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Recently, biology has become a data intensive science because of huge data sets produced by high throughput molecular biological
experiments in diverse areas including the fields of genomics, transcriptomics, proteomics, and metabolomics.These huge datasets
have paved the way for system-level analysis of the processes and subprocesses of the cell. For system-level understanding, initially
the elements of a system are connected based on their mutual relations and a network is formed. Among omics researchers,
construction and analysis of biological networks have become highly popular. In this review, we briefly discuss both the biological
background and topological properties of major types of omics networks to facilitate a comprehensive understanding and to
conceptualize the foundation of network biology.

1. Introduction

In molecular biology, the list of components at the genome,
transcriptome, proteome, andmetabolome levels is gradually
becoming complete and well-known to scientists. However, it
is not holistically known how these components interact with
each other to grow, maintain, and reproduce life at different
phases, in different environments or with different challeng-
ing conditions. In cells, many concurrent and sequential tasks
are performed based on complex signaling and regulation.
Different omics molecules are elements of a cell. Due to the
existence of unicellular organisms, cells are, in some sense,
considered a basic unit of life.

For system-level understanding, initially the elements are
connected based on their mutual relations and a network
is formed on this basis [1]. Networks at the molecular
level are constructed to understand and explain the cell as
a system. In multicellular organisms, cells that constitute
tissues and organs in turn are organized and arranged to
make an organism. Like intracellular signaling, there is also

intercellular signaling. A whole organism can be viewed as
a network of cells or as a network of organs at a higher
level. An ecosystem, in turn, is made of many organisms and
depends on species-species relations. A network of species
can be constructed and utilized to understand and analyze
ecosystems. Furthermore, over time, an organism can evolve
and to explain such evolution phylogenetic networks, mostly
trees, have been constructed involving present and past
organisms.

In recent years, substantial research has been conducted
on networks ranging from social and biological networks
up to the Internet, aiming to decipher mechanisms of how
these networks grow and evolve and what global properties
they develop in the long run. Global network properties
such as average path length, clustering coefficient, and degree
distribution reflect useful information about the nature of
these networks such as network robustness and the existence
of hub nodes or clusters [1, 2]. Network theory also allows
calculation of different centrality measures for network ele-
ments, revealing globally important network information
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in different contexts [3–5]. Centrality measures can iden-
tify various things including determination of nodes that
disseminate information rapidly in the network or which
nodes to consider for blocking the spread of something in the
network.

It is increasingly commonly recognized that complex sys-
tems cannot be described by separately studying individual
elements. Analysis and understanding of the behavior of such
systems start with determination of the global topological
properties of the corresponding network. Cellular molecules
mainly consist of DNA, RNA, proteins, and metabolites,
which are the key drivers of cellular mechanisms.The actions
and interactions of such molecules control various functions
of the cells. In the present review, we focus on molecular
biological networks. In such networks, the nodes are usually
cellular molecules such as genes, proteins, or metabolites,
while the edges represent biological relationships, for exam-
ple, physical interactions, regulations such as activation and
inhibition of gene expression, or reactions such as substrate
product association. Networks in systems biology, can be
constructed in different contexts and sizes to support to
system-level analyses of cellular processes, subprocesses, or
higher-level biological phenomenon.

The concept of networks and network-based methods
finds many applications in systems biology [1, 6]. Rela-
tional networks of genes derived from gene expression
data can be used to develop novel biological hypotheses
about subgenome level interactions and mechanisms such as
signaling and regulation to guide new experimental designs
aimed at testing such hypotheses [7]. Biological networks
can be utilized to identify biomarkers for disease diagnosis.
Even a subnetwork could be used to identify biomarkers for
diagnostic, predictive, or prognostic purposes [8–11]. Protein
network and mRNA profiles can be integrated to identify
subnetwork biomarkers, that is, highly connected genes of a
subnetwork that could be the marker of a disease state. There
are several network-based approaches for identifying disease
genes and protein interaction subnetworks which are disease
signatures [12–14].

There is growing evidence that a network approach
is needed for successful development of medications for
complicated diseases [15]. Complicated noncommunicable
diseases such as cancer, Alzheimer’s disease, mental disor-
ders, and heart diseases are caused by multiple molecular
abnormalities. The drug discovery process for these diseases
requires targeting entire molecular pathways of various cellu-
lar omics networks rather than single molecules.

Recently, biological networks, for example, protein-
protein interaction (PPI) networks and gene expression
networks, have found widespread application in drug target
detection [16–19]. A system-level approach to function pre-
diction of unknown omics molecules can be performed by
constructing a network of such molecules and by analyzing
the clusters in the network based on the “guilt by association”
philosophy [1].

