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Abstract: Wound healing is a recovering process of damaged tissues by replacing dysfunctional
injured cellular structures. Natural compounds for wound treatment have been widely used for
centuries. Numerous published works provided reviews of natural compounds for wound healing
applications, which separated the approaches based on different categories such as characteristics,
bioactivities, and modes of action. However, current studies provide reviews of natural compounds
that originated from only plants or animals. In this work, we provide a comprehensive review of
natural compounds sourced from both plants and animals that target the different bioactivities of
healing to promote wound resolution. The compounds were classified into four main groups (i.e.,
anti-inflammation, anti-oxidant, anti-bacterial, and collagen promotion), mostly studied in current
literature from 1992 to 2022. Those compounds are listed in tables for readers to search for their
origin, bioactivity, and targeting phases in wound healing. We also reviewed the trend in using
natural compounds for wound healing.

Keywords: wound healing; natural compounds; bioactivity; anti-inflammation; anti-oxidant;
anti-bacterial; collagen promotion; targeting phase

1. Introduction

Wounds occur as a result of accidental or surgical trauma and from a variety of
medical conditions. This wound often causes pain, inflammation, and loss of function,
which affects a patient’s life and financial costs [1]. Wounds are classified as acute wounds
or chronic wounds. Wound healing is a complex process of replacing damaged and
dysfunctional cellular structures and tissue layers [2]. Acute wounds go through stages
of healing, and signs of healing are well-defined within four weeks. Chronic wounds do
not undergo normal progression through the healing phases, and healing is not apparent
within four weeks. It can be said that the wound healing process depends on factors at
the wound site, systemic mediators, type of injury, or any underlying disease [3]. Wound
treatment is mainly performed by strategies such as physical closure of the wound margin,
sutures, and dressings. When the wound is inaccessible, leave the wound open and let the
damaged area clear itself and fill with connective tissue, and the healing process occurs
sequentially through phases.

Natural compounds have been used for thousands of years to treat wounds. Natural
compounds are found in many plants and animals, which are an abundantly available
source for wound treatment. They have proven effective in healing through Chinese and
Indian traditional medicines. Due to a vast number of natural compounds, reviews of those
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compounds would benefit readers and researchers in systematically finding interesting
compounds and developing new products for wound healing treatment. Previously, many
review papers discussed natural compounds for wound healing treatment [1,4–12]. For
example, Ryall and colleagues discussed current advancements in skin delivery of natural
bioactive compounds for wound management (e.g., turmeric, green tea, honey, garlic, aloe
vera, etc.) [4]. Vitale et al. focused on medicinal plants’ phytochemistry and biological
activity in wound healing [5]. Ataide and colleagues discussed the activities of pro-wound
healing compounds and their mode of action [7]. Dumitru et al. discussed bee products for
wound healing treatment [13]. Fana et al. reviewed natural wound healing compounds in
traditional Iranian medicine [11]. Those reviews provided many natural compounds for
wound healing treatment. However, they only gave tables or lists of natural compounds
regarding categories, bioactivities, and mode of action. Those reviews lack discussion
on which phase of wound healing natural compounds are affected. Readers might find
difficulty when they want to search for information on interesting compounds (wound
healing phase, category, chemical formula, mechanism, etc.).

Herein, we give a review of natural compounds (from both plants and animals) that
play important roles in wound healing, also their healing mechanisms and limitations in
use. We classified those compounds based on targeting bioactivities for wound healing. We
also summarized the current trends in using natural compounds. We provided data tables
for readers to search natural compounds regarding their origin, bioactivity, and targeting
phases in wound healing.

2. The Process of Wound Healing

Wound healing is a process consisting of four phases: hemostasis, inflammation,
proliferation, and remodeling. Illustration of the wound healing process is shown in
Figure 1.
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2.1. Hemostasis Phase

Wound healing first begins with hemostasis. The lymphatic vessels are injured in this
phase, and blood flows out to remove microorganisms and antigens [14]. The body will
activate different clotting cascades and thrombocytes to agglomerate by exposed collagen.
At the same time, platelets activate vasoconstriction to reduce blood loss and fill tissue gaps
in injured vessels with blood clots containing cytokines and growth factors [15]. The clot
contains the molecules fibrin, fibronectin, vitronectin, and thrombospondin, which form a
temporary matrix as a scaffolding structure for the migration of leukocytes, keratinocytes,
fibroblasts, and endothelial cells, and it is a reservoir of growth factors that stabilize blood
clots and avoid bleeding.
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2.2. Inflammation Phase

The second phase of wound healing is inflammation which focuses on cleaning the
wound and preparing for new tissue formation in the wound. This stage has the appearance
of neutrophils and lasts about 2–5 days from when the wound becomes infected. Neu-
trophils can phagocytize and secrete proteases (elastase, cathepsin G, proteinase 3) that help
destroy bacteria in the wound and deco remove debris. Neutrophils also release mediators
(TNF-α, IL-1 and IL-6) to amplify the inflammatory response, stimulating VEGF and IL-8 to
respond to repair during wound healing [16]. The macrophage process then supports the
ongoing process by phagocytosis of the debris and secretion of growth factors, chemokines,
and cytokines [17]. Macrophages promote and address inflammation, eliminate apoptotic,
and support cell proliferation and tissue recovery after injury [18]. In the inflammatory
phase, there are often symptoms of edema, erythema and pain.

