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Abstract

Magnetic Resonance Elastography allows noninvasive visualization of tissue mechanical 

properties by measuring the displacements resulting from applied stresses, and fitting a 

mechanical model. Poroelasticity naturally lends itself to describing tissue - a biphasic medium, 

consisting of both solid and fluid components. This article reviews the theory of poroelasticity, 

and shows that the spatial distribution of hydraulic permeability, the ease with which the solid 

matrix permits the flow of fluid under a pressure gradient, can be faithfully reconstructed without 

spatial priors in simulated environments. The paper describes an in-house MRE computational 

platform - a multi-mesh, finite element poroelastic solver coupled to an artificial epistemic agent 

capable of running Bayesian inference to reconstruct inhomogenous model mechanical property 

images from measured displacement fields. Building on prior work, the domain of convergence for 

inference is explored, showing that hydraulic permeabilities over several orders of magnitude can 

be reconstructed given very little prior knowledge of the true spatial distribution.
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1 INTRODUCTION

In the past two decades magnetic resonance elastography (MRE) has emerged as an imaging 

modality that extends the capabilities of standard MRI, giving clinicians and researchers 

unprecedented access to tissue properties in vivo. As it develops rapidly, MRE promises 

clinicians information akin to the data surgeons acquire through manual palpation - material 

properties such as stiffness - but noninvasively and quantitatively, with applications in 

diagnosis and monitoring of diseases. Connecting macroscopic mechanical response to 

microscopic cellular organization of tissue, MRE opens up new avenues for assessing the 

etiology of tissue pathology. The modality has been implemented to varying degrees of 

success on skeletal muscle [1–9], breast [10–17], liver [18–24], and brain [25, 26].

Elastography dates back to Gierke et al’s 1952 paper, Physics of Vibrations in Living 
Tissue - one can discern tissue properties by observing a tissue’s response to vibration [27]. 

MRE is multidisciplinary at its core, requiring expertise in magnetic resonance imaging, 

biophysical modelling/theoretical mechanics, and numerical simulations/machine learning. 

Several reviews are available [28–33].

The purpose of the current paper is to explore a poroelastic model of tissue, and convey 

novel results on the simultaneous imaging of both shear stiffness and hydraulic permeability 

in silico. These results extend prior studies on poroelastic parameter estimation [34–37], and 

quantify the domain of valid inference. We show that convergence to the correct in-silico 

property values is possible even when prior knowledge is off by several orders of magnitude. 

These results are a foundation for ongoing in vitro and in vivo work, giving reasonable 

bounds for noiseless data.

This paper is organized as follows: Section 2 covers the theoretical details of our 

tissue model and how inference is accomplished. It also details some of the numerical 

considerations that have been implemented in our in-house MRE computational platform. 

Section 3 details the setup of our simulations - inference of one and two properties from 

in-silico data generated by solving Newton’s Laws for a poroelastic medium. Single and 

dual property contrast conditions necessary for fidelitous inference are examined. In Section 

4 we discuss the results from our simulations and conclude with planned future directions 

for in vitro and in vivo application.

1.1 Notational Conventions

Throughout, we use coordinate independent tensor notation to emphasize the physical 

underpinnings of expressions, but, when required to use coordinates, follow the Einstein 
summation convention where repeated indices in terms are summed over. Indices are drawn 

from the middle of the Latin alphabet, i, j, k, . . ., and run from 1 to 3. Scalar quantities are 

written in standard font with no typographical emphasis. Vectors and second rank tensors 
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appear in lower case bolded font, the former in Latin and latter in Greek. Fourth rank tensors 

are bolded, and in capitalized Latin. When discussing either solid or fluid phases similar 

symbols are used to denote physical quantities, however the addition of a subscript s or f, 
respectively, is added to ensure physical clarity.

We denote the standard tensor product with a ⊗. An orthonormal vector basis is 

denoted ei i = 1
3 , with ei ⋅ ej = δij where the RHS is the Kronecker delta. At times we 

use the Cartesian representation of the basis, e1 = x, e2 = y, and e3 = z. We construct 

the basis for second and fourth rank tensors from these, eij = ei ⊗ ej i, j = 1
3  and 

eijkℓ = ei ⊗ ej ⊗ ek ⊗ eℓ i, j, k, ℓ = 1
3  respectively. The second rank identity tensor is denoted 

1 = eii. The dot product, ·, and double dot product, : , act on neighboring basis tensors 

via ei ⋅ ej = δij and eij:ekℓ = δikδjℓ, implying contraction on the component indices. For 

example, given an arbitrary vector, a, second rank tensor, β, and fourth rank tensor, C, we 

can construct a vector as follows:

a ⋅ C :β = aiei ⋅ Cjkℓmejkℓm : βnoeno
= aiCjkℓmβnoei ⋅ ej ⊗ ek ⊗ eℓ ⊗ em:en ⊗ eo
= aiCjkℓmβnoδijekδℓnδmo
= aiCikℓmβℓmek

The index gymnastics in evaluating such expressions can get pretty messy, which is why 

we stick to coordinate independent notation as much as possible. The transpose acts on 

second rank basis tensors as eij
T = eji. The gradient operator is symbolized by a nabla, ∇. 

Temporal Fourier transforms of quantities appear with the same typographical emphasis as 

above, having the added decor of a tilde. For temporal partial derivatives we employ fluxion 

notation, so that ḟ ≡ ∂f
∂t , f̈ ≡ ∂2f

∂t2
, etc.

2 MODELLING TISSUE

Biological tissue is a complex medium, the result of almost four billion years of 

continual evolutionary pressure and the whims of chance. At the microscopic level, the 

variety of cellular structures in animals would require a vastly more complicated set of 

modelling assumptions than continuum mechanics can provide. However, tracing over these 

microscopic degrees of freedom, an effective theory of tissue should have more in common 

with a coupled solid-fluid description than one consisting of a single continuum. Such 

a model already exists, developed extensively during the last century by the geophysics 

community - poroelasticity.

2.1 Poroelasticity

Poroelasticity is an effective mechanical model describing the continuum as a coarse grained 

biphasic medium consisting of an elastic matrix coupled to a fluid. The former is not 

simply-connected, but has a connected pore space with a tortuous topology - it is this pore 

space that the fluid moves through. The coupled dynamics of solid and fluid result in a much 
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richer phenomenology than single phase continuum models. Figure 1 shows a schematic of a 

porous structure.

The theory of poroelasticity has its roots in the empirical work of Henry Philibert Gaspard 

Darcy, a water engineer tasked in 1856 with evaluating the many elaborate public fountains 

within the city of Dijon, France. Darcy, who had been working as a water engineer for 

nearly three decades, was pivoting towards pure research, and used this as an opportunity 

to write his 600 page magnum opus Les Fontaines Publiques de la Ville de Dijon, wherein 

he describes the sand column experiments pictured in Figure 2 [38]. By examining the 

flow of water through sand in cylindrical pipes, Darcy discovered a linear proportionality 

between the rate of fluid volume leaving the bottom of a pipe, ΔVf/Δt, and the difference in 

piezometric head at the ends of the pipe, Δh,

1
A

ΔV f
Δt = K Δℎ

L , (1)

where L is the length of the pipe, and A its cross-sectional area. Hydraulic conductivity 
is the name given to the constant of proportionality, K, and for water flowing through 

sand was measured to range from 2.07 – 3.22 × 10−4 m/s [39]. This name is kept alive 

today by geologists, though we will see shortly that other fields’ naming conventions have 

created an aura of ambiguity. Note that K depends on the properties of the fluid used in 

the piezometers, as well as the porous medium and the fluid flowing through said medium 

- since geology is primarily concerned with the filtration of water through soils, rocks, 

and clays, they think of it as intrinsic to the medium. For us, biologically relevant fluids 

can differ substantially in density and viscosity, so we mustn’t fall into the same mindset. 

The empirical formula Eq. (1) came to be known as Darcy’s Law, a starting point for 

understanding how the flow of a fluid is affected by its coupling to a porous material.

