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Regulation of protein phosphatase activity by endogenous protein inhibitors

is an important mechanism to control protein phosphorylation in cells.

We recently identified Biorientation defective 1 (Bod1) as a small protein

inhibitor of protein phosphatase 2A containing the B56 regulatory subunit

(PP2A-B56). This phosphatase controls the amount of phosphorylation of

several kinetochore proteins and thus the establishment of load-bearing

chromosome-spindle attachments in time for accurate separation of sister

chromatids in mitosis. Like PP2A-B56, Bod1 directly localizes to mitotic

kinetochores and is required for correct segregation of mitotic chromosomes.

In this report, we have probed the spatio-temporal regulation of Bod1 during

mitotic progression. Kinetochore localization of Bod1 increases from nuclear

envelope breakdown until metaphase. Phosphorylation of Bod1 at threonine

95 (T95), which increases Bod1’s binding to and inhibition of PP2A-B56,

peaks in prometaphase when PP2A-B56 localization to kinetochores is high-

est. We demonstrate here that kinetochore targeting of Bod1 depends on

the outer kinetochore protein Ndc80 and not PP2A-B56. Crucially, Bod1

depletion functionally affects Ndc80 phosphorylation at the N-terminal

serine 55 (S55), as well as a number of other phosphorylation sites within

the outer kinetochore, including Knl1 at serine 24 and 60 (S24, S60), and

threonine T943 and T1155 (T943, T1155). Therefore, Ndc80 recruits a phos-

phatase inhibitor to kinetochores which directly feeds forward to regulate

Ndc80, and Knl1 phosphorylation, including sites that mediate the

attachment of microtubules to kinetochores.
1. Introduction
To preserve genome integrity, the two sister chromatids of each mitotic chromo-

some must be distributed equally between daughter cells. Movement of sister

chromatids to opposite poles of a dividing cell requires attachment to spindle

microtubules of opposing orientation. Errors in the attachment process can

lead to chromosome missegregation and aneuploidy (i.e. an aberrant number

of chromosomes). Aneuploid karyotypes are the major cause of spontaneous

miscarriages in humans [1] and often observed in cancer genomes [2].

A multi-complex protein interface between mitotic chromosomes and the spin-

dle apparatus called the kinetochore is responsible for both the establishment

and regulation of the microtubule attachment process [3]. The kinetochore

consists of approximately 30 core structural proteins that are arranged into sev-

eral functional subcomplexes. Structural kinetochore proteins constitute the

physical link between chromosomes and spindle microtubules. They also

act as a signalling platform by recruiting checkpoint proteins, kinases and

phosphatases. When a cell enters mitosis, kinase activity destabilizes

kinetochore–microtubule interactions [4,5] to allow for dynamic kinetochore–

microtubule interactions and thus prevention of attachment errors [6].
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Conversely, phosphatase activity is needed at later stages of

the attachment process to stabilize kinetochore–microtubule

interactions that have passed quality control. At anaphase

onset, dephosphorylation of kinetochore proteins helps

maintain load-bearing attachments [7]. There is a conserved,

dynamic system comprised at least eight kinases and

two phosphatases that control microtubule–kinetochore

attachments [3,8].

The detailed role and function of protein phosphatases

and their interplay at the kinetochore is only beginning to

be elucidated [9–11], but both are of great interest as they

are absolutely required to ensure faithful chromosome seg-

regation. Protein phosphatase 1 (PP1) dephosphorylates

microtubule-binding kinetochore proteins to ultimately

stabilize attachments [12,13]. However, recruitment of

PP1 to kinetochores requires the initial activity of protein

phosphatase 2A (PP2A) [14,15], highlighting the impor-

tance of coordinated timely activation of these

kinetochore components. PP2A is a heterotrimeric

enzyme, composed of a scaffolding (A) subunit, catalytic

(C) subunit and a regulatory (B) subunit [16]. It is targeted

to the kinetochore by the B56 family of B subunits

[11,17,18]. The highest mitotic occupancy of PP2A-B56 at

kinetochores is reached in prometaphase and can be maxi-

mized by increasing the number of unattached

kinetochores with nocodazole [11]. Under the same con-

ditions, PP1 localization to kinetochores is low [12],

suggesting that PP2A accumulation at unattached kineto-

chores alone is not sufficient to recruit PP1 and that

additional molecular signals are required to activate

PP2A-mediated PP1 recruitment in metaphase.

We have recently identified a small kinetochore

protein, Biorientation defective 1 (Bod1), that can specifi-

cally inhibit PP2A-B56 [9,19]. Bod1 is required for

cognitive function in humans and Drosophila models [20].

Depletion of Bod1 from HeLa cells leads to premature

loss of phosphorylation on several kinetochore proteins,

including MCAK and CENP-U/PBIP1, due to unregulated

activity of PP2A-B56, which causes an increase in aberrant

chromosome attachments and defective chromosome

segregation. Bod1 has also recently been shown to alleviate

premature, radiation-induced chromatid separation in

human lung and renal cell carcinoma cells, protect-

ing against genomic instability [21]. Bod1, together with

CIP2A [22], FAM122A [23], I1PP2A/ANP32A [24],

I2PP2A/SET [25], TIP [26] and Arpp-19/Ensa [27,28],

forms part of a growing family of PP2A inhibitors that

have important roles in supporting cell division. However,

little is known about the temporal localization of these

PP2A regulators or how they modulate the activity of

PP2A towards different substrates.

