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1 | INTRODUCTION

| Lixia Ren

| Shiging Song | XiaMa | Yuzhi Rong

Abstract

Microorganism species and inoculation fermentation methods have great influence
on physicochemical and flavor properties of rice wine. Thus, this work investigated
microbial interactions and physicochemical and aroma changes of rice wine through
different inoculation strategies of Wickerhamomyces anomalus (W. anomalus) and
Saccharomyces cerevisiae (S. cerevisiae). The results underlined that inoculation strate-
gies and non-Saccharomyces yeasts all affected the volatile acidity, total acidity, and
alcohol content of rice wine. The sequential cofermentation consumed relatively
more sugar and resulted in the higher ethanol content, causing reduced thiols and
increased alcohols, esters, phenylethyls, and terpenes, which was more conducive to
improve rice wine flavor than simultaneous cofermentation. Moreover, simultaneous
cofermentation increased fatty aroma of rice wine, while sequential cofermentation
increased mellow and cereal-like flavor. These results confirmed that sequential co-
fermentation of S. cerevisiae and W. anomalus was a choice for the future production

of rice wine with good flavor and quality.
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fermentation has a long production cycle, which is greatly affected

by climate and temperature. Since the quality of mixed bacteria is

Rice wine is one of the oldest low-alcohol brewing wines and popular
around the world due to its intense-rich mellow taste and distinct
aroma (Jiang, Mu, Wei, Mu, & Zhao, 2020; Liu et al., 2015; Park, Liu,
Park, & Ni, 2016; Yang, Xia, Wang, Yu, & Ai, 2017). Presently, rice
wine brewing in the world is based on koji as the natural starter in

an open environment (Sun, Liu, & Wang, 2020). The use of koji for

unstable and potential contamination seriously affects the flavor
characteristic of rice wine, especially the sour and spicy taste, many
researchers begin to use main microorganisms in koji for fermenta-
tion (Lai, Cheng, Lai, Lai, & Ishaq, 2019; Wei, Wang, Zhang, Yuan,
& Yue, 2019; Yang et al., 2017). The saccharified rice solution has

high monosaccharide content and improved flavor, which has been

Abbreviations: DVB/CAR/PDMS, divinylbenzene/carboxen/polydimethylsiloxane; GC-MS, gas chromatography-mass spectrometry; HS-SPME, headspace solid-phase microextraction;
PCA, principal component analysis; S. cerevisiae, Saccharomyces cerevisiae; W. anomalus, Wickerhamomyces anomalus.
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widely applied in the food and beverage industry. However, few
reports were involved in the changes of main functional microor-
ganisms and flavor substances for saccharified rice solution during
fermentation.

Fungi molds and yeasts are used as main starter in rice wine,
which are responsible for starch degradation and alcohol fer-
mentation, respectively (Sanoppa, Huang, & Wu, 2019; Yang
et al.,, 2017). Meanwhile, wine industrial fermentation tends to
use S. cerevisiae to ensure the smooth progress of wine fermen-
tation, but that reduces the flavor diversity of wine to some ex-
tent (Krogerus, Magalh3es, Vidgren, & Gibson, 2017). Recently,
research has found that the microbial and brewing characteris-
tics of non-Saccharomyces impact on wine flavor positively (Ciani
et al., 2016; Kutyna, Varela, Henschke, Chambers, & Stanley, 2010;
Varela, Sengler, Solomon, & Curtin, 2016). It can synthesize many
kinds of enzymes and transform the precursor materials into ester,
acid, higher alcohol, and other flavor substances, while causing
weak alcohol resistance, low fermentation power, and high yield
of acetic acid (Ciani et al., 2016). It has been reported that mixed
mold cultures can influence flavor compounds in the fermentation
process of rice wine production (Liu, Yang, et al., 2019; Yang et al.,
2019).