A modern view of Eq. (1) utilizes the instantaneous rate of fluid volume moving through 

a cylinder at constant velocity, vf, replacing ΔVf/Δt → vfAf, where Af is the effective area 

seen by the fluid due to the microscopic geometry of the porous medium. The effective 

area is related to the porosity (volume fraction of fluid, assuming saturation) by the Delesse-

Rosiwal law (second equality) [40], ϕ = Vf/V = Af/A. Identifying the pressure differential 

between the ends of the pipe with the drop in head via ΔP = ρfgΔh (ρf is the fluid density 

and g the gravitational acceleration), shrinking the pipe to infinitesimal length, L → 0, and 

restoring the tensorial nature of the physical quantities, we find

q = − 1
η κ ⋅ ∇P (2)

where two clarifications are in order. (1) The LHS is the Darcy velocity (or filtration 
velocity), q = ϕvf, the magnitude of which is called the specific discharge. (2) The RHS 

is rewritten using the hydraulic permeability tensor, κ - a property belonging solely to the 

porous medium - and η - the dynamic viscosity of the fluid. The full justification of this 

separation is possible through a microscopic treatment using homogenization theory [41–

44], extending the validity of Darcy’s Law to pressure gradients not necessarily generated by 

gravitational forces.
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For an isotropic medium, such as Darcy’s sand column, κ = k1, and we call k the hydraulic 
permeability. Unfortunately, as mentioned earlier, there is a bit of ambiguity within the 

literature depending on the scientific field one is enamoured with - geologists measure 

piezometric head and refer to Darcy’s original K [LT−1] as hydraulic conductivity, while 

most other fields measure pressure gradients and refer to K = K /ρfg L3TM−1  as such. 

Furthermore, the medical and bio-engineering literature has, on occasion, used the terms 

hydraulic conductivity and permeability interchangeably; it is best to always check units 

to make sure that you and the author are on the same page. Given the dynamic viscosity 

of water is ~ 10−3 Pa s, this implies Darcy’s original measurements of sand’s hydraulic 

permeability on the order of ~ 10−11 m2. In honor of this, hydraulic permeability is now 

measured in units of Darcys, D, so that clean sand in aquifers comes out as ~ 101 D. The unit 

is defined so that 1D permits a filtration velocity of a cm/s for a fluid with dynamic viscosity 

10−3 Pa s under a pressure gradient of 1 atm/cm, or in SI, 1D 9.86923 × 10−13 m2. The 

strangeness of this value comes from there being 101, 325 Pa in 1atm, rather than a round 

105, but who are we to quibble with history?

Karl von Terzaghi, a mechanical engineer, laid out the dynamics of structure consolidation 

on soil in a series of papers [45–47] between 1922 and 1925, extending Darcy’s insights to 

become the father of soil mechanics. He incorporated the dynamics of soil in response to the 

fluid by introducing an effective stress tensor, σ, to describe the bulk medium,

σ = σs − P1 . (3)

Here σs is the stress tensor of the solid, and P is the pore pressure. The effective stress 

describes the net stress on the solid skeleton, and it’s definition is referred to as Terzaghi’s 
Principle - the total stress on the elastic matrix is lessened by the pore pressure. Terzaghi’s 

analysis describes a static, highly symmetric, and fully saturated system in which an 

incompressible fluid is confined to a one dimensional column of incompressible solid grains. 

Rearrangements of these grains drive deformation of this soil when a load is applied. The 

decomposition of the stress into an effective bulk and fluid is a bit like looking at the soil 

through poor lenses that smear the distinction between microscopic grains and pore fluid - 

a technique central to homogenization theory in engineering, and coarse graining in physics 

and chemistry [48–50]. One should be a tad careful in their mind’s eye in all that follows 

- in going to this effective picture we now imagine solid and fluid components existing 

simultaneously at every spatial point, their dynamics coupled as a result of coarse graining 

the microscopic structure.

Though revolutionary in application, Terzaghi’s assumptions were ill suited for generality. 

Thermodynamically speaking, his model contains the pair of dynamical variables {σ, P}, the 

effective stress and the pore pressure, respectively; the elastic matrix strain,

ε = 1
2 ∇ ⊗ us + ∇ ⊗ us

T , (4)

is conjugate to the former, where us is the displacement field of the solid matrix. A good 

guess for the kinematic variable corresponding to the conjugate of the pressure would 
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seemingly be the fluid strain rate, which for a perfect fluid with velocity field vf = u̇f is 

the single degree of freedom tr ε̇f = ∇ ⋅ vf. Though this works to describe a fluid alone and 

results in the Navier-Stokes equations, this term cannot be coupled to the strain in a linear 

theory, nor to the solid displacement as that ruins translational invariance. The only option 

to preserve these necessary ingredients would be the fluid strain, ∇ · uf. It turns out that 

this choice almost works; unfortunately it couples the solid and fluid a tad too weakly by 

predicting a vanishing pore pressure when the fluid moves in sync with the solid. With the 

obvious choices for a kinematic conjugate used up, it appears as if we must continue our 

search in darkness.

Maurice Antony Biot, an applied physicist, shed light on the correct coupling in 1941 by 

introducing [51] the variation in relative fluid content,

ζ = − ∇ ⋅ ϕ uf − us + Γ, (5)

where γ = Γ̇ is referred to as a fluid source. His treatment generalized the Darcy velocity 

to a relative motion of the fluid with respect to the solid, q = ϕ(vf − vs), thus allowing for 

an analysis of situations in which both the fluid and porous medium are in motion. Note 

that the relative fluid content decreases when net flow out of a dilating volume of the solid 

matrix occurs, and increases if the flow is reversed - together with the filtration velocity this 

is summarized by a continuity equation

ζ̇ + ∇ ⋅ q = γ . (6)

Here, we see the fluid source, γ = Γ̇, in action either creating fluid content, γ > 0, or 

annihilating it, γ < 0 - a rather useful quantity when considering tissue near veins and 

arteries.

In Terzaghi’s analysis, bulk volume change is driven by rearrangements of the pore space 

and flow of the fluid. Biot realized that this physics may be true for nearly incompressible 

sand grains, but for a softer elastic medium one should also take into account the 

contribution of solid compressibility to the bulk volume change. An applied isotropic load 

can now change the volume of the bulk by altering the volume of the solid skeleton due to 

the fluid pushing back - for reasonably small volume changes the effective support of the 

fluid with regards to the bulk is then less than the fluid pressure. Biot argued that the correct 

effective stress should be a modification of Eq. (3),

σ = σs − αP1 (7)

with the Biot effective stress coefficient, α, a function of the drained effective bulk modulus 

and the unjacketed solid bulk modulus, K and Ks′ respectively [52],

α = 1 − K
Ks′

. (8)

To clarify, experimentally the unjacketed bulk modulus is measured in undrained conditions 

wherein a sample is submerged in fluid; the fluid pressure is then allowed to vary and the 
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volume change of the sample is measured. A jacketed test, on the other hand, is done under 

drained conditions wherein a dry sample is wrapped in a membrane and connected to the 

atmosphere via a small hole; a load is then applied under constant atmospheric pressure, and 

the volume change measured. In aerated soil K /Ks′ ≪ 1, validating Terzaghi’s treatment [53, 

54]. The theory predicts a second type of longitudinal wave within a porous medium, which 

was observed in 1979 [55]. Biot refined his model by incorporating anisotropy, analyzing 

dispersion in wave propagation, and examining non-linear extensions of the constitutive 

relations, earning him the title of father of poroelasticity [56–59].

Examining the effective potential can further illuminate the role of α - it is the dimensionless 

coupling between the volumetric strain of the skeleton and the variation in relative fluid 

content. Since it and ζ are both dimensionless, the Biot modulus, M, must be introduced 

to describe the energy density coming from the relative fluid content and its coupling to 

the elastic matrix, allowing the quadratic potential energy density for a linear poroelastic 

medium to be written as

U = 1
2ε:E:ε + 1

2Mζ2 − αMζtr(ε) (9)

where E = E0 + α2M1 ⊗ 1 is an effective elastic modulus, a fourth rank tensor describing the 

effective coupling between the components of the strain. For an isotropic Hookean material 

described by Eq. (20), note that the Biot effective stress coefficient and modulus serve to 

renormalize the second Lamé paramter, λ. The conjugate variables can now be computed 

from this, giving the poroelastic constitutive relations

σ = ∂U
∂ε = E:ε − αMζ1 (10)

P = ∂U
∂ζ = − αMtr(ε) + Mζ (11)

Combining Eq. (10) and Eq. (11) recovers the Biot decomposition, Eq. (7). These 

expressions clarify the interpretation of M - it is the change in pore pressure caused by 

a variation in water content under the constraint of no solid dilation, M = ∂P/∂ζ|tr(ε)=0. 