Here, we have studied the temporal recruitment and

phospho-regulation of Bod1 at mitotic kinetochores. We

show that Bod1 kinetochore targeting depends on the outer

kinetochore protein Ndc80 (Nuclear division cycle protein

80, also known as highly expressed in cancer protein Hec1).

Furthermore, we show that Bod1 can protect phosphorylation

of a key site in the N-terminal tail of Ndc80 that is required

for microtubule attachment, as well as several sites in Knl1,

another outer kinetochore protein. These data further refine

our understanding of how PP2A activity at the kinetochore

is regulated and identify additional targets of the Bod1

phosphatase inhibitor pathway.
2. Results
2.1. Bod1 localizes to kinetochores throughout mitosis

and is maximally phosphorylated in prometaphase
To dissect the temporal regulation of Bod1 recruitment to

kinetochores, we raised peptide antibodies for immunofluor-

escence profiling in HeLa cells. This antibody stains the

kinetochore and staining is largely ablated by Bod1 siRNA

treatment (figure 1a; electronic supplementary material,

figure S1). We were especially interested in Bod1’s role at

the kinetochore, and so we quantified Bod1 kinetochore

intensities within a 4-pixel (0.32 mm) radius of anti-centromere

antibody (ACA) staining (figure 1c). Bod1 is first detected on

kinetochores at nuclear envelope breakdown and reaches

maximum occupancy at metaphase.

We showed previously that inhibition of PP2A-B56 by

Bod1 is greatly enhanced when Bod1 is phosphorylated at

T95 [9]. We therefore raised a phospho-specific antibody

against this site (figure 1b; electronic supplementary material,

figure S1). Quantification of pT95 Bod1 at kinetochores

revealed that this post-translational modification peaks in

prometaphase, before maximal recruitment of the total pro-

tein (figure 1d ). This phosphorylation is reversed by Cdk1

inhibition (electronic supplementary material, figure S1g,h).

PP2A-B56 levels at kinetochores are highest in prometaphase

when attachments are weak [11]. The phosphorylation of Bod1

at T95 therefore coincides with the recruitment of PP2A-B56,

consistent with a role in inhibiting PP2A-B56 activity and

enabling correction of attachment errors in early mitosis.

2.2. Bod1 recruitment to kinetochores is independent
of PP2A-B56 and Knl1

PP2A-B56 is a well-characterized component of the kinetochore

with binding sites at both the outer kinetochore [17,18,29] and

the inner centromere [30–32] (electronic supplementary

material, figure S2). To test whether Bod1 and PP2A-B56 are

co-recruited to kinetochores, we depleted PP2A-B56 from

HeLa cells using a pool of B56 isoform-specific siRNAs [11]

and quantified total Bod1 protein at the kinetochores

(figure 2a–e). Surprisingly, there was no significant change in

Bod1 recruitment to kinetochores upon B56 depletion.

Since it is difficult to achieve complete knockdown of B56

isoforms via siRNA (figure 2e), we then depleted the outer

kinetochore protein Knl1, a structural kinetochore protein

implicated in PP2A-B56 kinetochore targeting. Knl1 provides

a binding platform for mitotic checkpoint proteins such as

BubR1 [33,34]. BubR1 can bind the B56 subunit and thus

mediate recruitment of a pool of PP2A-B56 to the outer kine-

tochore [17,18,29]. As with B56 depletion, siRNA-mediated

knockdown of Knl1 did not affect Bod1 recruitment to kine-

tochores (figure 2f–h). We therefore conclude that Bod1 is

recruited to kinetochores independently of PP2A-B56 and

via a different interaction platform.

2.3. The mitotic interactome of Bod1 contains many
outer kinetochore proteins including Ndc80

To discover candidate proteins that might target Bod1 to

kinetochores we combined affinity purification of Bod1 with
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Figure 1. Cell cycle profiles of Bod1 kinetochore recruitment and phosphorylation. HeLa cells were fixed in paraformaldehyde and stained with (a) a pan-specific
Bod1 peptide antibody or (b) a phospho-specific pT95 Bod1 peptide antibody (both green). Cells were co-stained with markers for the centromeric region (ACA, blue)
and DNA (DAPI, grey). Top panel shows a single z-section of each cell cycle stage. The lower panels are magnifications of the same cell (section indicated by white
boxes). Scale bars are 1 mm. Quantification of (c) total Bod1 or (d ) phospho-T95 Bod1 fluorescence intensity at the kinetochore corresponding to experiments shown
in (a) and (b). Three asterisks indicate high significance ( p , 0.001) in multiple comparison after ANOVA on ranks. n ¼ 10 cells per mitotic phase. Error bars
represent standard error. Int, interphase; Pro, prophase; PM, prometaphase; Met, metaphase; Ana, anaphase; CK, cytokinesis.
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label-free quantitative mass spectrometry (MS) (figure 3; elec-

tronic supplementary material, figure S3). In mitotic lysates

from HeLa cells expressing Bod1-GFP, we identified and quan-

tified 3512 proteins. Of these, 42 were significantly enriched in

affinity purifications from Bod1-GFP expressing cells com-

pared to cells expressing GFP alone as a control (n ¼ 4

biological replicates; electronic supplementary material, table

S1). Gene ontology (GO) term analysis identified 95 centro-

mere- and kinetochore-associated proteins in the Bod1-GFP

affinity purifications (electronic supplementary material,

table S2). Of these, Bod1 itself, Ndc80 and dynein intermediate

chain 1 were significantly enriched in Bod1-GFP affinity puri-

fications compared to controls (figure 3b; electronic
supplementary material, figure S4a). The most reproducible