2.3. Proliferation Phase

The proliferation phase is the most important phase of the wound healing process and
lasts from 6 to 21 days. During the proliferation phase of wound healing, the wound is
healed with fresh collagen and extracellular matrix tissue. After that, the wound shrinks
as new tissues develop. A new network of blood vessels must be created for granulation
tissues to remain healthy and receive an adequate supply of nutrients and oxygen. The
modulation of fibroblasts toward myofibroblasts promotes the formation of granulation
tissue. The myofibroblasts are characterized by the capacity to produce force and synthesize
extracellular matrix components that allow the contraction of granulation tissue [19]. By
gripping the wound boundaries and pulling them together, myofibroblasts use a technique
akin to that of smooth muscle cells to close the wound. In the initial stages of wound healing,
granulation tissue appears pink or red and has an uneven texture. Furthermore, healthy
granulation tissue is clot-resistant [20,21]. Dark granulation tissue may be brought on by
an infection, ischemia, or insufficient perfusion. Near the conclusion of the proliferation
phase, epithelial cells resurface the wound. Keeping wounds moist accelerates epithelial-
ization. Epithelialization occurs when occlusive or semi-occlusive dressings are applied
within 48 h after the injury. This is because adequate tissue humidity is maintained. One
accomplishment of the proliferation phase is replacing the temporary fibrin matrix with a
new matrix made of collagen fibers, proteoglycans, and fibronectin to restore the structure
and function of tissues. Another crucial stage of healing is angiogenesis, or the ingrowth of
new capillaries to replace previously damaged vessels and restore circulation. The creation
of granulation tissue and epithelialization are other important phenomena in this healing
period. In the proliferation phase of healing, fibroblasts are the most important cells [22,23].
For fibroblasts to migrate in the extracellular matrix, they must first recognize and interact
with particular matrix components. Fibroblasts in the normal dermis are usually dormant
and sparsely scattered, but they are active and plentiful in the provisional matrix wound
site and granulation tissue [24,25]. Their migration and aggregation in the wound site
necessitate morphological changes and the production and secretion of proteases to clear
a passage from the ECM into the wound site. The chemotactic growth factors, cytokines,
and chemokines concentration gradient, as well as the alignment of the fibrils in the ECM
and provisional matrix, control the direction of fibroblast migration. Rather than crossing
these fibrils, fibroblasts prefer to move along them [26,27]. To help them move through
the matrix, fibroblasts produce proteolytic enzymes on a local level. Collagenase (MMP-1),
gelatinases (MMP-2 and MMP-9) that destroy gelatin substrates, and stromelysin (MMP-3),
which has various protein substrates in the ECM, are three kinds of MMPs released by
fibroblasts [28,29]. After migrating into the matrix, fibroblasts change shape, settle down,
and begin to proliferate and generate granulation tissue components such as collagen,
elastin, and proteoglycans. Fibroblasts connect to the provisional fibrin matrix cables and
begin producing collagen [19,30]. Type III collagen, like other extracellular matrix proteins
and proteoglycans, is generated in high amounts at first [31]. Collagen mRNA is connected
to polyribosomes on the endoplasmic reticulum, where new collagen chains are formed
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after transcription and processing. A crucial stage in this process involves proline and
lysine residue hydroxylation.

2.4. Remodeling Phase

Closure of acute and chronic wounds is regarded as the wound healing endpoint in
most clinical settings, yet wounds can continue to undergo remodeling or tissue maturation
for months or even years [32,33]. This final stage of wound healing decides whether
scarring will occur and whether the wound will reoccur. Regression of the neo vasculature,
a periodic deposition to the ECM, and subsequent reconstruction of granulation tissue to
scar tissue are all part of the remodeling phase [26]. Collagen III makes up the majority of
granulation tissue, which is gradually replaced by the stronger collagen I as the wound
heals. This occurs due to simultaneous collagen I production and collagen III lysis, followed
by ECM remodeling [34]. In the remodeling phase, scar tissues are created, and it might
take several months or years to complete, depending on the severity and location of the
wound, and used therapeutic procedures. During this time, the new tissue gradually gets
stronger and more flexible. Elasticity and tensile strength of the skin are both getting
stronger because of collagen synthesis. After re-epithelialization, macrophages regain their
phagocytic phenotype. Excessed cells and matrix no longer required for wound healing are
phagocytosed by Mreg or M2c-like macrophages [24].

3. Classification of Natural Compounds for Wound Healing by Their Properties

From the literature search, we collected a list of 137 research articles [30,35–170] re-
lating natural compounds for wound healing. We classified them into groups regarding
their bioactivities (i.e., anti-inflammation, anti-oxidant, antibacterial, collagen promotion,
etc.) (Figure 2). The origin of those compounds (i.e., plant and animal) was also considered.
Among bioactivities, anti-inflammation, anti-oxidant, anti-bacterial, and collagen promo-
tion are studied the most. Therefore, in this study, we focused our discussion on natural
compounds regarding these bioactivities. A data table containing a list of those literature
and the compounds were provided in the Supplementary Materials.
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Figure 2. Summary of collected literature based on bioactivities of natural compounds used in
wound healing.

3.1. Natural Compounds with Anti-Inflammation Properties

The inflammatory response is an important process in wound healing. Inflamma-
tion and anti-inflammation affect the process of hemostasis, removal of harmful microor-
ganisms, damaged tissues, and wound cleaning [171]. However, if the inflammation
phase is prolonged, it will lead to a pathological condition and affect the wound healing
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process [172,173]. To solve this problem, compounds with an anti-inflammation activity
that impact the wound healing process are a therapeutic target. A list of compounds
reading anti-inflammation is shown in Table 1.

Table 1. Compounds with anti-inflammation.

Compound Origin Using Part Other
Bioactivities

Targeting
Phase

Experimental
Model

Type of
Wound Ref.

Asiatic acid Plant
(Centella asiatica) Leaves

Anti-microbial
Anti-oxidant
Pro-collagen

Inflammation
Proliferation
Remodeling

Human Diabetic Burn [174]

Pinocembrin Plant N/A N/A Inflammation HaCaT cell N/A [113]

Ursolic acid
Plant

(Hedyotis
herbacea)

N/A Anti-microbial Inflammation Rat Incision
Excision [175]

Myricetin
Plant

(Tecomaria
capensis v. aurea)

N/A
Anti-oxidant
Anti-allergic

Analgesic
Inflammation Rat Excision [47]

Myricetin Plant N/A Anti-oxidant N/A In vitro N/A [59]

Apigenin Plant
Fruits
Beans

Tea leaves

Anti-oxidant
Pro-angiogenic

Inflammation
Proliferation Rat Random skin

flaps [109]

Lupeol

Plant
(Bowdichia
virgilioides

Kunth)