It can be written in terms of the Biot effective stress coefficient, as well as the fluid and 

jacketed solid moduli, Kf and Ks″ respectively [44, 52],

1
M = 1

K α(1 − α) − ϕ K
Ks″

+ ϕ K
Kf

. (12)

Biot, and others, explored the physical meaning of both α and M in a number of manuscripts 

[53, 60, 61]. The effective potential, Eq. (9), can also be constructed beginning at 

microscopic scales to justify the expression through homogenization theory, coarse graining, 

or mixed micro-macro formulations [41–43, 62–64].

We now use the effective stress and pressure to write the coupled equations of motion for the 

effective medium and relative fluid flow components in the absence of external stresses. The 
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equations of motion can be derived via the principle of least action [42, 44, 62], however that 

would take us too far afield, so we introduce them qualitatively. Momentum conservation for 

the effective medium reads

(1 − ϕ)ρsüs + ϕρfüf = ∇ ⋅ σ + (1 − ϕ)ρsg + ϕρfg, (13)

where the LHS is the total change in inertia of both solid and fluid. If we define the 

effective density as ρ = (1 − ϕ)ρs + ϕρf, the LHS can be written in a more illuminating 

form as ρüs + ρfϕ üf − üs  - the first term is the effective inertia following the acceleration 

of the solid component, while the second term is the relative acceleration of the fluid with 

respect to the solid. The RHS is simple to interpret - the divergence of the bulk stress tensor 

describes the internal forces, while the external forces consist of a gravitational field.

Similarly, momentum conservation for the fluid reads

ϕρfüf + ρa üf − üs = − ϕ∇P − ϕ2 η
k u̇f − u̇s + ϕρfg . (14)

The LHS here is the change in fluid inertia; however a mass density, ρa, is added for 

the fluid moving relative to the solid. This addition can be derived from a micro-macro 

approach, and captures the effect of the fluid being slowed down through interactions with 

the structure of the pores [43, 44, 65]. It is typically written as ρa = (a − 1)ϕρf, with 

a for packed spheres being related to the porosity as a = 1 + ϕ
2ϕ  - for glass beads at low 

frequencies it has been measured as a ≈ 1.66 ± 0.13, or ϕ ≈ 0.43 ± 0.05, which coincides 

nicely with the porosity of loosely packed spheres, 0.41 ± 0.04 [66, 67]. As in Eq. (13), 

the LHS of Eq. (14) is rewritten using the relative acceleration of the fluid to the solid as 

ϕρfüs + ϕρf + ρa üf − üs . The RHS has the pressure gradient driving the fluid acceleration, 

but also includes a viscous dissipation term coming from the relative motion of the fluid 

with respect to the solid, serving to synchronize the former to the latter. The porosity factor 

for the former is due to the fact that the pore pressure is acting on the effective area seen by 

the fluid. The ϕ2 factor on the latter can be broken down as follows - one factor comes from 

the dynamic viscosity, which is proportional to the fluid mass, while the second comes from 

the hydraulic permeability, which is proportional to the effective area seen by the fluid mass.

Note the inverse dependence on hydraulic permeability - the more easily the solid permits 

fluid flow the less dissipation occurs. Using the definition of the filtration velocity, Eq. (14), 

can be written as a generalization of Darcy’s Law, Eq. (2),

q = − k
η ∇P + ρfüs + ρa + ϕρf

ϕ2 q̇ − ρfg , (15)

which now includes the inertial forces coming from the motion of the solid skeleton, as well 

as the fluid’s interactions with the pore space. Accordingly, we drop the subscript on the 

solid displacement, u = us.
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The system of Eqs. (6, 13, 14) together with the constitutive relations Eqs. 10, 11 are a more 

suitable continuum model of tissues containing a mobile interstitial fluid component than 

standard viscoelastic continua. Since MRE subjects tissue to oscillatory driving conditions 

at constant frequency, the system can be simplified by Fourier transforming into frequency 

space - linearity assures us that distinct temporal modes evolve independently. The driving 

frequency, ω, and all of its harmonics, ωn = nω∀n ∈ ℤ+, contribute to the spatial signal. For 

each of the d.o.f./hyperparameters x ϵ (u, ζ, q, σ, P; g, γ), the Fourier decomposition and its 

inverse read

x(r, t) = ∑
n ∈ ℤ

xn(r)e−iωnt

xn(r) = 1
T ∫0

T
dt x(r, t)eiωnt .

The decomposition acts formally by replacing x xn and ∂t → −iωn. Decomposing each 

d.o.f. in the equations of motion, we find the mechanical response at each frequency ωn is 

described by

iωnζn = ∇ ⋅ qn − γn (16)

−ωn2ρun − iωnρfqn = ∇ ⋅ σn + ρgn (17)

−ωn2ρfun − iωnρfβn
−1qn = − ∇ ⋅ Pn + ρfgn (18)

where βn
−1 = ρa + ϕρf

ρfϕ2 + i η
ωnρfk . (19)

together with the transformed constitutive relations. Here, we have introduced the 

poroelastic β factor, a key ingredient in differentiating poroelastic and viscoelastic dynamics. 

In a static and constant gravitational field we of course have that gn = − gδ0nz.

We want to connect the MR images of tissue to this model, so we assume that the MRI 

phase contrast displacement measurements acquired by MRE trace the motion of the elastic 

skeleton. Since fluid gives a strong MR signal, this assumption relies on there being 

significant amounts of fluid in the disconnected pore space, acting as part of the bulk. 

Since fluid pressure within tissue is critical for homeostasis, we should reduce our system of 

equations further by eliminating all variables except the pair (u, P ). For analytical simplicity, 

we choose an isotropic elastic stress tensor parameterized by the standard Lamé parameters 

μ (shear modulus) and λ,
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E0 = μeij ⊗ eij + μeij ⊗ eji + λ1 ⊗ 1 (20)

After some lengthy algebra, one finds a vector and scalar family of equations for each 

harmonic,

−ωn2 ρ − βnρf un = ∇ ⋅ μ∇ ⊗ un + μ ∇ ⊗ un
T

+ ∇ λ∇ ⋅ un − αPn + βn∇Pn
+ ρ − βnρf gn

(21)

α∇ ⋅ un − ∇ ⋅ βnun = − 1
ρfωn2

∇ ⋅ βn∇Pn − 1
M Pn

+ 1
ωn2

∇ ⋅ βngn + i
ωn

γn .
(22)

Up to this point we have not imposed assumptions on the spatial distribution of the 

elastic moduli in the constitutive relations, or the hydraulic permeability. We do so now 

by assuming that the underlying solid and fluid are nearly incompressible relative to the 

bulk, namely that K /Ks′ ≪ 1, K /Ks″ ≪ 1, and K/Kf ≪ 1 [68]. Plugging the first of these in Eq. 

(8) shows that in this regime α → 1, while using all three in Eq. (12) shows that M−1 → 0. 

In this physical regime, the above reduce to [52]

−ωn2 ρ − βnρf un = ∇ ⋅ μ∇ ⊗ un + μ ∇ ⊗ un
T + ∇ λ∇ ⋅ un

− 1 − βn ∇Pn + ρ − βnρf gn
(23)

iωnρfγn = ∇ ⋅ 1 − βn ρfωn2un + βn∇Pn − βnρfgn . (24)

The vector equation shares some resemblance to viscoelasticity - the main differences being 

the presence of the complex βn and displacement driving pressure gradient. Both Eq. (13) 

and Eq. (14) can be rewritten using the filtration velocity, getting rid of all mentions of the 

fluid displacement. The scalar equation is a divergence condition, implying that the given 

combination of solid displacement and pressure gradient can only contribute a net curl to the 

system unless a fluid source is present. Solving this system with given boundary conditions 

is referred to as the forward problem.