kinetochore interactor was Ndc80; it was found in all four bio-

logical replicates of the experiment. Furthermore, of all

kinetochore proteins detected, Ndc80 exhibited the highest

fold change in Bod1-GFP affinity purifications compared to

controls. Intensity analysis of the centromeric region in HeLa

cells, co-stained with Bod1 and Ndc80 antibodies, revealed

that immunofluorescence signals of the two proteins overlap

at the outer kinetochore (figure 3c). The mitotic Bod1 interac-

tome also contained components of the SET1B

methyltransferase complex, with significant enrichment of

ASH2 L. This is consistent with previous interaction results

obtained in asynchronous HeLa cells [35].
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Figure 2. PP2A-B56 and Knl1 are dispensable for Bod1 recruitment to kinetochores. HeLa cells were treated with either control siRNA or a smart pool siRNA
targeting all PP2A-B56 isoforms as described previously [11]. After 48 h cells were fixed in paraformaldehyde and stained with (a) the total Bod1 peptide antibody
or (b) a PP2A-B56a isoform-specific antibody. Metaphase control cells or B56siRNA-treated cells showing the characteristic B56-depletion phenotype of metaphase
chromosome alignment defects were imaged. The rightmost panels are magnifications of the same cell (region indicated by white boxes). Total (c) Bod1 and (d )
B56a intensities at kinetochores were quantified. (e) Immunoblot corresponding to the B56-depletion experiments in (a – d) using antibodies against two of the five
targeted B56 isoforms and vinculin as a loading control. ( f ) HeLa cells were treated with either control or Knl1 siRNA for 48 h, fixed in paraformaldehyde, and co-
stained with both total Bod1 peptide antibody and a Knl1-specific antibody. Metaphase cells were imaged for both treatment conditions. The rightmost panels are
magnifications of the same cell (section indicated by white boxes). Total (g) Bod1 and (h) Knl1 intensities at kinetochores were quantified. Single z-sections are
shown for all images. Scale bars are 1 mm. Pairwise comparisons were evaluated by unpaired Student’s t-test. Two-tailed p-values are shown. n ¼ 10 cells per
condition. Error bars represent standard error.
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2.4. Bod1 associates with the Ndc80 complex
To confirm the Bod1–Ndc80 interaction detected by MS

analysis, we performed pull down assays with purified

Bod1-GST on Sepharose beads to validate Ndc80 as a bona

fide Bod1 interactor. Ndc80 localizes to kinetochores as part

of the heterotetrameric Ndc80 complex, consisting of

Ndc80, Nuf2, Spc24 and Spc25 [36,37] (figure 4a). Bod1-
GST coated beads pulled out Ndc80, Nuf2 and Spc24 from

mitotic HeLa cell lysates (figure 4b) (Spc25 was not tested).

In order to determine whether this was a direct interaction

with the complex, we tethered recombinant Ndc80 Bonsai,

a truncated form of the Ndc80 complex containing a GST–

Nuf2–Spc24 fusion and an Ndc80–Spc25 fusion that can be

co-expressed in bacteria [38], to beads and incubated them

with recombinantly expressed Bod1-MBP or MBP alone
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(figure 4c,d). Bod1-MBP interacted strongly with purified

recombinant Ndc80 Bonsai complexes (figure 4e), support-

ing the proteomics and immunofluorescence data. Within

the Ndc80 complex, Bod1-MBP preferentially bound to the

Ndc80/Nuf2–GST dimer over the Spc24–GST/Spc25

dimer (electronic supplementary material, figure S5b,c).

Together these results demonstrate Bod1 is part of the outer

kinetochore and associates with the Ndc80 complex.

2.5. Ndc80 is essential for Bod1 kinetochore recruitment
To test if the Ndc80 complex was necessary for Bod1 kineto-

chore recruitment in cells, we depleted Ndc80 from HeLa

cells using siRNA. Ndc80 depletion also reduced the immu-

nofluorescence signal of its direct binding partner Nuf2

(figure 5). By contrast, we observed only a minor reduction

in Knl1 signal, indicating that Ndc80 siRNA did not destabi-

lize the entire outer kinetochore. Crucially, Ndc80 depletion

resulted in significant loss of Bod1 from kinetochores, conco-

mitant with an increase in localization of B56. The increase in

B56 localization recapitulates our previous observations that

siRNA depletion of Bod1 elevates B56 levels at kinetochores

[9] and suggests that the localization of Bod1 to kinetochores

might limit PP2A-B56 accumulation at these sites.

2.6. Bod1 depletion affects both PP2A-B56 recruitment
and Knl1 phosphorylation

A pool of PP2A-B56 is recruited to kinetochores through

Knl1-bound checkpoint proteins [17,18,29,33,34]. Accordingly,
Knl1 depletion led to a marked decrease in PP2A-B56a

levels (figure 6a,b). We have previously shown that siRNA

depletion of Bod1 leads to an increase in PP2A-B56a at

kinetochores [9]. Therefore, we wanted to determine if

this Bod1-dependent increase of PP2A-B56 levels at kineto-

chores could be prevented by co-depletion of Knl1.

Surprisingly, co-depletion of Bod1 and Knl1 resulted in

PP2A-B56a levels that were intermediate between those

observed in kinetochores depleted of either Knl1 or Bod1

alone. This suggests that Bod1-regulated PP2A recruitment

partially depends on Knl1, although there might also be a

Knl1-independent mechanism to recruit PP2A-B56 to

kinetochores.

