immunotherapy. All probable TMB-high populations are

represented on the horizontal axis, with the size becoming

smaller from left to right. The vertical axis, which also reflects

all possible TMB-low populations, illustrates how their sizes

increase as the axis descends. The data along the hypotenuse

represents the outcomes of a single threshold that splits the data

into two subgroups. Data points away from the hypotenuse up or

to the right represent results from two cut-points that define an

additional TMB-median population. Greater separation from

the hypotenuse results in a larger median subgroup. In

Figure 2A, the boxed-out darkest-colored threshold division

point, i.e., the greatest intergroup distinction, appears on the
B

C D

A

FIGURE 2

Selection of the optimal thresholds. Each point in left column indicates a particular threshold division. The color intensity represents the joint p-
value that depicts the between-group variability of the ORR&TTE joint benefits for patients under that threshold classification. TMB Threshold 1
(on the horizontal axis) and TMB threshold 2 (on the vertical axis) form a categorization dividing the patients into 2–3 different subgroups. The
right column shows the comparative prognoses of patients under the optimal TMB categorization corresponding to the left panels. (A), The
darkest-colored threshold division point, i.e., the minimum joint p-value, appears on the hypotenuse of the right triangle. At this point, k = 1 is
the optimal subgroup number, and the boxed point locates the optimal TMB threshold. (B), A comparison of the joint prognostic favorable
probability of patients under the optimal TMB classification, clearly indicating that one TMB threshold is sufficient to separate the population
into two subgroups with distinct risks. (C), The darkest-colored threshold division point, i.e., the minimum joint p-value, appears inside the
triangle. The trichotomy is significantly superior to the dichotomy scenario, and the boxed point locates the optimal TMB thresholds. (D), A
comparison of the joint prognostic favorable probability of patients under the optimal TMB classification, where a clear stratification effect of the
treatment consequences for the three groups of patients can be discerned.
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hypotenuse of the right triangle, where k = 1 is the optimal

number of classifications. Thus, Figure 2B compares patients’

joint prognostic favorable probability under the optimal

threshold classification, indicating clearly that one TMB

threshold is sufficient to separate the population into two

subgroups with different risks. As a comparison, in Figure 2C,

the darkest-colored point that is boxed out appears inside the

triangle, which implies that the joint p-value of the optimal TMB

tri-classification is significantly smaller than the optimal TMB

dichotomous joint p-value. The trichotomy is significantly

superior to the dichotomy scenario. Similarly, Figure 2D

compares patient subgroups under the optimal threshold

division of the trichotomous categorization, from which we

can discern a clear stratification effect of treatment

consequences for the three groups of patients. Therefore, in

this case, multiple TMB thresholds are supported.
3.2 Presence of patients with
inconsistent benefiting directions on
separate efficacy endpoints

Based on the proposed joint favorable probability, we can

yield a comprehensive overview of the response probability and

the survival risk of the patient under the mutual modulation

represented by the random effects. The joint prognostic

indicators can be applied to compare the ICI treatment
Frontiers in Immunology 08
outcomes simultaneously. For further analysis, we extracted

individual patients with inconsistencies between the response

indices and survival risk.

We produced Kaplan-Meier survival curves for PFS to

display divergence (Figure 3). The lower green curve

represents patients with a tumor status of CR/PR, whereas our

compound index shows probabilistically that such a trend

should not occur in this subgroup. On the opposite, the higher

purple curve represents patients with a tumor status of SD/PD,

whereas our joint index shows probabilistically that this group

tends to possess favorable clinical outcomes. The average PFS of

patients in the CR/PR subgroup is 11.409 months (CI, 9.599–

13.218 months), and the mPFS of patients in the CR/PR

subgroup is 9.8 months (CI, 7.741–11.859 months). In

contrast, the average PFS of patients in the SD/PD subgroup is

25.589 months (CI, 15.744–35.435 months), and the mPFS of

patients in the SD/PD subgroup is 18.9 months (CI, 12.115–

25.685 months). The log-rank test measures the difference

between two survival curves, with a significant p-value of

0.002. These results identify some clinically overlooked

populations: a cohort of patients that tended to survive with

tumors, i.e., the group of patients demonstrated in the purple

curve (Figure 3), revealing an apparently prolonged PFS even

though endowed with relatively poorer outcomes in terms of

response rubrics. In addition, a cohort of patients whose tumors

have resolved may experience rapid disease progression within

the first year of treatment, i.e., the group of patients
FIGURE 3

Progression-free survival curves for selected cancer patients with opposite prognosis indices. The lower (green) Kaplan-Meier curve represents
patients with CR/PR, but the multi-endpoint joint model directs to SD/PD, and the higher (purple) Kaplan-Meier curve represents patients with
SD/PD. Still, the multi-endpoint joint model directs to CR/PR. The clinical benefits of ORR and PFS endpoints point in two distinct directions.
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demonstrated in the green curve (Figure 3). These patients are