Stem bark Anti-oxidant
Inflammation
Proliferation
Remodeling

Rat Excision [58]

Lupeol

Plant
(Bowdichia
virgilioides

Kunth)

Stem bark Anti-oxidant Inflammation
Proliferation Rat Excision [176]

Steroidal
glycoside Plant N/A

Dermal
fibroblast
migration

activity

Inflammation
Proliferation
Remodeling

Human dermal
fibroblast cells

Human
wound [56]

Verbascoside
Plant

(Plantago
subulata)

Aerial parts

Anti-oxidant
Anti-fugal

Anti-bacterial
Anti-viral

Inflammation
Proliferation

L929 fibroblasts
RAW 264.7 cells N/A [62]

Verbascoside
Plant

(Plantago
australis)

Leaves Anti-oxidant
Healing

Inflammation
Proliferation

HaCaT cells
Rat Excision [177]

Hesperetin Plant Citrus
species

Anti-microbial
Anti-oxidant

Inflammation
Proliferation
Remodeling

Rat
Excision

diabetic foot
ulcer

[102]

Hesperetin Plant Citrus
species

Anti-oxidant
Pro-collagen Inflammation Rat Diabetic foot

ulcer [154]

Carophylolide
Plant

(Calophyllum
inophyllum Linn)

Seed Anti-microbial
Anti-coagulant Inflammation Mice Incision [55]

Artocarpin Plant
(A.communis.) Heartwood Anti-oxidative,

Anti-microbial
Inflammation
Proliferation

Mice
HUVECs cells Excision [50]

Bilirubin Mammals
Product of

heme
catabolism

Anti-oxidant
Inflammation
Proliferation
Remodeling

Rat Excision [138]
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3.1.1. Myricetin

Myricetin (Myr) is a flavonoid that has been reported for wound healing [47,59].
Myricetin is present in many fruits and has many biochemical properties such as an-
tioxidant, anti-allergic, anti-inflammation, and immunomodulatory function [178–181].
Elshamy et al. isolated myricetin from Tecomaria capensis v. aurea and examined its wound
healing ability in albino rats [47]. Myr affects inflammatory cytokines such as tumor necro-
sis factor-α (TNF-α), cluster of differentiation 68 (CD68), as well as interleukin-1β (IL-1β).
Myr also showed increased expression of serum proinflammatory cytokines (e.g., IL-1β
and TNF-α) and decreased expression of macrophage CD68. The above findings suggest
that Myr could be used therapeutically in wound healing by enhancing inflammatory
cytokines and systemic reorganization. Other than that, Sklenarova et al. investigated
Myr’s ability to heal wounds [59]. This study showed the inhibition of proinflammatory
cytokines production (e.g., IL-6 and IL-8) in skin cells by Myr.

However, myricetin is very poorly soluble in water [182]. This affects its bioavail-
ability [183]. This limitation needs to solve by combining Myr with other compounds or
biomaterial to improve the water solubility of Myr.

3.1.2. Calophyllolide (CP)

Calophyllolide (CP) is isolated from Calophyllum inophyllum Linn and has been re-
ported with anti-inflammatory, anti-microbial, and anti-coagulant activities [184–186].
Nguyen et al. studied the long-lasting anti-inflammatory effects of CP in the healing
process [55]. They showed that CP treatment suppresses prolonged inflammation by down-
regulating IL-1β, IL-6, TNF-α, and upregulating IL-10. Moreover, CP inhibits MPO activity
and increases M2 macrophage bias through upregulating M2-associated gene expression,
leading to benefits in wound healing.

3.1.3. Steroidal Glycoside

Steroidal glycoside is extracted from Lilium longiflorum Thunb. Di et al. confirmed that
wound treatment with steroidal glycosides would upregulate early inflammatory genes
such as IL2, IL4, IL10, CD40LG, IFNG, and CXCL11, remodeling genes like CTSG, F13A1,
FGA, MMP and PLG) [56]. Concurrently, wound treatment with steroidal glycosides also
displayed a selective downregulation of genes regarding inflammation (CXCL2 and CCL7)
and regeneration (MMP7 and PLAT) [56]. The above findings suggest an impact of wound
treatment with steroidal glycosides on wound healing, leading to early termination of the
inflammatory response and shortening the early stages of tissue regeneration.

3.1.4. Verbascoside (Acteoside)

Verbascoside is a phenolic compound with various bio-properties such as anti-
inflammation, antioxidant, and healing [187–189]. Nathalia et al. isolated verbascoside
from Plantago australis and examined its wound healing and anti-inflammatory activ-
ity [177]. This study has confirmed that verbascoside significantly reduced inflamma-
tory cytokines (TNFα, INFγ, IL-6, MCP-1 and IL-12p70). In another study, Yasin et al.
extracted verbascoside from Plantago subulata and evaluated its biological activity [62].
The in vitro test with RAW264.7 cell showed that when the cell was treated with ver-
bascoside, the level of NO, PGE2, and TNF-α cytokines decreased. Another part of
the study also confirmed that verbascoside from Plantago subulata has wound healing
activities. The above studies suggested verbascoside has wound healing activities and
may have related to anti-inflammation.

3.1.5. Lupeol

Lupeol is a bioactive compound mainly found in Bowdichia virgilioides and fruit such
as mango, soybean, and olive [58]. Researchers reported that Lupeol had antioxidant, anti-
inflammation, and antidiabetic activity [190–192]. To evaluate the wound healing ability of
lupeol, Fernando et al. conducted experiments on rats and showed interesting results [176].
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The results showed that lupeol effectively reduced inflammatory cytokines (e.g., NF-κB
and IL-6) while increasing IL-10. Moreover, Lupeol also has effects on angiogenesis and
cell proliferation by decreased expression of Vegf-A and increased expression of Hif-1α.
There are markers for the angiogenic process and proliferation of wound healing. Another
study was also done by Fernando et al., once again further identifying the wound healing
activities of lupeol in the cream form [58]. The results showed that wound treatment with
lupeol cream affects proinflammatory cytokines, such as reducing the expression of TNF-α,
IL-1β and IL-6 and increasing the expression of IL-10 (Figure 3). In addition, lupeol treat-
ment was also shown to improve vascular endothelial growth factor (VEGF) and epidermal
growth factor (EGF) and increase gene expression of transforming growth factor beta-1
(TGF-β1) after 7 days. These are the factors that involve the proliferative phase in wound
healing. Lupeol accelerates remodeling by increasing collagen fiber synthesis. These are
studies that demonstrate the wound healing capacity of lupeol.
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Figure 3. The effect of lupeol cream on wound healing. Up and down arrows mean increasing and
decreasing of concentration, respectively. Reproduced with permission from Beserra et al., “From
Inflammation to Cutaneous Repair: Topical Applica-tion of Lupeol Improves Skin Wound Healing in
Rats by Modulating the Cytokine Levels, NF-κB, Ki-67, Growth Factor Expression, and Distribution
of Collagen Fibers”; published by MDPI, 2020 [58].