To investigate whether the Knl1-associated PP2A-B56

pool was regulated by Bod1, we examined serine 24 and

serine 60 phosphorylation sites within the N-terminus of

Knl1, which are regulated by Aurora B and PP2A-B56

[12,15]. Upon Bod1 depletion, we observed a significant

reduction of Knl1 phosphorylation at both S24 within the

SILK motif and S60 within the RVSF motif (figure 6c,d),

suggesting that increased PP2A-B56 activity in Bod1-depleted

kinetochores directly affects Knl1 phosphorylation.

Dephosphorylation of SILK and RVSF domains increases

PP1 binding to Knl1, which in turn leads to dephosphory-

lation of the MELT motifs within Knll [15,39]. Using an

antibody that recognizes phospho-T943 and phospho-T1155

within two of the Knl1 MELT motifs we examined the

levels of phospho-MELT staining in Bod1-depleted cells.

We observed a 60% reduction in phosphorylation of these

epitopes in Bod1-depleted cells (figure 6c,d). While com-

plete loss of MELT phosphorylation leads to ablation of the
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spindle assembly checkpoint [39–41], the intact checkpoint

response and checkpoint protein recruitment observed in

Bod1-depleted cells [19] suggests that the remaining phospho-

MELT epitopes are sufficient to maintain a checkpoint response

in HeLa cells.

We previously demonstrated that Bod1 also controls

phosphorylation on CENP-U/PBIP1 and other kinetochore

proteins distal from Knl1 [9,19]. To determine if these phos-

phorylation sites were dependent on Knl1-bound PP2A-B56,

we co-depleted Bod1 and BubR1, and measured phospho-

CENP-U/PBIP1 staining. Bod1 and BubR1 co-depletion

significantly rescued CENP-U/PBIP1 phosphorylation when

compared to Bod1 depletion alone (figure 6e). We also

observed a small drop in CENP-U/PBIP phosphorylation

upon BubR1 depletion alone. This is probably due to loss of

BubR1-bound Plk1 [42,43] and changes to mitotic progres-

sion upon loss of BubR1 [44]. Phosphorylated CENP-U/

PBIP1 provides a kinetochore docking site for Plk1 [45].

Therefore, Plk1 docking is dramatically reduced in Bod1

siRNA-depleted cells. However, we observed significantly

increased Plk1 kinetochore levels in Bod1 and BubR1 co-

depleted cells (figure 6f ). Taken together, these results suggest

that Bod1 regulates the activity of PP2A-B56 bound to the

Knl1/checkpoint protein complex, and this not only affects

Knl1 phosphorylation directly, but also the association of

Plk1 with the kinetochore.
2.7. Bod1 depletion results in loss of Ndc80
phosphorylation at its N-terminal tail

Bod1 depletion by siRNA leads to mitotic arrest as cells

are unable to maintain chromosome alignment in metaphase

until anaphase onset [19]. This biorientation phenotype

is accompanied by an increase in syntelic kinetochore–

microtubule attachments, an attachment conformation in

which a pair of sister kinetochores connects to spindle micro-

tubules emanating from the same pole. Such a form of

attachment can lead to erroneous mitosis, aneuploidy and

cell death [46], and therefore needs to be corrected before

cells progress through mitosis. Correction of syntelic attach-

ments is enabled by phosphorylation of outer kinetochore

proteins [4,5,7,47], among them the N-terminus of Ndc80.

Upon phosphorylation, the affinity of these proteins to micro-

tubules is reduced and attachments are destabilized [5]. As

our data suggest that Bod1 both associates with the Ndc80

complex and regulates the phosphorylation of different

phosphoepitopes, we wanted to evaluate if Ndc80 phos-

phorylation is also dependent on Bod1 levels. We probed

Ndc80 phosphorylation at its N-terminal serine 55 (S55) in

Bod1-depleted cells using a phospho-specific antibody

against this site. First, we compared control metaphase cells

with Bod1-depleted cells that exhibited a clear biorienta-

tion phenotype. Bod1-depleted cells with biorientation
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phenotypes exhibited a 65% decrease in Ndc80 phosphoryl-

ation at S55 (figure 7a,b). However, Bod1 depletion and

development of the biorientation phenotype also led to a

small but significant reduction (approx. 30%) in the intensity

of total Ndc80 protein at the kinetochore. We therefore aimed

to understand the effects of Bod1 depletion on Ndc80 phos-

phorylation at S55 in cells just entering mitosis, before

development of the mature chromosome misalignment

phenotype.

To selectively sample cells between nuclear envelope

breakdown and metaphase, we first synchronized cells at the

G2/M transition with RO-3306, a Cdk1 inhibitor [51]. The

cells were then released into mitosis. Their medium was sup-

plemented with the proteasome inhibitor MG132 to limit

mitotic progression to prophase, prometaphase, and meta-

phase (figure 7c). Thirty minutes after RO-3306 release we

assessed both Ndc80 pS55 kinetochore intensities and mitotic

progression. At the early stages of mitosis, when error

correction takes place, Bod1-depleted cells had significantly

lower Ndc80 pS55 levels than control cells (figure 7c). Bod1-

depleted cells also showed a delay in mitotic progression,

even in these early stages of mitosis. After 30 min of release

from the RO-3306 mediated G2/M block, the population of

Bod1siRNA-treated cells had only progressed to prophase or

prometaphase. None of the cells had entered metaphase,

which is consistent with previous findings [19].