2.1.1 Numerical Considerations I—Analytical solutions of the equations of motion 

exist for highly idealized geometries [41, 44, 62]; in the context of classical clinical 

MRE such idealizations do not exist, hence computational methods are required to find 

approximate numerical solutions [69]. We use a finite element forward solver, described in 

detail elsewhere [35, 37]. It exploits multiple meshes - displacement fields can be supported 

on either tetrahedral or hexahedral element meshes, while material properties, such as the 

shear modulus or hydraulic permeability, are supported on separate hexahedral meshes [70]. 

Supporting each property on its own mesh provides versatility. It decouples the resolution 

of the unknown properties being inferred from the mesh resolution of the (u, P) solutions 
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generated by the forward problem, which balances discretization error and computational 

load without impacting the spatial scale of parameter inference. As we move forward into 

work on phantoms and human subjects, this versatility will allow for mitigating the effects 

of noise through coarser property meshes.

2.2 Inference

In MRE we observe the displacement field of the tissue being examined with little or no 

knowledge of the underlying mechanical properties of the tissue. This inverse problem of 

using the observation to infer the properties, is ideal for the application of a powerful 

epistemological tool known as Bayesian inference.

The Bayesian interpretation of probability brings with it many tools, some of which have 

started to be used by the MRE community [71, 72]. The fundamental idea behind it is simple 

and intuitive - observation carries with it information, and information leads to a reduction 

in uncertainty [73–77]. Beliefs evolve in order to reduce uncertainty, thereby maximizing 

the fitness of a cognizant being within an environment that is sufficiently complex to be 

indistinguishable from one behaving pseudorandomly. Note that, in a Bayesian setting, 

belief/plausibility are synonymous with probability, and in what follows the terms will be 

used interchangeably [78, 79].

Applying these ideas to MRE, let us fix a particular mechanical model of tissue so that the 

forward problem is specified. The space of all possible material property fields is denoted 

ℳ = θ . An epsitemic agent has a preexisting, or prior, belief distribution over ℳ, namely 

p(θ)[80]. If they know absolutely nothing about what to expect then the prior is uniform 

over all possible property fields - a uniform distribution is maximally uncertain [81]. Of 

course, if they have information that may reduce uncertainty in some way, the prior could 

be peaked over a region of ℳ that is deemed more likely to occur. The space of all possible 

observations of the tissue displacement field is denoted D = u . Finally, the posterior over 

ℳ is the informed belief distribution that the epistemic agent has after observing the data, 

denoted p(θ|u). The information content of a particular belief is defined uniquely [73, 82] in 

order to satisfy a natural sub-additive constraint on dependent beliefs, I[θ] = −logp(θ). Note 

that strong beliefs entail little information content, while implausible beliefs the opposite. 

Observing a rare event endows one with more information than observing a common event. 

It is for this reason that sometimes information content is referred to as surprise - we will be 

content in interpreting information content as a measure of the implausibility of a belief.

The posterior and prior are connected via bayes’ theorem

p(θ |u) = p(u |θ)
p(u) p(θ)

≡ ℒ(u, θ)p(θ)
(25)

where the quantity multiplying the prior is the likelihood of the observation given a model. 

Note that observations that are more likely in the context of a set of material properties, 

θ, have ℒ(u, θ) > 1 and enhance the posterior over the prior, whereas unlikely observations, 

ℒ(u, θ) < 1, reduce the belief in that particular θ.
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Specifying a poroelastic model with parameters ϕ = {μ(r), k(r)}, along with the 

hyperparameters {ϕ, ρs, ρf, ρa, η, λ} nd boundary conditions, one solves the equations 

of motion Eqs. (23, 24) for ũn(r). As will be explained shortly, we need only do this for the 

fundamental frequency, so we define the model displacement as uM(r, θ) = ũ1(r). We have 

left the model as an argument here to remind us that the solution for the fundamental mode 

depends on the parameters that have been chosen.

MRE data acquisition images steady state vibration fields using phase sensitive MRI 

sequences [28, 83–87]. Displacements are measured at a number of times across the 

harmonic motion cycle, which are processed into a sequence of displacements at each voxel 

and the fundamental mode of the time series is computed to give uD (r)eiωt for each voxel 

[88, 89]. Vibrations are often in the range of 25 – 100 Hz and supplied using an external 

actuator, or alternatively, our intrinsic actuation MRE uses retrospective gating to measure 

cardiac induced motions at ~ 1 Hz without the need for actuation hardware [90].

With uD and uM in hand, we are much closer to understanding the likelihood. The latter 

are encoding the material property degrees of freedom, while the former provide constraints. 

Both are discretized so one must always make sure to interpolate to the same voxel domain, 

taking into account that there are enough constraints to fully fix the degrees of freedom. 

Once we have fixed the voxel domain, we can treat the scalar difference between the two 

as a random variable Δui(θ) = |uD (ri) − uM (ri, θ). The differences are independent across 

voxels, though this assumption can be relaxed when the noise structure of the data collection 

can be properly described. The Δui are at the voxel level, so each one is actually the mean of 

all the degrees of freedom at the subvoxel level, of which there are a great many. Invoking 

the Central Limit Theorem allows us to claim that the distribution of Δui is Gaussian for 

each voxel such that

ℒ(u, θ) ∝ p(u |θ) = ∏
i

p Δui ∝ exp − 1
2 ∑

i

Δui2

σi2
, (26)

with the σi quantifying the root mean square fluctuations in the subvoxel degrees of freedom 

of the ith voxel. Since no estimate is available for these values, they are set to unity. Using 

Bayes’ Rule, Eq. (25)

I[θ |u] = − logℒ(u |θ) + I[θ]
≃ 1

2 ∑
i

uD ri − uM ri, θ 2 + I[θ], (27)

where the ≃ in the second line means equality modulo a constant independent of θ, leads to 

Eq. (27) as a cost function; the first term on the RHS is an error function, while the second 

term, is a regularizer. Finding the set θ that minimizes cost is equivalent to having found the 

most believable set of parameters - an epistemological interpretation grounded in the tools of 

information theory.

2.2.1 Numerical Considerations II—There are, of course, multiple ways to attack this 

particular question, but they all have in common the theme of sliding down the cost surface. 
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If the cost surface is convex, such a slide will eventually get us to the most plausible set of 

parameters. The idea can be broken down as follows: Let’s say that we are at some arbitrary 

model θ ∈ ℳ. Our goal will be to move to a new model θ + δθ so that the information 

content at this new model is: I[θ + δθ|u] ≤ I[θ|u]. We are content to slide either down or 

horizontally, but never back up the error surface. By an appropriate sequence of choices for 

the δθ’s one has an iterative procedure for finding the minimum. Different methods rely 

on expanding the above information content inequality to different orders in δθ, and then 

making appropriate approximations with the resulting gradients.

Our MRE platform has several of these methods implemented - descent direction can 

be computed via Gauss-Newton, Conjugate Gradient, or Quasi-Newton updates [37]. 

Travel distance is modulated by a binary line search once the descent direction is found. 

Computation of gradients depends not only on the log likelihood, but also on prior 

information content - the regularizer. Multiple regularization terms have been implemented 

to take into account prior knowledge on material property limits, their spatial distribution, 

and smoothness [35, 91, 92].

To manage the computational resources required for multiple solutions of the 3D finite 

element forward problem required for inference, an efficient zoning strategy has been 

developed [93, 94] that breaks up the domain of interest into smaller overlapping zones. 

Measured displacements on the boundary voxels of zones provide Dirichlet boundary 

conditions, leading to a similar inference problem on a smaller scale. Computational 

complexity in our MRE-suite for the finite element solution of Eqs. (23) and (24) on a 

cubic zone of side length L scales as O(L4.6), which is less than the O(L6) complexity of 

LU factorization due to the sparsity resulting from using local operators [95]. Each zone 

is treated in parallel, computing as many gradient descent iterations as desired. Property 

solutions from each zone are collected and stitched together to complete a global iteration 

[70]. Each global iteration begins with a reseeding of the zone structure to limit propagation 

of bias or boundary noise inherent in a particular zone throughout the inference.