Presently, mixed fermentation of different yeast strains was
used in rice wine brewing. Among them, simultaneous cofermen-
tation means that non-Saccharomyces yeasts and S. cerevisiae are
inoculated at the same time, while sequential fermentation means
that S cerevisiae is inoculated 1-3 days later after non-Saccharomy-
ces yeasts are inoculated (Shi, Wang, Chen, & Zhang, 2019). Acidity
and astringency were the lowest in mixed co-inoculations, mouth-
feel and bitterness were the lowest in S. cerevisiae wines, and tasters
were preferred to mixed co-inoculated wines (Minnaar, du Plessis,
Jolly, van der Rijst, & du Toit, 2019). The contents of alcohols were
significantly decreased by cofermentation of S. cerevisiae with
Torulaspora delbrueckii, but the contents of esters were increased
(Liu, Laaksonen, & Yang, 2019). Furthermore, the sequential fer-
mentation of Hanseniaspora uvarum and S. cerevisiae improved the
contents of medium-chain fatty acid ethyl ester compared with their
simultaneous cofermentation (Hu, Jin, Mei, Li, & Tao, 2018). Previous
studies have reported that S. cerevisiae and non-Saccharomyces did
not coexist passively. Instead, they showed interesting interactions
that may affect quality of wine (Lencioni et al., 2016). Due to its
specific winemaking properties, it may have an additive effect on
the flavor and aroma of rice wine. For example, Yang et al. (Yang
et al., 2017) studied the volatile compounds of Chinese rice wine
fermented by S. cerevisiae FC 15 and S. cerevisiae BR 30, finding that
mixed fermentation rice wine has been highly scored in the over-
all sense, which indicated that the flavor characteristic of Chinese
rice wine can be adjusted by the combination of yeast fermenta-
tion. Previous studies pointed that W. anomalus was the main strain
producing ethyl acetate, which made a special contribution to the
Baijiu flavor and quality (Fan et al., 2019). Our previous research also
found that W. anomalus fermentation produced a large amount of

esters and alcohols, which had a strong fruit flavor (Chen, Ren, Li, &

Ma, 2020). However, the effects of mixed fermentation of W. anom-
alus and S. cerevisiae on aroma and chemical components of rice wine
have not been reported.

Thus, this study focused on evaluating the effects of simul-
taneous and sequential cofermentation of W. anomalus with S.
cerevisiae on aroma, microbial interactions, and physicochemical
changes of rice wine through different inoculation strategies.
Principal component analysis (PCA) was used to evaluate the in-
fluence of inoculum type and inoculation method on volatile com-
pound profile of rice wine. Our study was expected to provide
a new starter culture and inoculation method for the rice wine

production.

2 | MATERIALS AND METHODS
2.1 | Strains and media

S. cerevisiae (SITCL254) and non-Saccharomyces yeasts (SITCY125)
with high fermentability and fragrance production had been iso-
lated from Kijo of Ningbo in Zhejiang and Chongming in Shanghai,
respectively. Identification was corroborated by sequencing the D1/
D2 variable domains of the 26S rRNA, and their colony morphology
is shown in Figure 1.

Glutinous rice was purchased from Chongming. All chemicals
and reagents were purchased at Tansoole. 2-Octanol standards of

chromatographic grade were purchased from Sigma-Aldrich.

2.2 | Saccharification of rice

The glutinous rice was completely grinded to powder, passed
through a 60-mesh sieve, and stored at ~20°C until used. Fifty grams
of glutinous rice flour was mixed with distilled water at a certain ratio
(1:8 w/v), followed by soaking in a 90°C water bath for 15 min for
starch gelatinization. Then, the rice was cooled down to room tem-
perature, and amylase was added (1000 U/g, 0.16%, rice) to water
bath at 80°C for 45 min, cooling to room temperature; glucoamylase

The colonies are white, -~ ="~ """~ ~. The colonies are milky
round and raised, shiny, ‘. SITCY125_ white, round, wrinkled
and the edges are neat. with ringed edges, oval

cells.

FIGURE 1 Colony morphology of selected strains SITCL254 and
SITCY125 on WLN medium
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was added (5000 U/g, 4.8%, rice), bathed at 60°C for 6 hr, and auto-
claved at 121°C for 30 min.

2.3 | Fermentation conditions

Four types of rice wine were prepared as follows: (a) inoculated at
5.05 x 10% CFU/mL SITCL254, (b) inoculated at 5.05 x 10° CFU/
mL SITCY125, (c) co-inoculated at 5 x 10* CFU/mL SITCL254, and
5 x 10° CFU/mL SITCY125, and (d) inoculated at 5 x 10® CFU/mL
SITCY125, followed by sequential inoculation of 5 x 10* CFU/mL
SITCL254. Fermentations were done in triplicate at 28°C under
static conditions. Sampling was carried out every 12 hr to analyze
microbial colony count, reducing sugar content, and pH until the
end of fermentation. Starter cultures of all yeast strains were grown
YPDA liquid medium at 28°C for 24 hr and 120 r/min and were used
to start the rice wine fermentation.