Our results suggest a model where Bod1 holds PP2A-B56

activity in check during prometaphase. This ensures that

phosphorylation of Knl1, Ndc80 and other kinetochore sub-

strates can occur, allowing turnover of attachments (figure 7d).

Once amphitelic kinetochore–microtubule attachments are
achieved, we observe rapid dephosphorylation of Bod1 at

T95. We have previously shown that loss of Bod1 phos-

phorylation prevents its inhibition of PP2A-B56 [9]. Active

PP2A-B56 can then dephosphorylate the SILK and RVSF

motifs on KNL1 [15], resulting in recruitment of PP1 [12]

and stabilization of kinetochore–microtubule attachments.

Ndc80 dephosphorylation may be mediated by PP1 and/or

PP2A directly, or indirectly through PP1 inhibition of

Aurora B activation [13].
3. Discussion
Using a combination of proteomics, in vitro recombinant

interaction studies and in vivo siRNA-mediated localization

studies, we have demonstrated that the PP2A-B56 regulator

Bod1 is recruited to kinetochores by Ndc80. Using quantitat-

ive immunofluorescence, we have also shown that Bod1 is

required to prevent premature dephosphorylation of Ndc80

and Knl1 during early mitosis. Together with MCAK S92

[19] and CENP-U/PBIP1T78 [9], we add Ndc80 S55, Knl1

S24 (SILK), Knl1 S60 (RVSF) [5] and two of the multiple

Knl1 phospho-MELT sites, T943 and T1155 [15,52], to the

list of phosphoepitopes at kinetochores affected by Bod1

depletion. Bod1 therefore controls the phosphorylation

of distinct groups of kinetochore proteins, all of which

are implicated in the establishment of proper amphitelic

kinetochore–microtubule attachments.

Bod1 is present at kinetochores throughout mitosis, from

nuclear envelope breakdown until the end of anaphase [19].

Here, quantitative analysis has demonstrated that Bod1
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localization to kinetochores peaks during metaphase. Phos-

phorylation of Bod1 at T95 is essential for its inhibitory

function against PP2A-B56 [9]. In contrast to the total popu-

lation of Bod1, the pool of phospho-T95 Bod1 peaks at

kinetochores during prometaphase. This timing potentiates

the inhibitory activity towards PP2A-B56 when phosphatase

localization to kinetochores is greatest and PP2A activity

needs to be properly regulated to allow correction of

erroneous attachments [11].

We show here that Knl1 depletion reduces PP2A-B56 at

kinetochores. This supports a growing body of evidence that
a pool of PP2A-B56 is recruited to kinetochores in a Knl1/

checkpoint protein-dependent manner [17,18]. However, our

data suggest that there may also be other PP2A-B56 recruit-

ment sites within the kinetochore, as PP2A-B56 levels can be

partially rescued upon co-depletion of Bod1 with Knl1.

This is supported by our previous observation that demon-

strated there was no significant reduction in PP2A levels at

kinetochores in metaphase cells [9]. The site of alternative

PP2A-B56 recruitment remains to be identified.

Inter-complex interactions within the KMN network are

an emerging theme in attachment regulation: the mitotic
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checkpoint kinase Mps1 is recruited to kinetochores through

Ndc80 [14,53–57], but it phosphorylates MELT motifs on

Knl1 [39–41]. Our data suggest that Bod1, also recruited

through Ndc80, can regulate phosphatase activity toward

Knl1 as well as Ndc80, providing another example of function-

ally important interactions between different components

of the KMN network. The mechanisms that control these

interactions remain to be determined.
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4. Material and methods
4.1. Cell lines and cell culture
HeLa S3 cells were maintained in EMEM (Lonza), and sup-

plemented with 10% fetal calf serum, 2 mM L-glutamine,

100 U ml21 penicillin and 100 mg ml21 streptomycin. A cell

line stably expressing Bod1-GFP was generated using HeLa

cells harbouring a single Flp recombination target site in

their genome (a kind gift from Patrick Meraldi [58]) and

maintained in the media described above with an additional

200 mg ml21 hygromycin. Cells lines were maintained at

378C with 5% CO2 in a humidified incubator. For transfec-

tions, cells were seeded in six-well dishes and transfected

with 300 ng plasmid DNA per well using Effectene transfec-

tion reagent (Qiagen) or with 33 nM siRNA oligo duplexes or

medium GC control siRNA (Invitrogen) using lipofectamine

2000 (Invitrogen). Cells were split onto coverslips the next

day. Immunofluorescence staining of the cells and immuno-

blot analysis were performed 48 h after siRNA transfection.

Small molecules used in this study were: Eg5 inhibitor

S-trityl-L-cysteine (STLC) at 5 mM for 18 h. Cdk1 inhibitor

RO-3306 at 10 mM for 10 min (acute Cdk1 inhibition) or over-

night (G2/M arrest). Proteasome inhibitor MG132 at 10 mM

for 30 min.

4.2. Generation of peptide antibodies
To raise the pT95 Bod1 phospho-antibody, sheep were

immunized with the immunogenic phosphopeptide

NH2-CRQKVDNFVS[pT]HLDKQ-COOH, comprising

R86-Q100 of human Bod1. Serum containing the polyclonal

antibody was collected in three batches. To raise the total

Bod1 antibody, not directed against T95, sheep were immu-

nized with a NH2-CRNGLRQSVVQS-COOH peptide,

comprising R112-S122 of human Bod1. The third batch,

obtained 91 days after the initial immunization and 7

days after the third antigen booster injection, was used for

antibody purification. For phospho-antibody purification,

the antibody was first purified using a non-phosphopeptide

NH2-CRQKVDNFVSTHLDKQ-COOH column to deplete

the serum of any pan-specific antibodies. The remainder

of the serum was run over a column containing the phos-

phopeptide, yielding strictly phospho-specific antibodies.