from the 2 experimental sets and 11 validation sets, representing

a total of 110 individuals accounting for over 10% of the

surveyed cohorts. Thus, we offer a bold and novel conclusion:

a subset of patients whose effects in two different efficacy

endpoints may be of different magnitudes or even point in

different directions. This suggests the necessity of our proposal

that multiple classifications of TMB should be performed.

Such divergent results reflect, to some extent, the

reasonableness of the proposed joint probability in providing a

more comprehensive picture of disease efficacy expressed in

multifaceted forms when a single endpoint cannot fully

represent the complexity of a disease. This issue also reflects

that the populations represented by the two curves in Figure 3

are not specific individual cases, but a small cohort that will

negatively impact the whole analysis and even the stratification

of patients and should receive more attention in clinical analysis.
3.3 Triple classification of patients on
TMB level appears more reasonable

Owing to the presence of a subset of patients whose clinical

benefits are opposite at two endpoints, further refinement of

patient classification based on joint efficacy analysis is

warranted. Our clinical cohorts NPC (Panel) and NSCLC were

trichotomized by TMBcat, and the analysis of patient grouping

results is summarized below.

Figure 4 unfolds the hierarchical results formed by analyzing

two different cancer datasets utilizing the TMBcat model,

performing Kaplan-Meier survival analyses for TTE and Mann-

Whitney U tests for the ORR. We found that an improvement in

patient’s survival time did not increase linearly with higher TMB

values in the scenarios of the multi-classification. Patients in the

TMB_Median group confer a poorer prognosis in both PFS and OS

survival curves than in the other two TMB_Low and TMB_High

groups. Patients with advanced NSCLC and NPC with low TMB

might derive benefit from immunotherapy. Specifically, the mPFS

of patients in the TMB_Median group is 1.67 and 2.07 months,

respectively, in cases NPC and NSCLC, maintaining the lowest in

the respective triple classification, while patients with NPC and

NSCLC in the TMB_Low group have an mPFS of 2.57 and 2.13

months, and those in the TMB_High group have an mPFS of 2.57

and 5.97 months, respectively. Likewise, regarding the objective

response, TMB_Median groups remain the worst performers, with

the lowest ORR of 0.0% and 7.69%, respectively, whereas the

TMB_High groups retained the highest ORRs of 16.22% and

29.63%, respectively. To interpret the origins of such non-linear

trends, we considered another factor influencing tumor resistance:

intra-tumoral heterogeneity (ITH). ITH is defined as a spatially or

temporally uneven distribution of genomic diversification in an

individual tumor (43): this is associated with a poor prognosis in

solid tumors (44). Patients with low ITHmay perform better in the
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presentation and recognition of neoantigens during

immunotherapy (45). The ITH level for each patient with

NSCLC was calculated, and the favorable response to immune

agents in the TMB_Low subgroup could be partially explained by

the lower level of ITH (Figure 4E and Supplementary Table S1). In

addition, for the joint probability distribution in space (Figure 4F),

we show that the smoothed distribution curve remains with

multiple inflection points, which demonstrates the plausibility of

our proposed multiple classifications of TMB.

As a comparison, we grouped the clinical cohort NPC

(Panel) and NSCLC based on the median TMB, a frequently-

used quantile in retrospective analyses (20, 40, 41), and the

comparative results of patient efficacy after stratification are

shown in Figure 5. As TMBcat is optimized with a minimal joint

p-value, the optimal thresholds for TMB categorization based on

our proposed criterion are definitely with the smallest joint p-

value among all possible threshold divisions. The joint p-values

for both NPC (Panel) and NSCLC in Figure 4 are < 0.001,

whereas the joint p-values for the two cohorts based on the TMB

medians in Figure 5 are 0.521 and 0.061, respectively. To more

objectively illustrate the advantages of TMBcat in differentiating

patients, we observed the prognoses of patients under the TMB

categorization from a single dimension of clinical performance.

The differentiation between patient subgroups with the quantile-

based TMB categorization is insignificant compared with the

proposed minimum joint p-value criterion. Both the log-rank p-

values and Mann-Whitney U p-values increased markedly.