2.4 | Measurement of physiochemical properties

Rice wine samples were clarified and centrifuged at 8,000 rpm for
8 min and then stored at -4°C. The 3,5-dinitrosalicylic acid (DNS)
colorimetric method was used to determine the reducing sugar in
the rice wine. WLN medium was used to distinguish the SITCY125
from SITCL254 according to the different color and size of their
colonies on plates. Changes in pH were monitored using a pH meter
(Mettler Toledo). Alcohol, total acidity, and volatile acidity were de-
termined through methods recommended by Agricultural Industry
Standard of the People's Republic of China (NY/T 1885-2017). Total
acidity was expressed as lactic acid (g/L), and volatile acidity was
expressed as acetic acid (g/L).

2.5 | Analysis of the volatile compounds by HS-
SPME/GC-MS

Volatile compounds were identified and quantified as described by
Yu et al. (Yu, Xie, Xie, Ai, & Tian, 2019), with slight modifications.
The volatile compounds were extracted by headspace solid-phase
microextraction with 50/30 um DVB/CAR/PDMS fiber (Supelco,
Bellefonte, PA, USA) and analyzed using gas chromatography-mass
spectrometry (GC-MS). Agilent 7,890 gas chromatograph with a HP-
INNOWax column (30 m x 0.25 mm x 0.25 pum, Agilent) coupled to
an Agilent 7,890 mass spectrometer was used. 4 ml rice wine sam-
ples, 1.5 g NaCl, and internal standard (2-octanol, 1,760 pg/L) were
held in the 20 ml headspace bottle, which was stirred by a magnetic
bar in the 50°C water bath for 15 min. After that, the fiber was ex-
posed to the sample headspace for 30 min and immediately followed
by desorption of the fiber in the gas chromatography injector at
250°C for 5 min. The GC was operated at the following conditions:
initial temperature of 40°C increased to 100°C at 3°C/min and then

to 230°C at 10°C /min, a temperature at which it was maintained for

8 min. The injector and detector temperature were all set at 250°C.
The flow rate of the carrier gas (helium, 99.999%) was 1 ml/min. The
mass spectrometer was operated in electron impact ionization mode
at 70 eV, and ion source temperature was 230°C. Compounds were
identified by comparing their retention time and MS spectra with
their standard compounds, and other compounds were identified
by comparing the MS fragmentation patterns which were obtained
from database NIST11.

2.6 | Comparison of the odor activity of rice wine

Comparison of the aroma quality of different processed rice wine
samples by the accumulated odor activity values of various volatile
components (i.e., the ratio of the content of aroma components to
the olfactory threshold, odor active value, OAV). First of all, the
OAVs of the same chemical aroma components were calculated
(le OAV). The accumulated value matrix of aroma activity is [X;].
Among them, i represents different chemical categories and j repre-
sents different processed samples, and then through normalization
(i.e., divided by the maximum value of the corresponding category
in different processes, X, max), map to [0, 1] interval, and get the
matrix [Yij]. The radar images of Yij were used to show the changes
of odor activity of different chemical aroma components in different
processed wine samples, and the quality of aroma was compared.

2.7 | Statistical analysis

Microbial cell enumeration and physicochemical tests were con-
ducted in triplicate. The results were presented as means + stand-
ard deviation. Significant differences among means were tested
by one-way analysis of variance (ANOVA) using SPSS Statistics
Software (IBM, version 21) at p < .05, and Duncan test was applied
for comparison of means. Data and charts were done by Microsoft
Office 2010 and Origin 2018. Principal component analysis (PCA)
was performed to reduce the dimensionality of the dataset and show
the differences in volatile compounds among the rice wine samples.
Hierarchical clustering and heat map visualization of volatile com-
pounds in different rice wine samples were performed with Origin
2018 after the Z-score standardization.