The total Bod1 antibody was purified using only the non-

phosphopeptide column. To prepare the peptide-coated

columns, 5 ml Affigel-10 (Bio-Rad) were activated by con-

secutive treatment with 5% ethylene diamine and 7 mg

IAA-NHS ester. Five milligrams of the respective peptide

in 0.1 M Na phosphate buffer pH7.8 was added to the

fully activated resin overnight. Then, residual iodoacetate

groups were blocked with 0.2% b-mercaptoethanol, and

non-covalently bound peptide was removed by consecutive
washes with 0.1 M NaHCO3, 1 M Na2CO3, water, 0.2 M gly-

cine–HCl pH 2.0, 150 mM NaCl and TBS. The resin was

stored in 0.1% NaN3 in TBS. For antibody purification,

4 ml serum was diluted 1 : 1 with TBS and passed through

a 0.2 mm filter. The diluted serum was run over the pep-

tide-coated column ten times. The column was then

washed with TBS, 0.5 M NaCl, 20 mM Tris–HCl pH7.4,

0.2% Triton-X in TBS, and TBS. A low pH elution was per-

formed with 0.15 M NaCl, 0.2 M glycine–HCl pH2.0

collecting 1 ml fractions with each tube containing 0.1 ml

2 M Tris–HCl pH8.5. After re-equilibrating the pH of the

column by washing with TBS, a second, guanidinium

hydrochloride elution was performed with 6 M guanidine

hydrochloride in TBS. Samples of all fractions were spotted

onto nitrocellulose membranes and protein content was

visualized with Ponceau S (Sigma). All fractions that con-

tained antibody proteins were pooled and dialysed into

TBS overnight. Antibodies were stored in 0.1% sodium

azide (NaN3) in TBS at 48C.

4.3. Immunofluorescence and microscopy
Cells were seeded on coverslips (thickness 1.5) 24 h before

fixation. Cells were pre-permeabilized with ice-cold cytoske-

leton (CSK) buffer (100 mM NaCl, 300 mM sucrose, 3 mM

MgCl2, 10 mM PIPES (pH6.8)) containing 0.1% Triton X-100

for 3 min at 48C before fixation with 3.7% paraformaldehyde

in PBS at room temperature. Samples were re-hydrated with

TBS containing 0.1% Triton X-100 (TBS-T) before transferring

coverslips into a moist chamber for blocking with 1% normal

donkey serum in AbDil (0.25% v/v Tween-20, 2% w/v BSA,

0.1% w/v NaN3 in TBS). Primary antibodies were added,

diluted in AbDil, for 1 h. Cells were carefully washed with

TBS-T and secondary antibodies (1 : 500 in AbDil, Jackson

ImmunoResearch) were added for 30 min in the dark.

Cells were washed again and 4’,6-diamidino-2-phenylindole

(DAPI, Sigma) was added at 1 mg ml21 in TBS for 10 min.

Coverslips were washed with TBS and mounted onto micro-

scope slides by inverting them into mounting medium (0.5%

p-phenylenediamine (Free Base; Sigma) in 20 mM Tris, pH

8.8, 90% glycerol). Primary antibodies included: polyclonal

sheep Bod1 antibodies (0.5 mg ml21), mouse anti-B56a (1 : 100,

BD Biosciences), mouse anti-Ndc80 (1 : 500, Abcam [9G3]),

mouse anti-Nuf2 (1 : 300, Abcam), rabbit anti-CASC5 [Knl1]

(1 : 1000, Abcam), mouse-anti-Plk1 (1 : 500, Upstate), rabbit

anti-Ndc80 (phospho-Ser55) antibody (1 : 300, GeneTex),

rabbit anti-Knl1 (phospho-Ser24) antibody (1 : 2000, a kind

gift from Iain Cheeseman), rabbit anti-Knl1 (phospho-

Ser60) antibody (1 : 2000, a kind gift from Iain Cheeseman),

rabbit anti-Knl1 (phospho-Thr943/1155) antibody (1 : 1000,

a kind gift from Adrian Saurin), rabbit anti- CENP-U/

PBIP1 (phospho-Thr78) antibody (1 : 500, Abcam), rat anti-

tubulin (1 : 500, AbD Serotec), human anti-centromere auto-

antisera [ACA] (1 : 1000, a kind gift from Sara Marshall,

Ninewells Hospital, Dundee). Three-dimensional decon-

volution image datasets were acquired on a DeltaVision

imaging system (Applied Precision) equipped with an Olym-

pus 1-UB836 microscope, CCD camera (CoolSNAP_HQ/

ICX285), and 100�/1.4 NA Plan-Apochromat oil immer-

sion objectives (Olympus). Z stacks were collected 0.2 mm

apart to cover the full volume of DAPI-stained DNA

within each mitotic cell and deconvolved using softWoRx

(Applied Precision).
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4.4. Image analysis
Image data were imported into OMERO and quantification of

kinetochore intensities was performed using OMERO.mtools

[59]. This image analysis is based on interrogating the data as

a volumetric object and not maximum intensity projections.