In summary, when the efficacy information on two

endpoints reveals a consistent direction of benefit, i.e., patients

with a higher probability of tumor response tend to have a more

extended survival period, which is sufficient to dichotomize

patients based on either endpoint. However, when patients

display inconsistent benefits on both efficacy endpoints, we

propose that it is more reasonable to triclassify patients based

on TMB levels in clinical practice, which will help oncologists to

screen for patients suitable for immunotherapy.
3.4 The TMB subgrouping landscape
varies across pan-cancer

The potential association of TMB with sensitivity to ICIs

may not be perfectly linear. We performed a pan-cancer

analysis for nearly 1,000 patients with cancer in the validation

group comprising four cancer types. We identified some

novel correlation patterns regarding TMB metrics and

immunotherapy efficacy: patients’ clinical improvement did

not increase uniformly and linearly with higher TMB values in

the multiclassification scenarios.

The trichotomy results emphasized that the association

between TMB and ICI efficacy is non-linear (Figure 6). Patients

with RCC, NSCLC, and melanoma in the TMB_Median groups

display a better trend in ICI outcomes than those in TMB_Low and
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TMB_High groups (Figures 6B–D). The advantage of the

TMB_Median groups in terms of survival time is most evident

in cases RCC and NSCLC_57, where patients maintain the highest

mPFS of 11.1 and 27.3 months (mPFS: 2.7 and 5.6 months for

TMB_Low and TMB_High in case RCC, respectively; log-rank

p=0.644; mPFS: 10.39 and 14.61 months for TMB_Low and
Frontiers in Immunology 10
TMB_High in case NSCLC_57, respectively; log-rank p=0.047),

and the highest median overall survival (mOS) of inf, inf (mOS:

33.77 and 27.13 months for TMB_Low and TMB_High in RCC,

respectively; log-rank p=0.732; mOS: 11.5 months and inf for

TMB_Low and TMB_High in NSCLC_57, respectively; log-rank

p=0.055; Figures 6B, C). On the other hand, when evaluating from
B

C D

E F

A

FIGURE 4

(A, B) Based on the mixed-endpoint analysis model, survival curves and ORR comparison for patients with NPC in the low, intermediate, and
high TMB groups. (C, D) Based on the mixed-endpoint analysis model, survival curves and ORR comparison for patients with NSCLC in the low,
intermediate, and high TMB groups. Patients’ improvements in survival time and response status do not increase strictly linearly with higher TMB
values in the scenarios of the multi-classification. Instead, there is a trend of a minor decline followed by a considerable increase in the positive
connection between TMB and treatment outcomes. (E), ITH comparison among patients with NSCLC in the low, intermediate, and high TMB
groups. (F), Three-dimensional spatial diagram of the association between TMB markers and ICI benefit.
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ORR, TMB_High groups acquire the most improvement only in

Bladder and NSCLC_57 cases, do the proportions of tumor

response gain as the TMB value increases, ranging from 33.3%

to 100.0%, and 9.38% to 66.67%, respectively (Figures 6A, C). In

the other validation cases, ORRs in TMB_Median subgroups reach

the peak at 80.0%, 35.71%, and 46.77% in the RCC,

Melanoma_105, and Melanoma_195 sets, respectively

(Figures 6B, D, E). The results for the remaining validation

cohorts can be found in Supplementary Figure S2–7. In addition,

similar to the previous subsection, we performed a subgrouping

analysis using the TMB medians for the five validation cohorts to

allow a comparison with our proposed TMBcat; the results are

summarized in Figure 7. Quantile-based TMB subgroups were

intuitively weaker than TMBcat in p-value comparisons, and

median TMB did not distinguish the clinical benefits of patients

receiving immunotherapy.

To avoid overestimating the performance of our model and

the overfitting problem, we further partitioned the MEL_195
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queue into training and testing sets. Using the TMBcat-based

TMB thresholds selection method, we filtered the appropriate

triple classification thresholds based on the training set and

grouped the patients for comparison (Figure 8). Subsequently,

the patients in the independent testing set were classified based

on the screened TMB thresholds and the outcomes were

analyzed (Figure 8B). As summarized by the results, patients’

efficacy had a uniform trend across the three distinct groupings.

Thus, our method is generalizable and adaptable to other

patient cohorts.