Convergence of any combination of the above methods is tricky to gauge due to the 

immense dimensionality of ℳ. Furthermore, the use of zoning means each global iteration 

is performing inference on a slightly different cost surface. To understand convergence 

we have therefore opted towards a coarse grained approach, projecting the inferred d.o.f. 

to a lower dimensional subspace consisting of the mean value(s) of the inferred property 

descriptors. Inference is judged by cost function descent on this subspace. A geometric 

interpretation of the method is given in Figure 3.

3 SIMULATION

We use our MRE computational platform - a finite element code capable of simulating 

displacement fields in poroelastic materials, and an artificial epistemic agent running 

Bayesian inference on measured displacement fields to extract poroelastic properties. The 

former situation is referred to as the forward problem, MREf, while the latter the inverse 
problem, MREi.
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The following tests examine MREi’s ability to reconstruct spatial maps of both the hydraulic 

permeability, k, and the real shear modulus, μ. First we examined our code’s baseline ability 

to infer distributions of a single property at a time. Next we considered the more complex 

requirement of inferring both material property distributions simultaneously. Simulated data 

were generated via MREf, followed by an exploration of the parameter space to see how 

initial conditions affect material property inference and find a range of starting conditions 

which converge to the known ground truth.

3.1 Single Property Inference

3.1.1 Forward Problem—Reconstructing the shear modulus or the hydraulic 

permeability one at a time was tested through configurations depicted in Figure 4(10 Hz) 

and Figure 7(1 Hz) - a long rectangular block containing two conical inclusions. For both 

frequencies we tested two distinct scenarios. In the first scenario, inclusions were assigned 

shear modulus contrast. Relative to the background shear modulus μ0, the inclusion on the 

right has a shear modulus of μ = χμ0, where χ > 1, whereas the one on the left has a shear 

modulus of μ = χ−1μ0. The shear modulus contrast of the right inclusion is positive (μ − 

μ0)/μ0 = χ − 1 > 0, while the one on the left is negative, (μ − μ0)/μ0 = −(χ − 1)/χ< 0. 

In the second scenario the inclusions were given hydraulic permeability contrast. We ran 

simulations with χ ranging from 1.01 to 10, with similar results, and here, we report on the 

case χ = 2.0, in which the inclusions have material property contrasts −1/2 and 1 - in the 

range reported for in vivo soft tissue MRE.

Referencing Figure 4 and Figure 7, we chose r = 4.25 mm, making the block dimensions 

1.7cm × 3.2cm × 1.7cm. The displacements were supported on a tetrahedral mesh with 

10,081 vertices and 55,593 elements. Although this is smaller than typical organs imaged 

with MRE in practice, results were similar to larger values of r, and the computational cost 

of running a large number of simulations favored smaller geometries for detailed numerical 

investigations. Material properties were supported on a 0.5 mm cubic lattice mesh with 

71,672 vertices and 66,429 elements. The conical inclusions each have a relative volume of 

V c/V = π(2 3 − 3)/32 ≈ 4.56%. The displacement mesh intersects the inclusions at 453 and 

461 vertices for the left and right cones, respectively.

We report results the results for both frequencies, f = ω/2π = 1 Hz and 10 Hz. For the shear 

modulus frequencies between 1 – 100 Hz were tested with similar results. For hydraulic 

permeability we evaluated a smaller range of frequencies, finding that the reconstruction 

worsened at frequencies above 10 Hz. At 10 Hz, see Figure 4, fixed displacement boundary 

conditions were imposed on the bottom face of the block to generate oscillations parallel 

to its long axis, u = u0eiωty. At 1 Hz, see Figure 7, oscillations perpendicular to the bottom 

face were imposed, u = u0eiωtz The displacement amplitude in both cases was chosen to be 

0.5mm, justifying a linear treatment, u0/L ≈ 0.03 ≪ 1.

Material property values used in MREf are summarized in Table 1. Bulk density was chosen 

to be similar to brain tissue, while fluid density and dynamic viscosity were selected to 

fall in the range of cerebrospinal fluid [96–100]. The apparent density is a coarse grained 

effective quantity coming from the interactions between the fluid and the pore space, and 
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we chose a value based on prior studies, noting that a low sensitivity of results to ρa was 

demonstrated [34–36, 68]. Lamé constants have been well studied in MRE, our choices 

reflecting reasonable values [92]. Porosity was chosen based on mean values for white and 

grey matter using DTI, as was the background hydraulic permeability [101]. It should be 

noted that these last two properties are not well measured, with the literature quoting values 

in a wide range [102–105].

3.1.2 Inverse Problem—Inference uses a coarser material property mesh in order to 

ensure enough constraints to solve the equations of motion. A side effect of the forward and 

inverse meshes not being identical is that there is no zero error solution. Here we have a 2.0 

mm cubic lattice mesh, with 1700 vertices and 1296 volume elements.

We explore the question of how close to the true mean our initial values have to be in 

order to ensure convergence by examining ranges spanning ~ 2 orders of magnitude above 

and below the true mean. The background shear modulus is set to μ0 = 3.0 kPa, and the 

background hydraulic permeability is k0 = 101.3 D. Thus, the ground truth mean values for 

χ = 2 are:

μ GT = 1 +
V c
V

(χ − 1)2
χ μ0 ≈ 3068 Pa

k GT = 1 +
V c
V

(χ − 1)2
χ k0 ≈ 103.6D

These expressions are, of course, only approximate for a discrete mesh - deviations on the 

order of 1% were observed for our constructed meshes. Since these values are so close to 

the background fields due to the tiny volume occupied by the inclusions, we considered 

an inversion successful if the measured mean property fell near the region between the 

background and mean property values.

We initialize inference with a homogeneous material property distribution of either 〈μ〉 or 

〈k〉. Twenty (20) values of shear modulus were chosen ranging an order of magnitude above 

and below the true mean, 150 – 30, 000 Pa. Twenty (20) values of hydraulic permeability 

were chosen ranging nearly two orders of magnitude above and below the true mean, 100 – 

104 D.

The inversion used zones with 10% overlap. Zones were large enough that approximately 

500 non-boundary nodes existed in each zone, with about 60 nodes in each zone overlapping 

with other zones. Gaussian smoothing regularization (spatial filtering) was applied, with the 

smoothing radius shrinking from 5 to 0.5 mm over the first 50 iterations and held constant 

for the remaining iterations. A conjugate gradient descent method was used for iterative 

inference on each zone. During the first 20 global iterations, each zone finds a single 

CG direction, and the distance moved is computed through a single iteration of a secant 

linesearch. The next 30 iterations use two of each, and the remaining use three.
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Results of inference are summarized for the 10 Hz data in Figure 5 for μ and Figure 6 for 

k. For the 1 Hz data, the shear modulus results are shown in Figure 8 and the hydraulic 

permeability in Figure 9.

3.2 Double Property Inference

3.2.1 Forward Problem—MREf simulation of combined shear modulus and hydraulic 

permeability contrast involved the configuration depicted in Figure 10 - a square block 

containing eight inclusions. The inclusions are spherically symmetric, and have material 

property multipliers of either 1, χ, or χ−1, resulting in either null, positive, or negative 

material property contrasts, respectively. Corner inclusions had both properties contrasted, 

while the center inclusions have contrast in one. This setup tests all possible pairs of 

positive, negative, or null contrasts over all the inclusions. Multiple values of χ were tested 

ranging from 1.1 – 3.0, with similar results - we report the case χ = 2.0, corresponding to 

inclusions with property contrasts of either 1 or −1/2.

Referring to Figure 10, We chose r = 3.5 mm, making the block dimensions 3.5cm × 3.5cm 

× 1.4cm. MRPEf used a 1 mm tetrahedral displacement mesh (23,275 vertices and 132,084 

volume elements) and a 1.0 mm cubic lattice material property mesh (23,104 vertices 

and 20,535 volume elements). Each inclusion took up π/300 ≈ 1% of the total volume, 

containing ~ 240 vertices and ~ 215 elements - deviations from inclusion smoothness occur 

at ~ 0.35 steradians.