3 | RESULTS AND DISCUSSION

3.1 | Microbial concentration and physiochemical
properties of rice wine after different fermentations

According to a previous pure fermentation experiment, W. anomalus
needs to reach 10® ~ 107 cfu/mL to start fermentation in order to
prevent the vigorous propagation of S. cerevisiae, and two inocula-
tion concentrations of 5.0 x 10 cfu/mL and 5.0 x 10* cfu/mL were

selected, respectively, in this study.
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Figure 2 shows the pure culture fermentation, and S. cerevisiae
grows faster than W. anomalus. Although the initial inoculation amount
of S. cerevisiae was not high, the cell concentration reached 108 cfu/
mL in 24 hr. In the mixed fermentation, the number of W. anomalus
decreased rapidly after reaching its maximum of 8.51 x 107 cfu/mL.
It may be related to the competitive effect of nutrients in the mixed
fermentation, the formation concentration of toxic substances (such
as ethanol), the population induction of cells, and other factors. In
contrast, S. cerevisiae maintained a relatively stable rate at a higher
order of magnitude (107-108 cfu/mL) until the end of fermentation
after reaching its maximum quantity. The results showed that there
was obvious competition between the two kinds of yeast. This is con-
sistent with the previous results. S. cerevisiae can use the nitrogen
source in the substrate faster and more effectively (Liu, Arneborg
N, & Toldam-andersen, 2017), which shows higher fermentation ca-
pacity than non-Saccharomyces yeasts in mixed fermentation (Ruiz
et al., 2019). Furthermore, in the simultaneous cofermentation, S.
cerevisiae still kept a high colony number at the end of fermentation.
It indicated that S. cerevisiae was the dominant yeast, which was
similar to the conclusion of Luan (Luan, Zhang, Duan, & Yan, 2018).
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The maximum biomass of W. anomalus and S. cerevisiae in sequential
cofermentation was significantly higher as compared with those in
simultaneous cofermentation. It showed that sequential cofermenta-
tion could reduce the inhibition of S. cerevisiae on W. anomalus from
Figure 2d, which were also observed by Shi (Shi et al., 2019). This may
be due to the synergistic effect between S. cerevisiae and W. anom-
alus in the sequential cofermentation process, and the relationship
between them needs further study.

Sugar is the important substrate of alcohol fermentation.
Sequential cofermentations had the fastest sugar consumption than
simultaneous cofermentation (Lu, Chua, Huang, Lee, & Liu, 2017; Wei
et al., 2020). Compared with the S. cerevisiae, the access of non-Sac-
charomyces yeasts to a certain extent delayed the fermentation
process, which is a reflection of the relatively weak fermentation
capacity (Domizio et al., 2011). The pH value of fermentation broth
shows the same change trend under different strains and their mixed
fermentation modes. When the pH value drops to a certain extent, it
will rise slowly. Yeasts use sugar in the fermentation broth for growth
and reproduction and produce a large number of acid substances, so
the pH value in the fermentation broth decreases. In the later stage of

(b)
9.0 7 - 120 58
85
] n 4 v.
100 } 56
75 4
] ;/- 0 F 54
7.0 /6/
6.5 Fe |52
6.0
4 Fso
55
50 4
—v— Log cf/mL [SITCL254] N
45 4 —B Reducing Sugar (g/L)
—0—pH -
40 —————7———7———7——% 0 Ll4s
0 12 24 36 48 60 72
Time (h)
(d)
9.0 - - 120 58
85
%0 A/l>< - 100 F 5.6
> SE——
75 -
] Fso |54
7.0 A /
Y
6.5 R
6.0 -
E . - 40 F 5.0
5.5 4 +S. cerevisiae
] l n i/ F
50 {1 —a— LogefumL[SITCY125] oo | oas
1 —v—Logcfu/mL[SITCL254] v > :
45 - —M— Reduwing Sugar 3
{1 —e—pH
4.0 . . . . 0 Luas
0 2 24 36 48 60

Time (h)

FIGURE 2 Growth kinetics, reducing sugar, and pH of W. anomalus and S. Cerevisiae growth during rice wine fermentation with pure
culture of W. anomalus (a), pure culture of S. Cerevisiae (b), simultaneous cofermentation of W. anomalus/S. Cerevisiae (c), and sequential

cofermentation of W. anomalus/S. Cerevisiae (d)
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fermentation, yeast is in the stage of vigorous alcohol fermentation,
and some acids react with alcohols produced in the fermentation pro-
cess and increase pH value (Kai, Guo, Yin, & Yong, 2018).