To further elaborate this non-linear distribution uniformly,

after filtering the panel-based cases, we assembled eight

validation clusters for analysis to obtain the multi-classification

profiles (Figure 9). When patients have extremely high levels of

TMB, the effectiveness of immunotherapy is, at this stage,

lessened. We speculate that this phenomenon may be due to

the accumulation of many mutations in TMB_High patients over

a long period of carcinogenesis, resulting in heavily differentiated
B

A

FIGURE 5

(A) Survival curves and ORR comparison for patients with NPC in the low and high TMB groups based on the median. (B) Survival curves and
ORR comparison for patients with NSCLC in the low and high TMB groups based on the median. The quantile-based TMB subgrouping
approach, compared to the minimum joint p-value criterion, failed to stratify patient efficacy significantly.
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FIGURE 6

The TMB subgrouping landscape analysis for various cancer types. (A), Kaplan-Meier survival analysis and ORR efficacy comparison for the
Bladder cohort. (B), Kaplan-Meier survival analysis and ORR efficacy comparison for the RCC cohort. (C), Kaplan-Meier survival analysis and ORR
efficacy comparison for the NSCLC 57 cohort. (D), Kaplan-Meier survival analysis and ORR efficacy comparison for the MEL 105 cohort.
(E), Kaplan-Meier survival analysis and ORR efficacy comparison for the MEL 195 cohort. The trichotomy results indicate that the association
between TMB index and ICI efficacy is not perfectly linear, i.e., treatment gains do not inherently increase with higher TMB, and the pattern
varied across carcinomas.
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FIGURE 7

The median-based TMB subgrouping landscape analysis for various cancer types. (A), Kaplan-Meier survival analysis and ORR efficacy
comparison for the Bladder cohort. (B), Kaplan-Meier survival analysis and ORR efficacy comparison for the RCC cohort. (C), Kaplan-Meier
survival analysis and ORR efficacy comparison for the NSCLC 57 cohort. (D), Kaplan-Meier survival analysis and ORR efficacy comparison for the
MEL 105 cohort. (E), Kaplan-Meier survival analysis and ORR efficacy comparison for the MEL 195 cohort. The TMB median cannot distinguish
patients’ ICI prognosis and is significantly weaker than the proposed minimum joint p-value criterion in terms of statistical significance.
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tumors, leading to correspondingly high heterogeneity. At this

time, the neo-antigenic activity brought about by high TMB is

weakened by the resistance to anticancer therapy brought about

by heterogeneity. In contrast, patients with relatively low TMB

may be in the early stages of carcinogenesis and have not yet

accumulated a sufficient number of mutations; thus, they may

gain a small improvement from ICI. Per this non-linear feature,

an inverted U-shaped association between patients’ TMB levels

and ICI benefits can be clearly observed in melanoma and RCC

(Figures 6B, D, E, Supplementary Figures S2, S4), i.e., poorer

performance in patients with high TMB. In contrast, tumors of

the skin and kidney typically exhibited a high degree of tumor

heterogeneity. In lung cancers with low numbers of tumor

clones, this correlation becomes U-shaped or linear, i.e.,

TMB_Low patients may possess better outcomes (Figure 6C,

Supplementary Figures S5–7). This observation also coincides

with the relationship between ITH and tumor resistance (44).

Similarly, the comparison between the left and right columns

(Figures 9) also reflects the superior grouping ability of the

TMBcat (p-value: <0.001–0.13), whereas the quintile-based
Frontiers in Immunology 14
grouping neither portrays a non-linear distribution, and the p-

value does not indicate significance (0.001–0.5).

The results show that the association between TMB and ICI

efficacy does not present a strict linear increasing trend but instead

a non-linear distribution in which low TMB does not preclude

response and high TMB is not a sufficient predictor. As seen from

the pan-cancer results, multiple thresholds were prevalent, and the

thresholds across carcinomas and protocols varied. Our multi-

endpoint model provides an integrated and general approach for

clinical threshold delineation. The reasons for this non-linear

distribution and the underlying driving mechanism are still

unclear; further exploratory clinical trials are needed.
4 Discussion

Tumor mutation burden has recently become an area of

interest; high TMB is associated with a better response to ICI

therapies. However, the threshold defining the TMB-high/TMB-

positive patients in clinical practice is controversial, and this is
B

A

FIGURE 8

Independent validation of the approach for comprehensively determining the threshold for positive TMB based on TMBcat. (A), The
trichotomous treatment effects of patients under the TMB thresholds obtained by training with the 130 patients sampled from the MEL 195
dataset. (B), The triple categorized efficacy comparison for the testing patients under the same TMB thresholds.
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exacerbated by the presence of multiple evaluation metrics and

TMB inaccuracy. The existing approaches to identify the TMB

threshold are merely based on a single endpoint, which may

yield excessive information loss to provide statistically

significant stratification results. Herein, we describe our

solution for TMB threshold selection using a novel criterion

named TMBcat, a generalized framework for optimally

determining the TMB categorization number and thresholds

based on a joint p-value. The proposed TMBcat has good

scalability because it allows the modeling of the joint

distribution and integrates the multidimensional clinical

information of patients into a one-dimensional statistic—joint

p-value, without considering the number of clinical endpoints.