Boundary conditions were imposed to simulate the top face of the block being held fixed, 

while the bottom face was vibrated in the vertical direction, u = u0eiωtz. The amplitude was 

chosen to be u0 = 0.5 mm, ensuring that the size of vibrations relative to block geometry 

is small, u0/H = 1/28 ≈ 0.04 ≪ 1, so that a linear treatment is justified. A frequency 

of f = ω/2π = 1 Hz was applied. As in the case of single property inference, material 

properties were chosen to reflect known values associated with brain tissue. Our choices are 

summarized in Table 1.

3.2.2 Inverse Problem—MREi deployed a coarser material property mesh than MREf - 
a 2.5 mm cubic mesh with 1792 vertices and 1350 elements. Each inclusion sampled 12–13 

material mesh nodes.

We examined the effects of initial conditions on reconstruction fidelity by applying 20 

different homogeneous initial conditions around the mean values, with the shear modulus 

ranging between 9.13 × 102 – 5.15 × 103 Pa, and hydraulic permeability ranging between 

8.9 × 10−2 – 2.7 × 105 D. Background shear modulus and hydraulic permeability were μ0 = 

3kPa and k0 = 101.2 D. Ground truth mean values were

μ GT = 1 + π
100

(χ − 1)2
χ μ0 ≈ 3, 047 Pa

Sowinski et al. Page 16

Front Phys. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



k GT = 1 + π
100

(χ − 1)2
χ k0 ≈ 102.9D

Once again, these were approximate values on the discrete mesh, but fell within ~ 2% of 

the observed values. Inference was considered successful if both mean property values fell 

within or near the region [k0, 〈k〉GT] × [μ0, 〈μ〉GT].

The first 10 global iterations used a single CG direction and a single secant line search for 

computing total distance traversed in parameter space while the next 30 applied two of each, 

and the final 250 invoked three of each. The first 50 iterations used Gaussian smoothing 

regularization (spatial filtering) on both properties, with the Gaussian standard deviation 

shrinking linearly from 5 to 0.5 mm. If the change in the cost fell below 10−12, inference 

was considered complete, and further iterations ceased.

Evolution of image reconstruction is summarized in Figure 11 and the lower dimensional 

representation of the inference trajectory is in Figure 12.

4 DISCUSSION AND CONCLUSION

The dynamical evolution of our MREi code for single property inference and image 

reconstruction is displayed in Figure 6 and Figure 7 for f = 10 Hz data. The top panels 

of both display reconstructed images at four distinct iterations. By the 20th iteration, 

both hydraulic permeability and shear modulus are not very distinct, though the former 

is clearly partitioning the domain into positive and negative contrast regions. By the 50th 

iteration, both material properties show distinct localization that is similar to the actual 

inclusions. At this stage, spatial filtering has reached sub-voxel width; hence, fuzziness of 

the hydraulic permeability image reconstruction relative to the sharper shear modulus image 

reconstruction is solely due to the geometry of the information content surface.

The f = 1.0 Hz reconstructions are summarized in Figure 8 and Figure 9. Hydraulic 

permeability starts to settle to the correct values by the 50th iteration, though nearly 100 

more iterations are needed for the correct shape of the inclusions to appear in part. This is 

due to the coarseness of the MREi mesh. The 〈k〉 value enters the critical strip typically 

within the first 20 iterations. We do note that when the initial values of the hydraulic 

permeability fall two orders of magnitude below ground truth values, MREi begins to 

diverge. Similar difficulties were not found if initial values overestimated the true hydraulic 

permeability. The shear modulus did not show this behavior, with image reconstruction 

recovering inclusion geometry and relative distribution very well by the 50th iteration, 

although different initial conditions are seen to lead to different final absolute values - a 

peculiarity noted in prior work [106]. The lower panels of Figures 5, 6, 8, 9 show the 

inference trajectories, with initial estimates noted by an asterisk and changes in descent 

strategy indicated by red markers.

Projecting onto the mean field error surface, hydraulic permeability approaches the correct 

mean field much earlier than shear modulus. Initial values do not affect the late stage 
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reconstruction of the former when they are ~ 2 order of magnitude too small or up to ~ 

3 orders of magnitude too high. The CG descent method does appear to have pathological 

behavior when initial values are more than ~ 2 order of magnitude too small, resulting 

in an ascent of the error surface. A possible reason for this outcome is that low values 

of hydraulic permeability induce incompressible elastic behavior known to have stability 

issues in viscoelastic simulations [37]. The geometry of shear modulus reconstruction occurs 

with high fidelity within very few iterations, but the values converge much slower to the 

ground truth, an observation reported in prior work [106]. Projected trajectories of the error 

evolution in both Figure 5 and Figure 8, however, converge at or near the critical strip for all 

initial conditions.

The results of the simultaneous property convergence appear in Figure 11 and Figure 12. 

The former shows the fidelity of image reconstruction, while the latter inference trajectories 

as material properties are updated at each global iteration. Interestingly, the hydraulic 

permeability enters its critical strip well before the shear modulus. Mean value convergence, 

however, is not a strong indicator of image fidelity. The shear modulus inclusion geometry is 

discernible by the 75th iteration, whereas nearly twice as many iterations are required before 

hydraulic permeability inclusion geometry begins to resemble ground truth. Furthermore, 

dependency between the two properties can be observed near the edges of the simulation - 

hydraulic permeability reconstruction has some vertical patterning that resembles the shear 

inclusions.

Interestingly, we find that the k-reconstruction trajectories always approach the critical strip 

from above. Inference tends to overestimate hydraulic permeability with several iterations, 

and then drives it down. As in the case of single property inference, k initial conditions have 

a lower limit of about ~ 1 order of magnitude below the ground truth in order for MREi to 

converge. Shear modulus is underestimated in almost all cases within about 50 iterations, 

and is then slowly driven upwards to the critical strip, not unlike the inference dynamics for 

the single property (μ) case.

Prior work [36, 107] has performed similar dual property reconstructions. These results, 

however, had MREi initial conditions very close to ground truth values, utilized the same 

property mesh for MREi as used for MREf, and required large amount of regularized 

smoothing. Our work shows that the first two assumptions can be discarded, and the third 

relaxed significantly, while maintaining high fidelity for image reconstruction.

There seems to be some confusion in the literature between the terms hydraulic conductivity 

and hydraulic permeability, with many authors using the two interchangeably. We focused 

early in Section 2 on making a clear distinction between the two in order to emphasize the 

specific contributions to fluid flow coming from the viscosity of the fluid and the geometry 

of the solid. Cerebrospinal fluid has a viscosity ranging between 0.7 – 1.0 mPa s [99], blood 

between 3.0 – 67.7 mPa · s [108], ascitic fluid between 0.5 – 1.5 mPa · s [109] - the range 

covers two orders of magnitude so tissues with similar hydraulic permeabilities can have 

vastly different hydraulic conductivities. Hydraulic permeability measurements correlated 

with pathology can therefore be connected to changes in the elastic matrix of the tissue (via 

its effective continuum).
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Our motivation for simulated values of porosity and hydraulic permeability rests on a 

general lack of knowledge by the scientific community of in vivo values of these parameters. 

In vitro experiments tend to find small values for both, which we hypothesize is due to 

pore collapse in sampled tissue. It is easy to imagine that once tissue is removed from the 

body, the pressure change and unjacketing of the sample results in fluid being expelled. 

The drop in pore pressure is such that the stresses in the elastic matrix are incapable of 

supporting the pore space under the influence of gravity, leading to collapse. Once pores 

are closed, surface to surface cellular interactions may prevent the process from being 

reversible. Even simple models like the Carman-Kozeny [110, 111] relationship between 

hydraulic permeability and porosity, k ∝ ϕ3, would predict drastic changes in the former 

under reasonable changes in the latter. Furthermore, preliminary work shows that higher 

values of hydraulic permeability result in higher likelihood, giving us confidence that in 
vitro measurements of permeability are being underestimated by up to several orders of 

magnitude. A full analysis is forthcoming.