Already, omics networks have become an indispensable
part of understanding biology and medicine, and they will
be increasingly important in the future. In this paper, we
discuss the background and characteristics of some basic

types of molecular biological networks. This information
provides a useful foundation for understanding the concepts
of biological systems.

The rest of this paper is organized in several sections.
Section 2 describes the gene regulatory networks, including
the biological mechanism, regulatory relations, and topo-
logical properties. Section 3 discusses the protein-protein
interaction networks, defining these networks, how they are
detected, and their properties. Section 4 describes the biology
and properties of metabolic pathways. Section 5 looks at
signal transduction and signaling networks. Section 6 then
examines the growing number of databases related to omics
networks. Finally, Section 7 draws our conclusions from
this review of the background and characteristics of major
molecular biological networks.

2. Gene Regulatory Networks

In this section we briefly describe the biological mechanism
of gene regulation, determination methods of regulatory
relations between genes, and the topological properties of
gene regulatory networks.

2.1. The Biology of Gene Regulation. The main objective of
gene regulation is to regulate the production of proteins,
which are directly associated with development, mainte-
nance, and survival of organisms. The process of producing
proteins has several steps, fromDNA transcription to mRNA
through translation to proteins, all of which are controlled by
the gene regulation system. Chromosomes contain DNA, a
double helix of nucleotide sequences, which contains codes
formany proteins separated by noncoding regions. Generally,
the code for a single protein on the DNA is called a gene.
To produce a protein, first the DNA corresponding to a
gene is transcribed to an mRNA by a molecular machine
called RNA polymerase. An mRNA is a single-stranded
nucleotide sequence that usually contains the code of a
single protein or sometimes more proteins. This process of
producing an mRNA from DNA is known as transcription,
while generation of mRNAs of a gene is called expression
of a gene. From there, another molecular machine called
a ribosome extracts the information from the mRNA and
produces proteins. This process is known as translation. The
total process of information flow and protein production
from DNA through mRNA to protein is generally known as
the central dogma of molecular biology. However, the gene
regulation system controls this process, determining which
protein is produced, how much, where, and when. Gene
regulation requires very complex signal control for proper
development, maintenance, and survival of an organism.
While all of the mechanisms and information about the
regulatory systems of all genes are not yet known, it is clear
that deciphering the gene regulation system is important for
treating complex diseases and genetic engineering.

A key part of the gene regulation system is what is
known as transcription factors (TFs). As described above,
the process of protein production starts with transcription
of the corresponding gene. Therefore, major mechanisms of
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gene regulation are based on the interaction of TFs and other
regulators such as microRNAs (miRNAs) at the transcription
level. TFs are special types of proteins that have DNA binding
domains that can bind at specific sites of DNA defined by
particular sequences of certain length. For example, a yeast
TF, GAL4, is a chain of 881-amino acids with a Zn-Cys bin-
uclear cluster-type DNA-binding domain [20]. The nuclear
protein GAL4 is a positive regulator of gene expression for
the galactose-induced genes such as GAL1, GAL2, GAL7,
GAL10, andMEL1.These genes encode enzymes that convert
galactose to glucose. GAL4 recognizes a 17-base-pair long
sequence in the upstream activating sequence (uas-g) of
these genes, (5󸀠-cggrnnrcynyncnccg-3󸀠) CGG-N

11
-CCG [21],

where r stands for Purine (A or G), y for Pyrimidine (C or T),
and n is any nucleotide.

Regulation of gene expression at the transcription level
is a fundamental process that is evolutionarily conserved in
all cellular systems [22]. In this mechanism, the TFs bind at
specific sites in the promoter region of a gene using their
DNA binding domain and thus affect the expression of the
target gene (TG). The promoter is the upstream region of the
transcription start site of a gene, which is composed of a short
core promoter [23] and nearby regulatory elements. Also
there are distal regulatory elements, which can be enhancers,
silencers, insulators, or locus control regions (LCR) [24].
Despite extensive studies, we still have limited understanding
of the mechanisms of distal regulatory elements [25]. The
specific site where a TF physically binds is called a cis-
regulatory motif.

A TF can work as an activator, a repressor, or as a
dual regulator. An activator increases the expression of the
TG by enhancing the activity of the RNA polymerase at
the promoter. In the context of prokaryotic transcription,
a TF is known to bind upstream of the transcription start
site and often upstream of the −35 promoter element in
case of activation. For repression, a TF usually binds the
DNA to prevent RNA polymerase from initiating transcrip-
tion. For repression, a TF usually binds downstream of
the transcription site, causing DNA looping or, by binding
between −35 and −10 elements of the promoter region, blocks
RNA polymerase from binding to the DNA and initiating
transcription [26, 27]. Eukaryotic promoters are of various
types and are often difficult to characterize. However, recent
studies show that they are divided into more than ten classes
[28].