In practical applications, when assessing the grouping effect of

all possible combinations of TMB thresholds, the number of

permutations may be huge when the number of required

thresholds k and the number of alternative TMB values m is

large. Thus, an exhaustive search is computationally costly. In

these circumstances, we reduce the size of the search space by

sampling the data with reasonable segmentation and use

heuristic search algorithms, such as simulated annealing, to

improve computational efficiency.
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In addition, our analyses revealed a novel association pattern,

in which the positive correlation between TMB and ICI outcomes

was non-linear. In terms of overall trends, patients do not strictly

derive more clinical benefits as their TMB levels increase; indeed,

TMB-low patients are not necessarily inaccessible to

immunotherapy, while patients with extremely high TMB do

not always experience the greatest improvements from ICI. These

phenotypes may be explained by the fact that cancer patients with

remarkably high TMB levels generally accumulate many

mutations during their long period of carcinogenesis and that

their tumors have become highly differentiated, resulting in

complex heterogeneity that confers patients with poor

prognoses. Moreover, patients with relatively low TMB may

expect a little improvement from ICI because they are in the

early stages of cancer development, and manymutations have not

yet developed. This phenomenon deserves to be explored in

further clinical trials aimed at identifying the patients who may

genuinely benefit from treatment with ICIs, refining the

therapeutic selection and tailoring the treatment strategy.

Collectively, our results shed new light on TMB multi-

stratification based on a multi-endpoint joint assessment of

immunotherapy benefits, suggesting that clinicians should
B

C

D

A

FIGURE 9

A comparison between TMBcat-based and percentile-based multi-classification. (A, B) Grouping results of ORRs and KM survival curves under
multi-level division using TMBcat according to TMB levels. (C, D) Grouping results of ORRs and KM survival curves under TMB quintiles (cut-offs
at 20%, 40%, 60%, and 80%, respectively). The p-values in the figures are based on the Mann-Whitney U test and log-rank test, respectively.
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consider multiple thresholds. Current evidence on the atypical

correlation between TMB and ICI outcomes emphasizes further

exploring the corresponding immunobiological mechanisms before

wider clinical implementation. All data associated with this study

are presented in the Supplementary Materials and Tables.
5 Conclusion

Given the fusion of cross-scale, multimodal information and

scheme decision-making in immunotherapy, clinical data should

be integrated to achieve a comprehensive analysis of patient

outcomes. Therefore, we proposed a minimal joint p-value

criterion from the perspective of differentiating the

comprehensive therapeutic advantages, termed TMBcat, to

optimize TMB categorization across distinct cancer cohorts;

this method surpassed known benchmarks. Previous studies

have typically derived only one threshold to divide the

immunotherapy patient population into two subgroups, which

is largely insufficient. Instead, we consider a multi-threshold

categorization incorporating multiple clinical endpoints, a first-

of-its-kind pan-cancer framework for TMB categorization.

Based on our proposed optimization framework, we performed

our multi-endpoint analysis on 78 patients with NSCLC and 64

patients with NPC who underwent ICI treatments, as well as an

assembled cohort of 943 patients included in 11 published studies.

Our study identified more novel medical findings compared with

the available studies. From the results, we reasonably conclude that:

i) the TMB metric is closely associated with immunotherapy

benefits, although this association is non-linear and varies

between cancer types; ii) integrating multi-dimensional

information for patients to employ multi-endpoint joint analysis

can prompt a more comprehensive TMB subgrouping; iii) patients

receiving immunotherapy may have different effects on different

efficacy endpoints, which suggests that iv) there is more than one

TMB inflection point available that permit significantly different

clinical outcomes in subgroups of patients; and finally, v) the ability

of our model TMBcat to provide the optimal number of subgroups

in addition to the corresponding TMB thresholds may better assist

physicians in treatment decision-making.
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