3.1.6. Bilirubin

Bilirubin is a red-orange compound that is the end product of heme catabolism in
mammals and also plays an important role in protecting cellular [193]. By speculating that
Bilirubin might benefit wound healing, Azad et al. evaluated the wound healing process
in rat skin when treated with bilirubin [54]. When the wound was treated with Bilirubin,
pro-inflammatory factors (e.g., ICAM-1 and TNF-α) decreased, and interleukin-10 (IL-10)
expression was increased. Wound contraction, hydroxyproline, and glucosamine levels
were also increased in treated rats. In addition, Mahendra et al. also studied the effect
of Bilirubin on growth factors, cytokines, and angiogenesis during wound healing in
diabetic rats [138]. This study showed that pro-inflammatory cytokines such as TNF-α,
MMP-9, and IL-1β decreased mRNA expression while increasing IL-10 expression. Gene
expression of anti-oxidative, angiogenic agents (e.g., VEGF, HIF-1α, SDF-1α, TGF-β) was
also upregulated in Bilirubin-treated rats. Wound closure, collagen deposition, and blood
vessel formation in treated rats were also higher than in the control group (Figure 4). These
results partly confirmed the role of Bilirubin in regulating pro-inflammatory and angiogenic
factors in the wound healing process.
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3.1.7. Pinocembrin

Pinocembrin (5,7-dihydroxyflavonone) is one of the flavonoid compounds found in
propolis, honey, and plants of the Piperaceae family [194]. The compound showed var-
ious potential bioactivities for healing treatment (e.g., anti-bacteria, anti-inflammation,
anti-fibrosis, anti-oxidation) [194]. For example, Drewes and colleagues showed that
pinocembrin had notable antibacterial activity toward Staphylococcus aureus (minimum
inhibitory concentration of 6.3 µg/mL) and Pseudomonas aeruginosa (minimum inhibitory
concentration of 45–63 µg/mL) [195]. Pinocembrin also showed anti-inflammatory ac-
tivity against sheep red blood cell-induced delayed-type hypersensitivity reaction [196].
Pinocembrin is currently in traditional Chinese medicine for wound healing [103]. Li
and colleagues investigated the effects of pinocembrin on skin fibrosis by in vitro and
in vivo approaches [103]. The study showed that pinocembrin could significantly reduce
bleomycin-induced skin fibrosis and fibrosis-related protein expression of keloid tissues in
xenograft mice. They also confirmed the mechanism of anti-fibrotic activity of pinocembrin
that pinocembrin suppressed TGF-β1/Smad signaling and attenuated TGF-β1-induced
activation of skin fibroblasts.

3.2. Natural Compounds with Anti-Oxidant Properties

Antioxidants are one of the therapeutic targets to improve wound healing mechanisms,
especially free radicals and oxidative reactions. They are known as an important factor in
the regulation of the healing process [54,197,198]. A high concentration of oxidants in the
wound inadvertently harms the wound and some enzymatic reactions during the healing
process [199]. Because of that, the presence of antioxidants is a necessity in the wound
healing process. A list of compounds reading antioxidant is shown in Table 2.

Table 2. Compounds with anti-oxidant.

Compound Origin Using Part Other
Bioactivities Target Phase Experimental

Model
Type of
Wound Ref.

Quercetin
Plant

(Oxytropis falcata
Bunge)

Fruits
Anti-

inflammatory
Anti-infection

Inflammation
Proliferation
Remodeling

Mice Excision [63]

Resveratrol Plant N/A
Anti-

inflammatory
Anti-bacterial

Inflammation
Proliferation

HUVE cells
Rat Burn injury [149]
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Table 2. Cont.

Compound Origin Using Part Other
Bioactivities Target Phase Experimental

Model
Type of
Wound Ref.

Catechin Plant
(Green tea) N/A

Anti-bacterial
Anti-

inflammatory
Pro-angiogenic

Inflammation Mice
Chronic
diabetic
wound

[65]

Catechin N/A N/A N/A N/A Mouse NIH/3T3
fibroblast cell N/A [200]

Luteolin Plant N/A
Anti-

inflammatory
Anti-allergenic

Inflammation
Proliferation Rat Excision [42]

Syringic acid Plant Fruits

Anti-
inflammatory
Anti-microbial

Anti-
adipogenic

Inflammation
Proliferation
Remodeling

Rat
Incision
diabetic
wound

[133]

Metformin N/A N/A Anti-
hypoglycemic

Inflammation
Proliferation Mice Diabetic

wounds [87]

Naringenin Plant Citrus
fruits

Anti-
inflammatory

Proliferation
Inflammation Rat

Thermally-
induced skin

damage
[201]

Galic acid Plant
Fruits
Leaves
Flower

Anti-
inflammatory

Analgesic

Inflammation
Proliferation

HaCaT
MEF

HF21 cells

Hyperglucidic
conditions [61]

Ferulic acid
Plant

(vegetables,
cereals, coffee)

Seed
Fruits

Anti-
inflammatory
Antimicrobial

Inflammation
Proliferation Rat

Excision
diabetic
wounds

[84]

Curcumin Plant Turmeric Anti-
inflammatory

Inflammation
Proliferation Rat Excision [82]