In brief, a cuboid region of interest was determined around

the DAPI channel across x, y and z. Kinetochores within

these regions were segmented in x, y and z based on

anti-centromere antibody (ACA) staining using Otsu thresh-

olding. To exclude noise, the minimum object size was set

to 70 pixels. Because Bod1 kinetochore staining was mainly

contained within the outer kinetochore, the perimeter of the

ACA-based segmentation mask was expanded by 4 pixels

(0.32 mm) to include the outer kinetochore in the analysis.

The fluorescence signal within this mask was measured in

each additional channel imaged. Background staining was

quantified in a 2-pixel annulus with a 1-pixel gap to the per-

imeter of each segmented mask and the average background

intensity was subtracted from each pixel within the mask.

Fluorescence intensity at each kinetochore was then calcu-

lated as the summed fluorescence intensity within the ACA

mask. All images were stored in OMERO, and figures were

generated using OMERO.figure.
4.5. Affinity purification and immunoblotting
For affinity purification, HeLa S3 cells were arrested in mito-

sis by treatment with 5 mM STLC for 18 h. After gentle

mitotic shake-off, cells were resuspended in lysis buffer

(20 mM Tris acetate pH 7.5, 1 mM EGTA, 1 mM EDTA,

10 mM Na-b-glycerophosphate, 5 mM Na-pyrophosphate,

1 mM Na-orthovanadate, 50 mM NaF, 1 mM microcystin,

0.27 M sucrose, 10 mg ml21 leupeptin, 10 mg ml21 pepstatin,

10 mg ml21 aprotinin), containing 0.01% and 0.05%

Triton X-100 for stable and transient transfections,

respectively, and disrupted with four rounds of freeze fractur-

ing. After depleting insoluble proteins by centrifugation (48C,

10 000 rpm, 5 min), affinity purification was performed using

GFP Binder (Chromotek) for 90 min at 48C and constant agita-

tion. Purified samples were washed and resolved by SDS-

PAGE. Immunoblotting was performed using standard

procedures, and secondary antibody was detected using

either Clarity Western ECL Substrate (Bio-Rad) and X-Ray

films (Kodak) or the Odyssey Clx infrared detection system

(LI-COR). Primary antibodies included mouse anti-B56a

(1 : 500, Abcam), mouse anti-B56d (1 : 500, Abcam), mouse

anti-Ndc80 (1 : 1000, Abcam [9G3]), mouse anti-Nuf2 (1 : 1000,

Abcam), rabbit anti-Spc24 (1 : 1000, Abcam [EPR11548(B)]),

mouse anti-MBP (1 : 20 000, NEB), goat anti-GST (1 : 5000,

Abcam), mouse anti-Vinculin (1 : 10 000, Abcam [SPM227]),

mouse anti-GFP (1 : 1000, Roche), rabbit anti-Bod1 (1 : 500,

Abcam), polyclonal sheep anti-Bod1 (2 mg ml21). Secondary

antibodies were sheep anti-mouse IgG, HRP-linked

(1 : 10 000, GE Healthcare), goat anti-rabbit IgG, HRP-linked

(1 : 5000, Cell Signalling), donkey anti-goat IgG, HRP-linked

(1 : 20 000, Promega), donkey anti-sheep HRP (1 : 20 000,

Sigma), IRDye 680LT donkey anti-mouse IgG (H þ L) (1 : 20

000, LI-COR), IRDye 800CW donkey anti-goat IgG (H þ L)

(1 : 20 000, LI-COR). LI-COR images were quantified using

IMAGESTUDIO software v. 2.0 (LI-COR), with signal intensity

normalized to input protein levels.
4.6. Mass spectrometry
Eight 15 cm plates of stably Bod1-GFP or GFP transfected

cells or two 15 cm plates of transiently Bod1-GFP or GFP

transfected cells were arrested in mitosis, and affinity purifi-

cation using GFP Binder (Chromotek) was performed as

described above. Proteins were eluted with 2� SDS buffer

and the full eluate was run on a 4–12% SDS-PAGE. Bands

were visualized using Coomassie Brilliant Blue and lanes

were cut into four gel pieces. Gel pieces were subsequently

de-stained with ammonium bicarbonate and acetonitrile as

an organic solvent and dried completely in a vacuum centri-

fuge. Cysteine disulfide bonds were reduced with 10 mM

DTT and the resulting thiol groups were irreversibly alkyl-

ated to S-carboxyamidomethylcysteine with 55 mM

iodoacetamide. Excess iodoacetamide was removed and gel

pieces were dried in a vacuum centrifuge before enzymatic

digest of the proteins. In-gel digest was performed with

20 ng ml21 trypsin in 50 mM ammonium bicarbonate at

378C o/n. Tryptic peptides were extracted from the gel by

repeated addition of 0.1%TFA/acetonitrile extraction solution

and sonication. Peptide samples were cleaned for mass spec-

trometry using a C18-Ziptip protocol. Mass spectrometry was

performed on an LTQ Orbitrap Velos Pro instrument

(Thermo Fisher Scientific). Mass spectrometry raw data were

processed in the MAXQUANT software package v. 1.3.0.5 utiliz-

ing the Uniprot Human database (09/08/2012) [60].