3.2 | Analysis of physicochemical characteristics

Physicochemical characteristics of rice wine samples in different fer-
mentations are shown in Table 1. The mass concentration of reduc-
ing sugar in rice wine was lower than 4 g/L, which indicated that rice
wine had been fermented completely. The ethanol volume fraction
of S. cerevisiae pure-fermented rice wine was the highest, compared
with mixed fermented wine. The results showed that S. cerevisiae
had the strongest ability of reducing sugar transformation. The total
acid mass concentration was between 4.32 and 5.02 g/ L. There
were some differences among rice wines, and the difference in vola-
tile acid content was the most significant. The concentration of vola-
tile acids in S. cerevisiae-fermented rice wine reached 0.36 g/L, while
the mass concentration of volatile acids in simultaneous cofermen-
tation and sequential cofermentation rice wine was only 0.22 and
0.25 g/L. Cofermentations had lower volatile acidity than S. cerevi-
sige fermentation, which was in accordance with results reported by
Liu (Liu, Laaksonen, Kortesniemi, Kalpio, & Yang, 2018). The acidity
of simultaneous cofermentation was lower than that of sequential
cofermentation. These results indicated that fermentation methods,
inoculation methods, and non-Saccharomyces yeasts may affect the

volatile acidity, total acidity, and alcohol content of rice wine.

3.3 | Volatile compounds of rice wine samples in
different fermentations

Aroma is one of the most important indicators to measure the qual-

ity of rice wine. In this study, ninety-one aroma compounds were

TABLE 1 Physicochemical characteristics of rice wine samples in
different fermentations

Residual sugar Alcohol content Total acidity

Wines (g/L) (%, v/v) (g/L)

P-254 3.60+0.05? 6.47 +0.21° 4.32 +£0.24
a

P-125 3.75+0.25" 417 +0.19° 5.02 +0.17
c

SiF 215+0.10° 5.49 £0.19° 491 +0.03
b

SeF 3.96+0.17 577 +0.27° 4.48 + 0.08

a

Abbreviations: P-125, pure fermentation of W. anomalus; P-254, pure
fermentation of S. cerevisiae; SeF, sequential inoculation fermentation
of W. anomalus/S. cerevisiae; SiF, simultaneous inoculation fermentation
of W. anomalus/S. cerevisiae.

Data show average of triplicates + SD. Different letters within columns
indicated differences among wine samples determined by the Duncan
test at 95% confidence level.

CWILEY-Z

identified in different fermentation wine samples as shown in
Table 2. The odor activity value (OAV) is a commonly index used
to evaluate the contribution of volatile components of rice wine to
the actual aroma. It is widely used in the screening and identifica-
tion of key odor active compounds in food and can be calculated
by the ratio of the concentration to the olfactory threshold of the
substance (Wang, Capone, Wilkinson, & Jeffery, 2016). It is generally
believed that an OAV greater than 1 indicates that it contributes to
the odor, and a larger odor activity value indicates a greater individ-
ual contribution of the compound. Compared with S. cerevisiae and
W. anomalus fermentation (376.72 and 766.49 mg/L, respectively),
higher content of varietal aroma compounds was detected from
cofermentation wine samples. Compared with the corresponding
simultaneous cofermentation (870.07 mg/L), varietal aroma com-
pounds (1568.17 mg/L) in sequential cofermentation were higher.
These results indicated that the varietal aroma content was affected
by the use of non-Saccharomyces, fermentation method, and inocula-
tion strategies. This result was in agreement with a previous study
(Wei et al., 2020).

