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ABSTRACT

AREsite is an online resource for the detailed inves-
tigation of AU-rich elements (ARE) in vertebrate
mRNA 30-untranslated regions (UTRs). AREs are
one of the most prominent cis-acting regulatory
elements found in 30-UTRs of mRNAs. Various
ARE-binding proteins that possess RNA stabilizing
or destabilizing functions are recruited by
sequence-specific motifs. Recent findings suggest
an essential role of the structural mRNA context in
which these sequence motifs are embedded.
AREsite is the first database that allows to
quantify the structuredness of ARE motif sites in
terms of opening energies and accessibility
probabilities. Moreover, we also provide a detailed
phylogenetic analysis of ARE motifs and incorporate
information about experimentally validated targets
of the ARE-binding proteins TTP, HuR and Auf1.
The database is publicly available at: http://rna.tbi
.univie.ac.at/AREsite.

INTRODUCTION

AU-rich elements (AREs) are distinct sequence elements
in the 30-untranslated region (UTR) of mRNAs often
consisting of one or several AUUUA pentamers located
in an adenosine and uridine rich region (1). Numerous
proteins directly interact with AREs, thereby modulating
mRNA stability or translational efficiency. The import-
ance of these sequence motifs has been highlighted
recently by a multitude of studies pointing out that the
loss of ARE-mediated mRNA control leads to severe
pathologies as AREs affect gene expression on a global
scale (2–7).
AREs have been studied bioinformatically early on (8)

and today’s estimate is that �7% of the human
protein-coding genes contain AREs (9). However, the

presence of an ARE consensus motif alone is not
enough to qualify a gene as a true in vivo target of
ARE-binding proteins. Recent computational and experi-
mental evidence (10–13) and the fact that ARE-targeting
proteins bind to RNA in single-stranded conformation
(14) emphasize the need to analyze the structural context
these motifs are embedded in. Furthermore, the mounting
comparative genomics data available can be harnessed to
identify evolutionarily conserved motif sites. AREsite is
the first database that combines sequence annotation of
AREs with the prediction of the accessibility and evolu-
tionary conservation of the motif site. In addition to these
features, we incorporated information from extensive
expert literature search and list experimentally validated
targets of the ARE-binding proteins TTP, HuR and Auf1.

DATABASE GENERATION AND CONTENT

In its current version AREsite uses Ensembl release 56 as
data basis. For human and mouse, any protein-coding
gene that has at least one transcript with a 30-UTR
sequence has been added to the collection. To account
for the various definitions of AREs found in literature
we decided not to restrict the database to a single motif,
but offer the user the possibility to screen for a total of
eight different consensus motifs, starting with the plain
AUUUA pentamer to the WWWWAUUUAWWWW
13-mer, which resembles the core motif embedded in a
stretch of A/U residues. By default, only the representative
transcript of the selected gene, which we define as the
transcript with the most AUUUA counts in its 30-UTR
sequence, is analyzed in detail. For each transcript we list
sequence statistics and calculate the fold enrichment based
on an order-0 and an order-1 Markov model for each
motif. Beside plain sequence annotation of ARE motifs
in transcripts AREsite also offers the researcher to study
sequence conservation of motifs on both transcript and
genomic level. For each motif site we provide annotated
alignments with highlighted conserved motifs and
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sequence logos (15). Finally, an overview figure in form of
a phylogenetic tree depicts the conservation pattern of all
detected motif sites. Motif site accessibility in terms of
opening energies and probabilities of being unpaired are
calculated using RNAplfold (16,17). For each motif we
present accessibility values for the core AUUUA
pentamer. Furthermore, results are visualized in an
interactive SVG plot that allows the user to explore
different parameter settings (Figure 1).

For the three best studied ARE-binding proteins TTP,
HuR and Auf1, literature was screened for putative or
confirmed mRNA targets. We classified the type of
evidence for an mRNA being targeted by one of the
three proteins by five criteria: (i) direct binding of the
protein to the mRNA or its 30-UTR (e.g. using RNA
immunoprecipitation or electrophoretic mobility shift
assays); (ii) an independent reporter assay confirming the
functionality of the putative binding site; (iii) the loss or
overexpression of the ARE-binding protein affects mRNA
and/or (iv) the protein level of the target mRNA; (v) the
stability of the target mRNA is affected by the lack or
excess of the ARE-binding protein as shown by
actinomycin D chase experiments or cell-free decay
assays. New references will be added on a regular basis.

Figure 2 shows a typical output of an AREsite query.
If the user aims for permanent storage of the search
results, annotated Genbank files can be downloaded for
each analyzed transcript.

Generation of alignments from transcripts

Alignments of orthologous transcripts were generated
using data from the Ensembl gene orthology pipeline.
For each gene database entry we first collected all
orthologous genes from other species that have a strict
one to one relation. Next we screened for transcripts
that have an annotated 30-UTR and among those we
selected the one that showed the best coverage (at least
75%) of the reference species 30-UTR. Multiple species
whole transcript alignments were then generated with
CLUSTAL W. To investigate the sequence conservation
of the motif site we finally extract the region containing
the motif site plus five flanking nucleotides on each side
from the alignments. Each alignment sequence is then

searched with the corresponding consensus ARE motif.
Finally, detected motifs are used as sequence anchors
and sequences are realigned using DIALIGN (18). The
same procedure was also applied to the processed and
filtered genomic alignments.