Curcumin Plant
(Curcuma longa) Turmeric

Anti-
inflammatory
Anti-infective

Inflammation Rat Excision [57]

Curcumin Plant Turmeric Anti-
inflammatory Inflammation

Human
keratinocytes

and fibroblasts

H2O2
condition [60]

Curcumin Plant
(Curcuma longa) Turmeric N/A Inflammation Human

keratinocytes

Hypoxanthine
/xanthine

oxidase
injury

[202]

3.2.1. Curcumin

Curcumin is mainly extracted from turmeric (Curcuma longa L.) and has shown several
bioactive properties such as anti-inflammatory, antioxidant, and anti-coagulant [203,204]. Sev-
eral studies demonstrated curcumin’s wound healing effects as an antioxidant [57,60,82,202].
Phan et al. confirmed that curcumin protects human dermal fibroblasts and epidermal
when exposed to hydrogen peroxide and superoxide radicals [60]. Gadekar et al. evaluated
the protective potential of curcumin against keratinocytes and fibroblasts in H2O2-induced
injury [82]. Through the antioxidant activity, Bonte et al. also demonstrated that curcumin
protects human keratinocytes from xanthine oxidase damage [202]. Mohanty et al. reported
the ability of curcumin to reduce ROS and lipid peroxidation, thereby reducing the activa-
tion of antioxidant enzymes after wound treatment in rats [57]. The above studies show
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the impact of Curcumin in the role of an antioxidant in wound healing and its potential in
developing methods of using Curcumin in treating wounds.

Despite its excellent biological effects, curcumin has limitations in its therapeutic use
because it is virtually insoluble in water leading to instability and poor bioavailability [205].

3.2.2. Quercetin

Quercetin is known as a flavonoid found in many vegetables, fruits, and seeds such as
citrus, onion, tea, spices, etc. It is also a famous strong antioxidant and anti-inflammation ac-
tivities compound [206]. Kant et al. showed that quercetin (0.3%) helps the wound heal the
fastest and significantly improves oxidative stress, regulates cytokines and growth factors,
and promotes fibroblast proliferation, formation of vessels, and collagen deposition [64].
Mi et al. presented an intensive study evaluating the wound healing effects of Quercetin,
which is extracted from Oxytropis falcata Bunge, a traditional Chinese legume distributed
in Tibet [63]. This study showed that quercetin-treated wounds had an increase in collagen
fiber content and a significant decrease in inflammatory factors (TNF-α, IL-1β and IL-6). In
addition, glutathione (GSH) is an antioxidant and an important redox regulator controlling
the inflammatory process [207]. Mi et al. also showed that quercetin treatment improved
GSH levels suggesting quercetin has a potent antioxidant capacity in skin wounds. In brief,
quercetin exhibits an effective wound-healing effect on the skin by enhancing fibroblast
migration and proliferation, and inhibiting inflammation through antioxidant activities.

Like most flavonoids, quercetin is poorly soluble in water [208]. This physical limita-
tion affects the application of quercetin in wound treatment. Therefore, further studies on
the combination of quercetin are needed to increase its applicability in the future.

3.2.3. Catechin

Catechin is a flavonoid with good antioxidant activity; it plays a beneficial role in
physiological activity [160,209]. Baek et al. prepared a PCL/(+)-catechin/gelatin film and
evaluated its applicability for wound treatment [200]. The results show that PCL/(+)-
catechin/gelatin film prevents harmful factors from the outside, and reduces oxidative
stress at the wound effectively to help the wound heal. Zhao et al. confirmed that the
EGCG-3-acrylamido phenyl boronic acid-acrylamide (EACPA) hydrogel has antioxidant,
antibacterial, antiinflammatory, and proangiogenic effects, and modulates macrophage
polarity to accelerate wound healing, also facilitates easy dressing change [65]. This study
clearly shows the effect of the antioxidant EACPA on wound healing through the down-
regulation of the majority of intracellular ROS in Rosup-stimulated L929 fibroblasts.

Despite having such outstanding activities, catechins are less stable in water. To
overcome this problem, several studies were carried out using reducing agents and the
formation of micro- and nanoparticles [66,210].

3.2.4. Galic Acid (GA)

Galic acid (GA) is present in almost every plant. It is found in many different parts
of plants, such as fruits, leaves, and stems, with powerful properties such as antioxidant,
antiinflammation, anticancer, and neuroprotective [211–213]. Yang et al. conducted research
to evaluate the effects of GA on wound healing in normal and hyperglucidic conditions [61].
This study indicated that GA could protect skin cells from oxidative stress induced by
H2O2 and ROS-induced cytotoxicity. Additionally, GA could upregulate the expression of
antioxidant genes such as catalase (CAT), superoxide dismutase 2 (SOD2) and glutathione
peroxidase 1 (Gpx1) (Figure 5). Furthermore, GA also accelerates keratinocyte migration
during wound healing and activates wound healing factors such as c-Jun N-terminal
kinases (JNK), focal adhesion kinases (FAK), and extracellular signal-regulated kinases
(Erk). Therefore, this study indicated that GA is a promising antioxidant for wound
treatment. However, GA is only soluble in organic solvents, which limits its topical
applications on the skin.
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3.2.5. Resveratrol (RSV)

Resveratrol is found in more than 70 different plant species and is known for its
outstanding medicinal properties such as antioxidant, anticancer, anti-inflammatory, and
antibacterial properties [214–217]. Zhou et al. examined the wound healing ability of
resveratrol through the cell and in vivo experiments [149]. Resveratrol protects from H2O2-
induced injury, effectively decreases H2O2-induced injured cell migration, and effectively
suppresses intracellular ROS production by H2O2 in HUVECs. In vivo tests also con-
firmed that resveratrol speeds up wound healing, improves skin structure, and reduces
inflammation (Figure 6). These effects may be due to resveratrol upregulating Mn-SOD,
thereby reducing oxidative damage. On the other hand, Bilgic et al. evaluated the wound
healing ability of resveratrol in Wistar albino rats [218]. They showed that the resveratrol-
treated wound had a higher neovascularization level than the untreated control group.
Furthermore, levels of glutathione peroxidases, enzymes that remove reactive oxygen and
nitrogen species from the body, were higher in the resveratrol treatment group. These
results suggested that resveratrol affected wound healing through its antioxidant effects.
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3.2.6. Naringenin