Alcohol is one of the most important component types in
the rice wine. Higher alcohols are mainly produced by transami-
nation of amino acids as substrates and reduction of alcohol de-
hydrogenase. Compared with pure fermentation of S. cerevisiae
(127.19 mg/L), the content of higher alcohols in cofermentations
was significantly increased, which was in agreement with a pre-
vious report which pointed that more ethanol was produced in
mixed culture fermentation with S. cerevisiae and W. anomalus
fermentation and accumulation of primary metabolites could
influence microbial interaction, end-product flavor, and Baijiu
quality (Zha, Sun, Wu, Yin, & Wang, 2018). Moreover, the con-
tent of higher alcohols was also higher in the simultaneous cofer-
mentation (294.85 mg/L) than that in sequential cofermentation
(414.87 mg/L). It has been reported that when the concentration
of higher alcohols exceeds 400 mg/L, they have a negative ef-
fect on wine flavor, and the concentration of 300-400 mg/L is
acceptable, whereas the optimal level (below 300 mg/L) imparts a
pleasant character (Luan et al., 2018). These results indicated that
the simultaneous cofermentation of non-Saccharomyces yeasts
and S. cerevisiae was more conductive to producing appropriate
content of higher non-Saccharomyces yeast alcohols in the wine.
Interestingly, 3-methyl-1-butanol which was reported to have the
nail polish odor (Liu, Yang, et al., 2019) was not detected in se-
guential cofermentations and relatively abundant especially in the
rice wine from the pure fermentation of S. cerevisiae and simulta-
neous cofermentation. The reason may be that W. anomalus can
provide nutrients for S. cerevisiae in the later stage of fermenta-
tion, or W. anomalus has some enzyme activities, which can pro-
vide nutrients for S. cerevisiae. Additionally, C, alcohols usually
have the characteristics of "plant” and "turf," which have a neg-
ative impact on the aroma of wine (Luan et al., 2018). Compared
with S. cerevisiae, C, alcohol (3-methyl-pentanol) was not detected
in sequential cofermentation. Sequential cofermentation method

can effectively decrease C, alcohol formation. The high alcohol in
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sequential cofermentation had a similar response to rice as other
three ways of fermentation, but their amounts were higher than
those of them, especially with phenylethyl alcohol, 1-propanol,
2-ethyl-1-hexanol and glycerin (contributing to “smoothness,”
“sweetness,” and “complexity” notes for wine) (Binati et al., 2020),
and the total contents. The increase of 2-phenylethanol during
mixed fermentation seems to be related to the synergistic effect
of these two different strains. In pure culture, both of yeasts are
producers of low-2-phenylethanol, as previously noted for other
pairings of yeast species (GOBBI, Comitini, Domizio, Romani, &
Lencioni, 2013). This indicated that sequential cofermentation had
a relatively strong ability to synthesis higher alcohol.

Esters (including acetate esters and fatty acid ethyl esters)
were one of the main products of fermentation, and it is mainly
produced by yeast metabolism and esterification reaction in
wine, with flower and fruit fragrance (Cao, Wu, & Weng, 2020).
Compared with pure fermentation, the content of total esters in
sequential cofermentation was higher. Cofermentations signifi-
cantly enhanced the production of ethyl acetate, hexanoic ethyl
ester, and acetic acid phenethyl ester. Interestingly, sequential
cofermentation produces significantly higher amounts of hexa-
noic ethyl ester and acetic acid phenethyl ester than simultaneous
co-inoculation. This may be due to the sequential cofermentation
of non-Saccharomyces yeasts and S. cerevisiae contributed to the
formation of esters, which was also reported by other research-
ers (Shi et al., 2019; Tristezza et al., 2016; Zhang, Luan, Duan, &
Yan, 2018). The mixed fermentation of W. anomalus and S. cerevi-
siae not only increased the yield of ethyl acetate, but also increased
the content of other flavor substances such as -phenethyl alcohol
and phenethyl acetate, which provided an opportunity to change
the aroma and flavor of liquor (Fan et al., 2019). In addition, it is
reported that low concentrations of ethyl acetate (<150 mg/L)
will bring fruity and pleasant aromas to wine (Xiao et al., 2015).
Since the concentrations of ethyl acetate ranged between 2.80
and 8.44 mg/L in our study, it was likely that the presence of this
compound positively affected rice wine quality.

When the concentration of fatty acids is low, they are creamy
and cheesy, while when the concentration is too high, they will pro-
duce sour and sour taste (Niu et al., 2019). The highest total amounts
of fatty acids, decanoic acid, and octanoic acid were produced in
pure fermentation of W. anomalus, that W. anomalus strains pro-
duced lower levels of fatty acid (decanoic acid) than S. cerevisiae.
It was interesting to notice that the octanoic acid in sequential co-
fermentation was 61.89% lower than that in pure fermentation of
W. anomalus. This meant that the rice wine aroma is more harmo-
nious and balanced. Likewise, in mixed fermentation, the content
of hexanoic acid and octanoic acid is higher than that of pure fer-
mentation. These results indicated the sequential cofermentation
of non-Saccharomyces yeasts and S. cerevisiae would contribute to
the formation of fatty acid in the wine. This conclusion is consistent
with the previous results of Ma and Wang (Ma, Yan, Wang, Zhang, &
Tao, 2017; Wang, Tao, Wu, An, & Yue, 2017).