Parameters applied include: minimum peptide length ¼ 7,

protein FDR ¼ 0.01, site FDR ¼ 0.01. Peptides with variable

modifications (N-terminal acetylation of the protein, oxMet,

and pyroGlu) and fixed modifications (S-carboxyamido-

methylcysteine) were accounted for in the analysis. Shotgun

proteomics data analysis, including statistical analysis and

GO term analysis, was performed using the PERSEUS software

package v. 1.5.5.3 [61]. Statistical test performed was an

unpaired Student’s t-test with a threshold p-value of 0.05.

4.7. Protein expression and purification
Ndc80 Bonsai and recombinant Ndc80/Nuf2–GST or

Spc24–GST/Spc25 were expressed and purified as described

previously [37,38]. For production of Bod1-MBP and MBP,

5 ml LB medium containing the appropriate selection

marker were inoculated with transformed BL21 E. coli.
After 18 h at 378C, starter cultures were transferred into 2 l

conical flasks containing 500 ml LB medium with the selec-

tion antibiotic. Cultures were grown in shaking incubators

at 378C up to OD600 ¼ 0.4. After adding 100 mM benzylalco-

hol for 30 min at 378C, recombinant protein production was

induced by addition of 0.1 mM isopropyl b-D-1-thiogalacto-

pyranoside (IPTG). Protein expression was allowed for 18 h

at 188C. Bacteria were harvested by ultracentrifugation

(5250g, 48C, 30 min, slow deceleration) and lysed by resus-

pending them in PBS containing a protease inhibitor

cocktail (Roche) and adding 1 mg ml21 lysozyme. Cells

were incubated at 48C under constant agitation for 30 min

after which Triton X-100 was added to a final concentration

of 1%. The suspension was sonicated for 30 s on ice and left

to incubate another 30 min at 48C. The lysate was sonicated

twice more and insoluble debris was pelleted by ultracentri-

fugation (26 000g, 48C, 1 h). For protein purification, 1 ml

amylose resin (NEB) was pre-equilibrated with binding

buffer (50 mM Tris–HCl pH 7.5, 100 mM NaCl, 1 mM DTT)
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and the soluble fraction of the protein lysate was added after

passing through a 0.2 mm filter. Binding was allowed for 2 h

at 48C under constant agitation. The recombinant protein

bound to beads was washed with binding buffer. To elute

the protein, 500 ml binding buffer containing 20 mM maltose

were added and samples were incubated for 90 min at 48C
under agitation. The supernatant was transferred into a

Slide-A-Lyzer dialysis cassette (Pierce) and dialysed into

interaction buffer (20 mM Tris–HCl, 20 mM NaCl, 10%

glycerol, 1 mM EGTA, 1 mM DTT) over night. The concen-

tration of dialysed protein was determined using a

Bradford colorimetric assay. If protein concentrations were

below 0.2 mg ml21, protein solutions were concentrated

using Vivaspin columns (GE Healthcare) at 4750 rpm, 48C.

Proteins were aliquoted and stored at 2808C.

4.8. Pull down experiments
For in vitro binding studies, 150 pmol Ndc80Bonsai, coupled

to glutathione beads, were pre-incubated with 0.01% insulin

in interaction buffer (20 mM Tris–HCl, 20 mM NaCl, 10%

glycerol, 1 mM EGTA, 1 mM DTT, Complete protease inhibi-

tors (Roche)) for 20 min at 48C. 1 nmol MBP or Bod1-MBP

was added to the beads and binding was allowed to take

place for 1 h at 48C. After washing with interaction buffer,

proteins were eluted with SDS loading buffer and all eluate

was loaded for immunoblot analysis. Of note, 25 pmol MBP

or Bod1-MBP were loaded as input controls. Band intensity

was determined using the IMAGESTUDIO software package.

Total amount of protein in the pull down was determined

by using the input as a reference.

4.9. Statistical analysis
Statistical significance tests were performed using SIGMA PLOT

v. 12.5 (Systat Software Inc.). For pairwise comparison, data-

sets were tested for normal distribution and then analysed

by unpaired Student’s t-test (for Gaussian distributions) or

Mann–Whitney rank sum test (for non-Gaussian distri-

butions). For group-wise comparison, datasets were

compared by Kruskal–Wallis one-way analysis of variance
(ANOVA) on ranks, followed by pairwise multiple comparison

procedures (Dunn’s Method).
4.10. siRNAs
Knl1 was depleted using 50-GCAUGUAUCUCUUAAGGAA-

30 [15]. siRNA targeting Bod1 was 50-GCCACAAAUAGAAC

GAGCAAUUCAU-30 [19]. Ndc80 was depleted using an

siRNA with the sequence 50-AAGTTCAAAAGCTGGATGA

TCTT-30 [62]. BubR1 was depleted using 50-AGAUCCUGG

CUAACUGUUC-30 [15]. All isoforms of the B56 PP2A regu-

latory subunit were depleted using a pool of 50-GCUC

AAAGAUGCCACUUCA-30 (B56a/PPP2R5A), 50-CGCAUG

AUCUCAGUGAAUA-30 (B56b(PPP2R5B)), 50-GGAUUUG

CCUUACCACUAA-30 (B56g/PPP2R5C), 50-UCCAUGGAC

UGAUCUAUAA-30 (B56d/PPP2R5D), 50-UUAAUGAACU

GGUGGACUA-30 (B561/PPP2R5E), described in [11]. Stealth

RNAi siRNA Negative Control, Med GC (Invitrogen) was

used for control transfections.

Data accessibility. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium [63] via the PRIDE
partner repository [64] with the dataset identifier PXD006322. Original
microscopy data can be accessed at http://dx.doi.org/10.17867/
10000109.
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