Naringenin is known as a polyphenol, mainly found in citrus fruits, with outstanding
biological properties such as anti-inflammatory, antioxidant, cholesterol-lowering, and
anticancer [219,220]. Al-Roujayee et al. evaluated the effect of naringenin in rats for inflam-
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matory responses and oxidative stress caused by thermal burn-induced [201]. The results
showed that when the burn was treated with naringenin, the activities of glutathione-S-
transferase (GST), superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx),
and catalase increased. Thiobarbituric acid reactive substances (TBARS) and glutathione
(GSH) levels were also restored on day 7 of treatment. In addition, naringenin was also
used to combine with other compounds (e.g., chitosan) to improve wound healing capacity.
Akrawi and colleagues showed that a nanoemulsion product containing both naringenin
and chitosan significantly increased wound contraction in Wistar rats after 14 days of treat-
ment, and naringenin stimulated antiinflammatory and antioxidant effects (Figure 7) [72].
These results suggest the potential for the treatment of burn wounds of naringenin base on
antioxidant activities.
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Figure 7. Representative photomicrographs of the rat skin tissues in the control, drug-free chitosan-
coated naringenin and chitosan-coated naringenin (CNNE) treated groups of abrasion model in albino
Wistar rats. (A) Wound area before the treatment at day 0, (B) control group at day 14, (C) drug-free
chitosan-coated naringenin formulation treated group at day 14, and (D) CNNE treated group at
day 14. (I: inflammatory cells; B: blood vessels; K: keratinization; Star icon: granulated tissue).
Reproduced with permission from Akrawi et al., “Development and Optimization of Naringenin-
Loaded Chitosan-Coated Nanoemulsion for Topical Therapy in Wound Healing”, published by MDPI,
2020 [72].

3.3. Natural Compounds with Antibacterial Properties

The antibacterial activity of a compound could be ascribed by two mechanisms:
inhibition of synthesis of vital components of bacteria or suppression of antibacterial
resistance [221]. Natural compounds with antibacterial properties might target mostly the
inflammation phase of wound healing (Table 3).
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Table 3. Compounds with anti-bacterial.

Compound Origin Using Part Other
Bioactivities Target Phase Experimental

Model
Type of
Wound Ref.

Chitosan Animal
(Crab) Shells

Anti-microbial
Anti-

inflammation
Inflammation Diabetic db/db

mice
Excision
wound [222]

Pinocembrin Animal
(Bee) PropolisHoney

Anti-oxidation
Anti-

inflammatory
Anti-apoptosis

Proliferation
Human Keloid

fibroblast
Mice

keloid
xenograft [103]

Lupeol
Plant

(Bowdichia
virgilioides

Kunth)
Stem bark Anti-oxidant

Antidiabetic
Inflammation
Proliferation
Remodeling

Rat Excision [58]

Hydrogen
peroxide

Animal
(Bee) Honey N/A Inflammation HaCaT cells N/A [223]

Methylglyoxal Animal
(Bee)

Honey
(Manuka) N/A N/A N/A N/A [52]

Tannins
Plant

(E. phaseoloides
(L.) Merr)

N/A
Anti-oxidant

Anti-
inflammatory

Inflammation
Proliferation
Remodeling

Rat Excision [105]

Arnebin-1 Plant
(Arnebianobilis) Root Anti-fungal Proliferation Rat Excision [147]

Hydroalcoholic
extract

Plant
(Caseariasylvestris

Sw.)
Leaves

Anti-
inflammatory

Antiseptic
Proliferation Rodent Scald

burns [83]

Dichloromethane
andhexanoic

fractions

Plant
(Calendula

officinalis L.)
Flower

Anti-
inflammatory

Anti-septic
Inflammation
Proliferation Rat Excision [129]

Lawsone
Plant

(Lawsonia Alba
Lam.)

Leaves
Anti-fungal

Anti-parasitic
Anti-viral

N/A Rat Excision
Incision [111]

3.3.1. Chitosan and Chitin

The first use of chitosan and chitin (Figure 8) as wound healing accelerators dates back
to the research of Prudden et al. [224]. Chitin (poly-N-acetyl-d-glucosamine-(1–4)-poly-N-
acetyl-d-glucosamine) is one of the most prevalent polysaccharides with the largest source
from the exoskeleton of marine crustaceans, shrimp, crabs, insects, fungi, and yeasts after
cellulose [225]. Chitosan is a copolymer of glucosamine and N-acetylglucosamine units
connected by 1–4 glucosidic linkages and is the most important chitin derivative.
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The secret to the antibacterial capabilities of chitosan is that positively regulating sub-
stances make it more susceptible to interacting with negatively charged molecules in bacte-
rial membranes, such as anionic polysaccharides, proteins, and nucleic acids [226,227]. Chi-
tosan has significant advantages in wound treatment due to its biocompatibility, biodegrad-
ability, nontoxicity, adsorption properties, and hemostatic qualities [228–230]. However,
chitosan is insoluble in neutral and alkaline aqueous solutions with pH values greater than
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6.5, severely restricting its use [231]. Therefore, chitosan has been integrated into several
formulations employing nanoparticles, hydrogel, micelles, hyaluronic/oleic acid-loaded,
and glucosylation of the hydrophobic molecule in pre-clinical investigations to improve its
bioavailability [53,232–235].

3.3.2. Honey Bee

Bee products are also natural antibacterial sources widely used in wound healing.
Honey from bees has been applied to wound treatment for thousands of years, with
the first written recorded between 2600 and 2200 BCE in an ancient Egyptian trauma
manual [51,236]. Honey is a concentrated aqueous solution of inverted sugars that contains
40% fructose, 40% glucose, 20% water, enzymes, vitamins and minerals, with a pH of
3.6 [237,238]. Most conventional honey produces hydrogen peroxide by the endogenous
enzyme glucoseoxidase, which is responsible for its antibacterial activity. When hydrogen
peroxide decomposes, it produces highly reactive free radicals, which react with the bacteria
and decimate them [238]. However, several other “non-peroxide” kinds of honey (Ex.
Manuka, jelly bush) own antibacterial properties because of the low pH medium and
supersaturated sugar level [239]. Especially, Atrott and Henle suggested that Manuka
honey has significant levels of methylglyoxal, a unique antibacterial component solely
responsible for the special antibacterial effect [52].