Generation of genomic alignments

Since comparative data at the level of transcripts is still
limited, we decided to also incorporate data from
genome-wide alignments to get a more refined picture of
the conservation pattern of motifs. Interpretation of these
data though has to be done with caution since there is no
guarantee that the aligned sequences from other species
really belong to the gene of interest. We apply, however,
filtering strategies that ensure that aligned sequences are
homologous over a longer stretch of nucleotides than
simply the motif site.
Genomic alignments in MAF format were obtained for

each UTR sequence from multiz generated alignments
available at the UCSC genome browser (19). For
human, corresponding alignments were extracted from
46 species multiple alignments based on the human
genome assembly hg19, and for mouse from 30 species
multiple alignments based on the assembly mm9. The
obtained alignment blocks were often too short for any
practical use and so we developed a MAF processing and
filtering pipeline, that first merges adjacent MAF blocks to
longer ones and then returns alignment windows of 120 nt
and a step size of 30 nt. Finally, these windowed
alignments were realigned with CLUSTAL W and were
filtered to contain only sequences that have a length of at
least 50% of the sequence length of the reference species.

Quantifying motif site accessibility

For the calculation of the motif site accessibility in terms
of opening energies and probabilities of being unpaired we
used RNAplfold (16) with different parameter settings.
RNAplfold is a thermodynamic RNA folding program
that calculates local base-pairing probabilities, as well as
the probability that a stretch of u consecutive nucleotides
is unpaired (17). These probabilities are directly related to
the energy needed to open all secondary structures in the
respective stretch of nucleotides. The parameter set

Figure 1. Screenshot of the interactive SVG plot showing an ARE motif site of the human TNF-alpha gene. TNF-alpha is one of the best
characterized ARE-containing genes. Its ARE target site consists of several consecutive ATTTA (AUUUA) motifs which favors the site’s accessi-
bility. When using a SVG ready web browser the user can explore the target site and flanking nucleotides with different parameter settings. With
default settings (u=5), the plot shows for each nucleotide i the energy that is needed to open local secondary structure for a stretch of five
nucleotides (50–30) ending at position i.
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Figure 2. Snapshot of a typical AREsite results page (gene: human IL6). (A) Basic statistics about the selected gene. (B) Experimental evidence
collected for this gene. For each of the ARE-binding proteins TTP, HuR and Auf1 we list the type of evidence. The user can choose to see the
supporting publications which are directly linked to Pubmed. (C) Overview figure that shows all know transcripts of the selected gene and highlights
detected ARE motifs in the 30-UTRs. The representative transcript which is analyzed in detail is shown in a gray box. (D) Detailed summary of the
analysis results for the representative transcript. For each motif site the user can choose to display accessibility plots, genomic and transcript
alignments together with sequence logos. (E) Overview figure of the conservation analysis. Black circles (genomic alignments) and boxes (transcript
alignments) indicate that the corresponding ARE motif was also detected in the sequence of the corresponding species.
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W=80, L=40 models the effects of cotranscriptional
folding and has been previously used to predict siRNA
binding (20). AREsite features also a different parameter
setting (W=240, L=120), which considers longer base
pair spans and shows improved results on siRNA binding
as well as on RNA–RNA interaction (H. Tafer, personal
communication). For each detected motif site we list the
accessibility values (u=5) for the core AUUUA pentamer
for both parameter settings (short range, mid range).

DISCUSSION

In this contribution we have introduced AREsite, a
database for the detailed investigation of ARE motifs in
terms of motif site accessibility and evolutionary conser-
vation. In its current state AREsite reports 3275 human
protein coding genes which have at least one occurrence of
the consensus motif WUAUUUAUW in their 30-UTR se-
quences. This corresponds to �16% of the human protein
coding genes. For 711 of those genes AREsite lists experi-
mental evidence that they are targets of ARE-binding
proteins. The requirements which are needed to qualify
a gene as an in vivo target of ARE-binding proteins are
still poorly understood. AREsite with its features of
conservation pattern analysis and accessibility prediction
can help researchers to unravel the underlying mechanism.
Recent studies (11,13) demonstrate the great value of
combining computational accessibility prediction and
wet-lab data. When interpreting accessibility predictions
one has to keep in mind, however, that low accessibility
does not necessarily exclude a gene from being an in vivo
target. mRNA regulation is a complex system and the
binding of one factor might lead to structural rearrange-
ments which can make a formerly cryptic site accessible or
vice versa (21). In the context of AREs, this concept has
been nicely demonstrated by using artificially designed
mRNA openers and closers to control mRNA stability
(22). The accurate modeling of these combinatorial
effects will be among the most challenging issues for
future work.
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