CWILEY--®

Terpenes have strong physiological activity to the human body.
Generally, it exists in the form of glycosides, which also contributes
to the aroma of wine. The mixed fermentation of S. cerevisiae and
W. anomalus was beneficial to the formation of citronellol (strong
smell of rose) (Pratibha et al., 2018), which was not detected in pure
fermentation. The content of terpenoids produced by sequential co-
fermentation was the highest, reaching 7.33 mg/L. Compared with
pure fermentation, the content of linalool (lavender), geraniol (rose),
and 6-methyl-1-heptene slightly increased after mixed fermentation.
Therefore, sequential cofermentation can improve the aroma com-
plexity of rice wine.

2-Octanone and 2,4-Bis(1,1-dimethylethyl)-phenol were also
detected in the rice wine samples, which contributed to the wine
body balance. 2,4-bis(1,1-dimethylethyl)phenol (medicinal, tobacco
and phenolic flavors) was detected in the fermentation process of
rice wine, but the content of 2,4-Bis(1,1-dimethylethyl)-phenol in
the sequential co-fermentation rice wine samples was higher than

pure fermentation samples.

3.4 | Cluster heat map of volatile aroma compounds
in different fermentations

According to the content of flavoring substances in different fer-
mentation method (Table 2), a cluster heat map was applied to
visualize the differences of aroma compounds among different fer-
mentations (Figure 3). The flavoring substances of rice wine with
different fermentation methods show different trends in general.
Moreover, the aroma compounds were divided into two classes.
Class | mainly included acetic esters, fatty acid ethyl esters, higher
alcohols, and terpene compounds. Class Il mainly contained some
kinds of C, compounds, but some kinds of higher alcohols, fatty acid
ethyl esters, and other esters were also included. The simultane-
ous and sequential cofermentations were rich in class | compounds,
while pure fermentations were abundant in class Il compounds. The
results showed that the aroma compound compositions of simul-
taneous cofermentation were closer to those of sequential cofer-
mentation, which indicated that different inoculation strategies of
cofermentations produced wine with different aroma composition
profiles. The high content of ethyl ester could make the wine present
cheese flavor, fruit flavor, and fatty acids present cream and cheese
flavor at low concentration, and sour and rotten flavor will be pro-
duced at high concentration (Jolly, Varela, & Pretorius, 2014; Varela
et al., 2016). Phenylethanol is a shikimic acid derivative, with rose-
like, bitter, sweet, and peach aromas (Yu et al., 2019); isoamyl alcohol
(malt aroma) as a typical representative of grain aroma in wine and
the main component of higher alcohols, with apple brandy aroma
and pungent taste (Jolly et al., 2014). High content of C, compounds
would make wine present pungent and sour taste, while terpene
compounds would give wine flower and fruit aroma, and improve
the complexity of wine aroma. These results show that sequential

cofermentations can improve the quality and sensory of rice wine.
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FIGURE 3 Hierarchical clustering and heat map visualization of volatile compounds of rice wine samples in different fermentations

3.5 | Principal component analysis of rice wine
aroma components in different fermentations

In order to better explain the differences between the biological
species and their inoculation sequence on the volatile compounds of
rice wine, 62 aroma components (OAV > 1) were selected for prin-
cipal component analysis (Figure 4). The first two principal compo-
nents (PC) accounted for 75% of total variance, whereby the first and
the second PC, respectively, explained 45.8% and 29.2%. Therefore,

the first two principal components can effectively explain variable

information. Pure fermentations were positioned in positive PC1
region with higher amounts of 1-butanol, 1-pentanol, 2-furanmetha-
nol, furfural, maltol, and 1-(2-furanyl) ethenone, suggesting that
pure fermentations are not sufficient to develop complex aroma
profiles. On the other hand, simultaneous cofermentation and se-
quential cofermentation are positioned on the negative part mainly
due to their higher levels of acetate esters, ethanol, 1-heptanol,
citronellol, 3-(methylsulfonyl)-1-propanol, benzoic acid ethyl ester,
2-methyl-phenol, acetic acid, heptanoic acid, and nonadecane. This

is consistent with the results of the above cluster heat map analysis.
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FIGURE 4 Principal component
analysis of varietal volatiles obtained from
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FIGURE 5 The cumulative odor activity comparison of different
volatile chemicals from rice wine samples by different fermentation
treatments