3.3.3. Propolis

Propolis was used by ancient Egyptians, Romans, and Persians. Propolis could be
obtained from honey bees, tree buds, and other botanical sources (e.g., poplar, willow, elm,
alder, birch, beech, etc.) [240–242]. Propolis consists of more than 300 chemical compounds
such as polyphenols, phenolic aldehydes, amino acids, steroids, etc. [243–245]. The most
important components in propolis are flavonoids, phenylpropanoids, cinnamic acids and
their esters, and glycerides [246,247]. The antibacterial properties of propolis against Gram-
positive bacteria also appear mostly due to flavonoids, esters, and aromatic acids found in
the resin [246].

3.3.4. Tannins

Along with animal products that have antibacterial activity, many medical plants
used in wound healing also show potent antibacterial properties such as tannins. Su et al.
reported that tannins extracted from Entada phaseoloides (L.) Merr. exhibited the antibacte-
rial property by suppressing protein synthesis, modification of nucleic acid metabolism,
prevention of alteration of cell wall formation, modification of cell membrane function, and
inhibition of bacterial growth [105].

3.3.5. Allicin

Allicin, the chemical responsible for the strong odor of garlic, is the active ingredient
that has been proved in numerous trials to enhance wound healing [127,248–250]. Apart
from antioxidant activity, allicin also shows an antibacterial effect, and its mode of action
has already been researched. The sulfhydryl alteration of bacterial proteins was found to
be the mechanism by which allicin manifests its antibacterial activity toward Staphylococcus
aureus [248,251].

3.3.6. Terpene Esters

Terpene esters could be extracted from bee propolis [252]. Terpene esters demonstrated
antibacterial activity toward Staphylococcus aureus, as shown in the study of Trusheva and
colleagues [252]. The mechanism of the antibacterial activity of terpene esters has not been
fully elucidated.
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3.4. Natural Compounds with Collagen Promotion Properties

Collagen is the protein that is most prevalent in the body. Collagen function in wound
healing is to draw fibroblasts and promote the deposition of fresh collagen in the wound
bed. The use of collagen dressing technology aids in promoting the formation of new
tissues while promoting angiogenesis, autolytic debridement, and re-epithelialization.
Hence, the compounds capable of promoting collagen synthesis in the healing process play
an important role. A list of compounds with collagen promotion is shown in Table 4.

Table 4. Compounds with collagen promotion.

Compound Origin Using Part Other
Bioactivities Target Phase Experimental

Model
Type of
Wound Ref.

Honey Animal
(Bee) Honey Anti-bacterial Proliferation Rat Excision [253]

Calendula
officinalis

extract

Plant
(Calendula
officinalis)

Flower Anti-bacterial Proliferation Rat Excision [98]

Saponins
Plant

(Panax
Notoginseng)

Root
Rhizome

Anti-
inflammation
Anti-oxidant

Anti-apoptosis
Anti-

coagulation

Remodeling Hypertrophic
scar fibroblast N/A [165]

Cryptotan-
shinone

Plant
(Salvia

miltiorrhiza Bge.)
N/A

Anti-
inflammatory
Anti-oxidative
Anti-bacterial

Remodeling Diabetic mice Excision [49]

Bexarotene,
Taspine, and
2-hydroxy-1-

naphthaldehyde
Isonicotinoy-
lhydrazone

Plant
(Daemonorops

draco)
N/A

Anti-bacterial
Anti-

inflammation

Inflammation
Proliferation

THP-1, HaCaT,
NIH-3T3 cells N/A [35]

Sesamol Plant Sesame oil
Anti-

inflammatory
Anti-oxidant

Inflammation
Proliferation Rat Diabetic

foot ulcer [86]

Astragaloside
IV

Plant
(Astragali Radix) N/A

Anti-
inflammatory
Anti-oxidative

Inflammation
Proliferation Mice Excision [108]

Polysaccharide
APS2-1

Plant
(Astragalus

membranaceus)
Roots Anti-

inflammatory
Inflammation
Proliferation Mice Excision [163]

Aloe vera gel Plant
(Aloe vera) Leaves

Anti-
inflammatory
Anti-bacterial

Anti-viral
Anti-fugal

Proliferation
Mouse

embryonic
fibroblasts

N/A [254]

Asiaticoside Plant
(Centella asiatica) Aerial parts Anti-oxidant Proliferation Rabbit Incision [135]

Gallic acid and
quercetin

Plant
(Glycyrrhiza

glabra L.)
Roots

Anti-
inflammatory
Anti-bacterial
Anti-microbial

Antioxidant

Inflammation
Proliferation Pig Excision [88]
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Table 4. Cont.

Compound Origin Using Part Other
Bioactivities Target Phase Experimental

Model
Type of
Wound Ref.

Asiatic acid Plant
(Centella asiatica) Aerial parts Anti-oxidative Proliferation Rat Wound

burn [141]

β-Glucans Fungi N/A Anti-biotic Proliferation
Human dermal

fibroblasts N/A [255]

Alkaloids
Plant

(Evolvulus
alsinoides)

Aerial parts
Anti-bacterial

Anti-fugal
Anti-oxidant

Proliferation Rat Incision [256]

Asiaticoside
and

madecassoside

Plant
(Centella asiatica) N/A Anti-oxidant Proliferation Rat Burn injury [89]

Triterpenes
Plant

(Buddleia
scordioides)

Leaves N/A Proliferation Diabetic rat Incision
Excision [257]

Deoxyeleph-
antopin

Plant
(Elephantopus

scaber)
Leaves Anti-

inflammatory
Inflammation
Proliferation Rat Incision [139]

3.4.1. Saponins

Saponins are glycoside compounds widely found in the plant kingdom. Saponins
include various groups and are categorized according to their structure [258]. For instance,
Wang et al. reported four novel steroidal saponins, together with two known compounds
(i.e., bletilnoside A and 3-O-β-D-glucopyranosyl-3-epi-neoruscogenin), were extracted from
Bletilla striata which is a popular traditional Chinese herb [153]. Numerous biological pro-
cesses, including hemolysis [259], antibacterial [260,261], antiviral [262], antioxidative [263],
antiinflammatory activities [264,265], and collagen promotion [44] can be enhanced by
saponin treatment. Yu et al. explored the function of Panax notoginseng saponins (PNS)
in encouraging anterior cruciate ligament (ACL) fibroblast migration, proliferation, and
expression of fibronectin, collagen I, and collagen III to the healing of an ACL injury. PNS
may play an essential role via phosphorylating PI3K, AKT, and ERK [44].