The shear modulus, on the other hand, is much better understood, with far less variance 

in the literature. In viscoelastic models, white matter typically falls in the range of 1.5 – 

2.5 kPa, depending on frequency, while gray matter is between 0.75 – 1.5 kPa [107, 112]. 

Viscoelastic estimates lump together resistance to deformation from both the solid and fluid 

constituents. The poroelastic shear modulus is the value for the drained solid, so will likely 

be somewhat lower than viscoelastic approximations, although a similar order of magnitude 

for most reasonably solid tissues. The frequency dependence of both is interesting, since it 

means that there is a memory effect in the tissue dynamics that has not been accounted for in 

the equations of motion. In order for this memory effect to be causal, in the sense that only 

past dynamics and not future dynamics affect the present state, certain constraints known as 

Kramers-Kronig relations must be satisfied by real and imaginary components of the moduli 

[113]. There is still some controversy over whether these conditions are satisfied by moduli 

measured in vivo. Finding a frequency dependence of the poroelastic parameters would put 

similar constraints on the equations of motion.

The introduction of βn in the poroelastic equations of motion creates a link between 

poroelastic and viscoelastic dynamics by means of the imaginary component of the 

parameter. Past numerical studies attempted to bridge the connection between the two types 

of behavior [107]. A full analytical treatment is in the works - understanding where the 

dynamics are most similar and where they are most different is a way of gaining insight 

into the microstructure of tissue. It also points towards better experimental design, since 

understanding the parameter spaces of the two can be harnessed to accentuate, and hence 

test for, behavior intrinsic to only one type of model. Forthcoming work will focus on 

understanding this connection.

One might wonder what happens when we attempt to infer more properties. Unfortunately, 

as the number of properties increases, the coarseness of the material meshes must also 

increase. This is simply due to matching displacement constraints coming from MR 

measurements to the property degrees of freedom in the equations of motion. Theoretical 

considerations aside, our numerical suite has a much harder time converging with the 

addition of an extra property to infer - a significant contraction of the domain of convergence 
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being observed. We believe that this is a numerical issue, not a theoretical one, and an active 

research direction within our group.

As we move forward with in vitro and in vivo testing, our in silico results give us a 

good picture at how ignorant we can be when guessing our background values. Hydraulic 

permeability reconstruction for noiseless data is robust to initial conditions ranging from an 

order of magnitude below, to 2+ orders of magnitude above the ground truth background. 

Meanwhile, shear modulus alone has not been observed to diverge, albeit its convergence 

rate can get quite slow. Adding noise to data introduces fluctuations that will affect 

reconstruction, as our group has shown in prior work [114]. We found our results to 

be robust up to contrasts of an order of magnitude (it was small contrasts that were 

problematic) and believe that as long as signal to noise ratios are well above unity, noise 

should have only a minor effect on the domain of convergence.

4.1 Concluding Thoughts

Being able to image multiple poroelastic parameters will be a boon for preclinical diagnosis. 

Getting our computational suite to work in vivo will allow us to apply poroelasticity to the 

brain, where both cerebro-spinal fluid and blood play an active roll in homeostasis. The 

robustness under a wide range of initial conditions at low frequencies bodes well for using 

intrinsic actuation via the cardiac cycle. Tumors tend to have shear moduli between one 

and two orders of magnitude higher than surrounding tissue - these will be as visible to 

poroelastic parameter reconstruction as they are for viscoelasticity. The movement of fluid 

in the brain is critical in several venues. It is a mixture blood movement and interstitial fluid 

movement over the scale of a fraction of a voxel. We expect the dominant scale of fluid flow 

observed in MRE will be between that of perfusion which observes macroscopic bulk blood 

flow over a fraction of a meter and that of diffusion which observes microscopic fluid flow 

on a cellular scale. Observing fluid flow in this scale has potential to complement diffusion 

in characterizing edema and dementia. We postulate this scale of fluid flow will also 

illuminate tissue viability before diffusion becomes relevant allowing us to better identify 

and characterize reversible tissue damage. It might also provide additional information about 

functional changes secondary to brain activity.

It is an exciting time to watch as MRE enters it’s third decade of application. As 

interdisciplinary as its roots are, it is no surprise that with maturity the field is digging 

deeper into the fertile soil of its disciplinary constituents. Poroelasticity has been one of the 

crowning theoretical achievements of the geophysics community, and like every good idea, 

is ripe for cross-pollination. Perhaps it is no surprise that a model developed to describe 

rocks and soils is finding use in describing living tissue when in 1510 Leonardo da Vinci 

penned [115], into his Codex Leicester, that The Earth is a living body. Its flesh is the soil, 
its bones are the strata of rock, its cartilage is the tufa, its blood is the underground streams, 
the reservoir of blood around its heart is the ocean, the systole and diastole of the blood in 
the arteries and veins appear on the Earth as the rising and sinking of the oceans.
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4.2 Methods and Data Availability

Simulations were performed using an in-house FORTRAN MRE Computational Platform 

written and developed over the past decade by group members. Both forward and inverse 

problems were computed on the Discovery Cluster, a 3000+ core Linux cluster at Dartmouth 

College administered by Research Computing. The data that support the findings of this 

study are available from the corresponding author upon reasonable request.
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FIGURE 1 |. 
The model of a porous material consists of an elastic matrix - the solid - and a connected 

pore space. Pores whose connected boundaries are homeomorphic (topologically identical) 

to spheres are not a part of the connected pore space, as nothing can flow through them. The 

connected pore space is filled with a fluid, whose interactions with the walls of the elastic 

skeleton provide a much richer phenomenology than elastic/viscoelastic models of materials. 

When a porous substance is intersected with a plane, the cross section, whose area is A, will 

have holes in it. The effective cross-sectional area, Af, is the area of all of these holes. For 

an isotropic material, the orientation of the intersecting plane does not change the ratio Af/A. 

The Delesse-Rosiwal law states that this ratio is equal to the ratio of the pore space volume 

to the total volume i.e. the porosity [40].
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FIGURE 2 |. 
The setup of one of the sand column experiments, from plate 24, Figure 3 of Darcy’s 1856 

Les Fontaines Publiques de la Ville de Dijon [38]. Annotations have been added to clarify 

the origin of the physical quantities appearing in Eq. (1). The piezometric heads h1 and h2 

in the two piezometers on the right are measured using mercury. L is the length of the sand 

column, and A its cross-sectional area. In this setup the diameter of the column is 0.35 m, 

and the height of the column is 3.5 m. ΔVf/Δt is the rate at which fluid volume is leaving 

the column, measured by observing the rise of the water level in the container. One can 

quickly see that this particular setup is problematic for applying Eq. (1) directly unless the 

sand column reaches up to near the top piezometer. If not, then the piezometric head must 

be replaced by the total head so as to includes the pressure head coming from the column of 

water.
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FIGURE 3 |. 
A geometric view of the cost surface’s lower dimensional representation. The trajectories 

in D and ℳ (red, green, and blue) are meant to represent how difficult it is to visualize 

the paths in these high dimensional spaces. In MRE, the dimension of both is proportional 

to the number of voxels. To visualize the process of inference, we map our trajectories 

to a lower dimensional space made of the negative log posterior (root mean square of 

the displacement errors), and the mean property value. The RMS is proportional to the 

L2 distance between the data displacements, uD, and model displacements, uM. The mean 

property value is proportional to the L1 distance from the “no property” origin to the model 

point, θ. During single property inference the resulting lower dimensional representation 

is 1-dimensional, while for two property inference it is 2-dimensional. Note how the red 

and green trajectories eventually leads to the minimal RMS. The blue trajectory begins at 

a high enough error (near vanishing posterior), that our epistemic agent is incapable of 

finding the correct direction to move in ℳ. The dimensionality of ℳ is so large that nearly 

every direction leads to an increase in RMS displacement error, and the lower dimensional 

representation interprets this as rolling up the cost surface, leading to divergence.
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FIGURE 4 |. 
(A) Boundary conditions on the top/sides(I) and bottom(II) surfaces for the 10 Hz 

simulation. n are outward pointing normals. Pressure has Dirichlet BCs on I and Neumann 

BCs on II. Displacement has the opposite. The bottom plate oscillates in the y direction 

at frequency ω. (B) Orthographic projection showing geometry of the conical inclusions. 