Interestingly, sequential inoculation was distinguished from co-inoc-
ulation on PC2 (29.2%). However, pure fermentation of W. anomalus
produces more aroma substances and more harmonious flavor than
pure fermentation of S. cerevisiae. And cofermentation accounted
for significantly higher numbers of volatile compounds indicating
production of more complex aroma profiles. These results illustrated
that distinctive aroma compound profiles were affected by microbial
species and different inoculation strategies. Simultaneous cofer-
mentation rice wine samples would present varietal aroma and low
rancidity, whereas sequential cofermentation would take on fruity
flavor and rich and mellow fragrance according to their aroma com-
pound composition. The PCA results indicated all rice wine samples

were clearly differentiated, indicating that the microbial species and

3.6 | The cumulative odor activity comparison of
different volatile chemicals from rice wine samples by
different fermentation treatments

The OAV of the volatile components of different chemical categories
in the tested rice wine was accumulated, and the data between dif-
ferent fermentation treatments were normalized. The comparison
results are shown in Figure 5. Compared with pure fermentation of
S. cerevisiae, pure fermentation of W. anomalus has obvious advan-
tages in the odor activity values of some alcohols and aldehydes,
which is related to 1-butanol, 5-methylfuran-2-carbaldehyde, maltol,
and other substances. Fatty taste at low concentration is beneficial
to increase the complexity of aroma, while pure fermentation of S.
cerevisiae isoamyl alcohol, 3-methylbutanal, and other substances
has low odor activity. Mixed fermentation improves the odor ac-
tivity of fermented aroma components in rice wine. Simultaneous
cofermentation has obvious advantages in the odor activity of ke-
tones and acids, which is related to decanoic acid and heptanoic
acid. Furthermore, there is higher 1-hexanol, 1-octanol odor activity.
Sequential cofermentation improves the odor activity of alcohols,
phenols, and aldehydes, especially terpenoids, but decreases in es-
ters. This was related to phenylethyl alcohol, 1-propanol, 2-methyl-
1-propanol, 2-ethyl-1-hexanol, citronellol, and other substances.
According to the aroma characteristics of various odor components
in rice wine fermentation (Yang et al., 2019; Yu et al., 2019), pure
fermentation of S. cerevisiae rice wine sample has a better fatty
and herbaceous aroma and pure fermentation of W. anomalus rice

wine sample has richer fruit aroma and caramel aroma. Sequential
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cofermentation rice wine sample has the highest fermented fruit fla-
vor. Due to the cumulative effect of different esters on the aroma
perception, the fruit aroma of rice wine comes from the effect of
mixed esters. But the intensity of fruit aroma perception is not di-
rectly proportional to the total ester content, and it is related to the
special ratio, which explains the reason that although the sequential
cofermentation yield of ester is not high, the fruit aroma in the fer-
mentation broth is strong. Simultaneous cofermentation also has a
strong fatty and herbal aroma, and sequential cofermentation has
a strong mellow and cereal aroma. The overall aroma is more co-
ordinated and flower astringency. Therefore, the selection of suit-
able yeast and fermentation methods for wine production could be a
promising way to regulate the characteristics of rice wine.

4 | CONCLUSIONS

The growth of W. anomalus was suppressed by the presence of S.
cerevisiae produced. Rice wines produced with cofermentations of
W. anomalus and S. cerevisiae had lower volatile acidity, more kinds of
flavor compounds, and fermentative aroma contents. Moreover, the
sequential cofermentation was more conducive to improve rice wine
flavor and quality than the simultaneous cofermentation, due to its
reduced thiols, increased such fermentative compounds as higher
alcohols, esters, phenylethyls, and terpenes. And the sequential co-
fermentation had better effect on regulating the odor activity of the
mellow and cereal flavor components and has a better coordination
on the overall flavor of rice wine. In general, the selection of suitable
yeast and fermentation methods for rice wine production was im-
portant to improve rice wine quality. The sequential cofermentation
with S. cerevisiae and W. anomalus was an available method to pro-
duce rice wine with good flavor. The results of this study would pro-
vide a guidance for mixed fermentation of other non-Saccharomyces

yeast in rice wine brewing.
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