3.4.2. Cryptotanshinone

Cryptotanshinone extracted from Salvia miltiorrhiza Bge is a natural accelerated pro-
collagen compound in the wound healing process. Improved angiogenesis and collagen
deposition can result from the activity of cryptotanshinone, which reduce leukocyte infiltra-
tion, enhance eNOS phosphorylation, boost VEGF and Ang-1 protein production, suppress
MMP2 and MMP9 protein expression, and increase fibroblast translation [49].

3.4.3. Artocarpin

There have been claims that the prenylated flavonoid artocarpin, isolated from the
plant Artocarpus communis, has anti-inflammatory and anticancer activities [266–270].
Yeh et al. demonstrated that by stimulating the JNK and P38 pathways, Artocarpin boosted
collagen formation, proliferation, and migration of human fibroblasts. Artocarpin also
enhanced the proliferation of human endothelial cells through the Akt and P38 pathways
and human keratinocytes through the ERK and P38 pathways [50].

3.4.4. β-Glucans

β-glucans are glucose polymers, and they can be found in yeast, grains, and fungi.
These substances are classified as biological response modifiers [271]. Many studies have
demonstrated that particulate and soluble β-glucans improved immune functions with anti-
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infective, anticancer, and immunomodulatory effects [272–274]. β-glucans improve wound
healing by enhancing the infiltration of macrophages, which drives tissue granulation,
collagen deposition, and re-epithelialization. With excellent stability and resistance to
wound proteases, β-glucan-based wound dressings constitute an ideal wound healing
agent [275].

3.4.5. Amino Acids and Peptides

Besides the traditional medicinal plants, the sources of natural procollagen compounds
containing amino acids and peptides for wound healing also from animals (e.g., bees,
mollusks, snail, fish, etc.) are widely reported. For fibroblasts, which need an acidic
environment to perform tasks like migrating and organizing collagen, the low pH of
honey may help establish and maintain ideal circumstances [276]. Badiu et al. indicated
that amino acids from Rapana venosa and Mytilus galloprovincialis enhance dermal and
epidermal neoformation to hasten skin wound healing [70]. Indeed, the mechanism insight
of these amino acids’ enhancing wound healing effects was proposed to be closely related to
differential regulation of macrophage arginine metabolism, in which TGF-β1 may play an
essential coregulatory role [277]. In addition, the bioactive peptide extracted from terrestrial
snail Cryptozona bistrialis stimulates in vitro migration of NIH/3T3 mouse fibroblast cells.
In vivo tests on healthy and diabetic-induced Wistar albino rats also showed that the Crypto-
zona bistrialis-peptide was efficient in boosting wound healing [71]. The increased wound
contraction is believed to be due to the significant increase in collagen content through
the enhanced migration of fibroblasts and epithelial cells to the wound site. However, the
extract compounds from animal sources had not shown the exact chemical formula.

4. Current Trending Use of Natural Compounds in Wound Healing

The market size for advanced wound care technologies is estimated to be $22 billion
by 2030, which will focus on new wound care technologies such as bacterial burden
management and biological therapies [278].

The basic understanding of natural compounds and their treatment limitations have
been gradually overcome, creating medical products with outstanding features in wound
treatment. Currently, the research into medical materials using natural compounds such as
gels and films also shows the effectiveness and potential in the future.

Composite dressing shave replaced traditional dressings by combining wound healing
drugs such as natural products (chitosan and diazo resin [68]) and growth factors (collagen
sponge [73]) to protect the wound from infection and exchange oxygen with the wound [71].
Electrospun nanofiber mats are also a strategy for wound healing. Curcumin has been
complexed with nanofiber mats to avoid its limitation (i.e., water insolubility); combining
it with an oil layer can increase the bioavailability of curcumin while keeping the wound
moist [116].

A hydrogel is also a new approach to biomaterials for wound healing. Hydrogels
deliver curcumin, chitosan, and this natural compound released into the wounds. The
formulation of this hydrogel not only provides natural healing properties and forms a moist
middle layer for the wound. Hydrogels have become a popular new drug/material and a
new research area that improves traditional natural compounds in wound treatment [279].

Microneedles are loaded with natural compounds and can penetrate through the
dermis layer of the skin. Some studies have reported the superior wound healing ability of
microneedles containing manuka honey and green tea extract compared with conventional
skin creams [36,67].

Research directions and application of natural compounds to new technology have
contributed to speeding up the healing process, solving the limitations of natural com-
pounds, and improving their effectiveness.
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5. Conclusions

Wound healing is a complex biological process of recovering devitalized cellular
structures with four overlapping phases involving hemostasis, inflammation, proliferation,
and remodeling. Effective therapies for wound healing using natural products are highly
beneficial for patients due to their easy accessibility and low cost. This work proposed a
comprehensive review of natural products for wound healing based on bioactivities from
plants and animals, providing an overall picture of the chemical origin of natural products
to biological wound healing mechanisms. The main four primary bioactivities of natural
products, including anti-inflammation, anti-oxidant, antibacterial, and collagen promotion,
are utilized to classify and investigate the targeting phases. Data tables containing detail
of origin, bioactivity, targeting phase, experimental model, and type of wound were also
provided for readers.
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