The left inclusion has positive property contrast, and the right one has a negative property 

contrast. (C) The dynamics of both scenarios - the left figure has inclusions with shear 

modulus contrast, while the right figure has inclusions with hydraulic permeability contrast. 

The MREf displacement field over one period is shown for both, the red dots representing 

in-phase displacements at the start of a cycle. Below these, the motion of the boundary 

nodes is displayed at four equally spaced times within the cycle of period T.
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FIGURE 5 |. 
Reconstruction evolution of the shear modulus in the 10 Hz simulation. (A) shows the 

reconstructed images of the shear modulus distribution inside the simulated phantom. The 

column images are averages of the numbered (xy)-slices (top row), each of which is 2 mm 

thick. The rows are labeled by the iteration number of the inference. (B) shows the lower 

dimensional trajectory of the shear modulus. As above, the shear modulus is measured in 

kilo-Pascals. The smaller diagram is a magnified region near the converged values. Initial 

estimates are noted by an asterisk and changes in descent strategy are indicated by small 

and large red markers, as explained in the text. The light red region represents the strip 

between the background value of the shear modulus and the ground truth mean value. The 

thicker trajectory is the one used to make the images in the above panel. Due to a rather long 

convergence time, best fit linear extrapolations of the trajectories are plotted to show that the 

convergence region is (nearly) the same for all converging runs.
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FIGURE 6 |. 
Reconstruction evolution of the hydraulic permeability, k, at 10 Hz. (A) shows the 

reconstructed images of the hydraulic permeability distribution. The column images are 

the averages of the numbered (xy)-planes (top row). The rows are labeled by the iteration 

number of the inference. (B) shows the lower dimensional trajectory of the shear modulus. 

As above, the hydraulic permeability is measured in Darcy. The smaller diagram is a 

magnified region near the converged values. Initial estimates are noted by an asterisk and 

changes in descent strategy are indicated by small and large red markers, as explained in 

the text. The light red region represents the strip between the background value of the shear 

modulus and the ground truth mean value. The thicker trajectory is the one used to make 

the images in the above panel. One can see that the convergence of the permeability occurs 

well before the final change in descent strategy. It appears that proper inference is robust to 

initial conditions 2 orders of magnitude greater than the ground truth, while only 1 order of 

magnitude below.
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FIGURE 7 |. 
(A) Boundary conditions on the top(I), side(II), and bottom(III) surfaces for the 1 Hz 

simulation. n are outward pointing normals. Pressure has Neumann BCs on I & III, and 

Dirichlet BCs on II. Displacement has the opposite. Top plate is held fixed, while the bottom 

oscillates in the z direction at frequency ω. (B) Orthographic projection showing geometry 

of the conical inclusions. The left inclusion has positive property contrast, and the right one 

has a negative property contrast. (C) The dynamics of both scenarios - the left figure has 

inclusions with shear modulus contrast, while the right figure has inclusions with hydraulic 

permeability contrast. MREf displacement field over one period is shown for both, the red 

dots representing in-phase displacements at the start of a cycle. Below these, the motion of 

the boundary nodes is displayed at four equally spaced times within the cycle of period T.
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FIGURE 8 |. 
Reconstruction evolution of the shear modulus, μ, at 1 Hz. (A) shows the reconstructed 

images of the shear modulus distribution inside the simulated phantom. The column images 

are the averages of the numbered (xy)-planes (top row). The rows are labeled by the 

iteration number of the inference. (B) shows the lower dimensional trajectory of the shear 

modulus. As above, the shear modulus is measured in kilo-Pascals. The smaller diagram is 

a magnified region near the converged values. Initial estimates are noted by an asterisk and 

changes in descent strategy are indicated by small and large red markers, as explained in 

the text. The light red region represents the strip between the background value of the shear 

modulus and the ground truth mean value. The thicker trajectory is the one used to make the 

images in the above panel. Once again we see that convergence of shear modulus is much 

slower than hydraulic permeability, yet images for a wide range of these simulated phantoms 

all show the correct structure of inclusions. Best fit lines are added to the zoomed in image 

to show that all the trajectories are approaching the same value.
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FIGURE 9 |. 
Reconstruction evolution of the hydraulic permeability, k, at 1 Hz. (A) shows the 

reconstructed images of the hydraulic permeability distribution. The column images are 

the averages of the numbered (xy)-planes (top row). The rows are labeled by the iteration 

number of the inference. (B) shows the lower dimensional trajectory of the shear modulus. 

As above, the hydraulic permeability is measured in Darcy. The smaller diagram is a 

magnified region near the converged values. Initial estimates are noted by an asterisk and 

changes in descent strategy are indicated by small and large red markers, as explained in 

the text. The light red region represents the strip between the background value of the shear 

modulus and the ground truth mean value. The thicker trajectory is the one used to make the 

images in the above panel. Once again we witness that hydraulic permeability inference is 

robust to initial conditions over two orders of magnitude above the ground truth. With this 

simulation we see that the lower bound has gotten better as well, robust out to 2 orders of 

magnitude below the ground truth.
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FIGURE 10 |. 
(A) Boundary conditions on the top(I), side(II), and bottom(III) surfaces for the two property 

inference simulation at 1 Hz. n are outward pointing normals. Pressure has Neumann BCs 

on I & III, and Dirichlet BCs on II. Displacement has the opposite. Top plate is held 

fixed, while the bottom oscillates in the z direction at frequency ω. (B) The motion of 

the boundary nodes is displayed at four equally spaced times within the cycle of period 

T. One can see the Poisson effect during the apexes of the squeeze/stretch cycles. (C) 
Orthographic projection showing the geometry of the eight spherical inclusions. The left 

inclusions have positive shear modulus contrast, while the right ones has negative contrast. 

The top inclusions have positive hydraulic permeability contrast, while the bottom ones 

have negative. The MREf displacement field over one period is superimposed, the red dots 

representing in-phase displacements at the start of a cycle.
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FIGURE 11 |. 
Simultaneous inference evolution of both (A) shear modulus, μ, and (B) hydraulic 

permeability, k, in the 1 Hz experiment setup in Figure 10. The former is measured in 

kilo-Pascal, while the latter in Darcy. Columns are averages of the numbered (xy)-planes as 

in the other simulations. Rows are labeled by which iteration they are in MREi.
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FIGURE 12 |. 
Lower dimensional representation of the inference trajectories. Note that because two 

properties are being reconstructed, the lower dimensional representation is 2-dimensional. 

This plot conveys the trajectories through an orthographic projection. (A) shows a large 

region of (〈k〉, 〈μ〉)-space, including starting points of the trajectories represented by 

asterisks. Right and top panels represent root mean square values for converging trajectories. 

Some diverging trajectories are also shown - they are dashed and lighter. The single thick 

trajectory is the one used for Figure 11. Small and large red markers represent points where 

the descent strategy changed. The light red horizontal and vertical regions are the critical 

strips laying between the background property values and the ground truth mean values. 

Note that, as before, scales are all logarithmic. (B) is zoomed into the blue squares located 

in the figures described above. The shaded red areas represent the region between the 

background property value, μ0 or k0, and the mean value of the ground truth distributions, 

〈μ〉GT or 〈k〉GT. Note that in these plots the scales have changed to be linear. Discussion of 

trends is in the text.
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TABLE 1 |

The first six material properties were used in both MREf and MREi. The last two are background values used 

only in MREf. Inclusions have multipliers relative to background values as discussed in the text. In MREi, the 

last two properties, shear modulus and hydraulic permeability, are inferred not specified.

Material Property Symbol Value Units (Generalized)

Bulk density ρ 1.0 × 103 kg/m3 ML−3

Fluid density ρf 1.0 × 103 kg/m3 ML−3

Apparent density ρa 1.5 × 102 kg/m3 ML−3

Dynamic viscosity η 1.0 × 10−3 Pa.s ML−1T−1

Porosity Φ 4.0 × 10−1 -

Lamé parameter λ 1.0 × 104 Pa ML−1T−2

Shear modulus μ0 3.0 × 103 Pa ML−1T−2

Hydraulic permeability k0 1.01 × 102 D L2
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