Between prokaryotes and eukaryotes, the process of
transcription is somewhat different. Within the cell of a
prokaryote, the nucleoid is an irregularly shaped region
that contains all or most of the genetic material [29]. In
contrast, in a eukaryotic cell, the nucleus is surrounded by
a nuclear membrane. In prokaryotic organisms, the genome
is generally a circular, double-stranded piece of DNA. Such
a DNA is called a genophore, commonly referred to as a
prokaryotic chromosome. In the context of chromatin, this
DNA is different from that of a eukaryote. In a eukaryotic
cell, chromatin is the combination of DNA and proteins that
make up the contents of the nucleus. The primary protein
components of chromatin are histones that compact theDNA
into a smaller volume to fit in the cell and prevent DNA

damage. Prokaryotes do not have typical histones, but they
do have histone-like proteins that package DNA.

In prokaryotes, the absence of a nucleus facilitates tran-
scription and translation on the same site. Prokaryotes also
have known operons, that is, groups of adjacent genes that are
transcribed as the same messenger RNA but translated sepa-
rately. The control of transcription in prokaryotes primarily
occurs at the DNA sequence level by using cis-regulatory
elements.

The process of transcriptional regulation in eukaryotes
is highly complicated and estimated to be coordinated and
controlled at several steps, including transcription initiation
and elongation andmRNAprocessing, transport, translation,
and stability [24]. Most regulation, however, is believed to
occur at the level of transcription initiation by the RNA
polymerase. Many biological events, including chromatin
condensation, DNA methylation, alternate splicing of RNA,
mRNA stability, translational control, protein degradation,
and regulation by noncoding RNA, can be regarded as
mechanisms of gene regulation [30]. The noncoding RNAs
called miRNA are important regulators of gene expression.
They are conserved across species, expressed across cell types,
and active against a large proportion of the transcriptome.
miRNAs are ∼22-nucleotide RNAs that posttranscriptionally
repress gene expression by base pairing to mRNAs [31].

A number of research studies have examined transcrip-
tion regulation based on relations between TFs and targeted
genes. A set of such relations is called a transcriptional regula-
tory network (TRN), which may be considered a type of gene
regulatory network (GRN). Any comprehensive characteri-
zation of GRNs must include TF-DNA-binding specificities
as well as higher-order modes of regulation such as protein
modification and protein-protein interaction [32]. The con-
cept of a GRN is somewhat broader than that of a TRN
and a comprehensive GRN may include relations other than
transcriptional regulations involving other molecules such
as miRNA and even metabolites. Genes may have various
types of relations between them, for example, transcriptional
regulatory relations, or they may be concerned with the same
protein complex ormetabolic/signaling pathways. Obviously,
gene expression data should contain some clues to such
relations [33]. A GRN, then, is defined as a network that has
been inferred from gene expression data by the application of
a statistical inference method [7, 34]. Since gene expression
data often quantifies the abundance of mRNAs, a GRN
provides information about general interactions, other gene-
gene interactions, and potential protein interactions such as
in a complex [34].

2.2. How Regulatory Relations Are Determined. The tran-
scriptional relation between a TF and a TG is a kind of
regulatory relation. Such relations are determined by small-
scale or high-throughputmethods to define the protein-DNA
interactions. Various methods such as ChIP-chip and ChIP-
seq can directly infer in vivo binding of TF to TGs [35, 36].
Both experimental and computational methods are currently
used to discover and characterize the TF-TG binding inter-
actions. Marcel and Sebastian reviewed the experimental
strategies for studying TF-TG binding specificities [37].
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Figure 1: (a) Well-known motifs in transcriptional regulatory networks and (b) some real examples of SIM, MIM, and FFL.

Another approach to assess transcriptional regulatory
relations is to determine differentially expressed genes upon
overexpression and deletion of TFs. Regulatory relations
between genes can be modeled by analyzing time series or
specific perturbation-based expression data of a comprehen-
sive set of genes. GRN modeling is often performed based
on Boolean or Bayesian networks or differential or difference
equations or by determining expression profile similarities
between genes based on some measure such as correlation,
Euclidean distance, or mutual information [38–41]. Reverse
engineering gene networks based on gene expression data
using singular value decomposition and robust regression
have also been proposed [42]. However, it is still a challenge
to reconstruct underlying regulatory systems from noisy
experimental data, due to stochastic biological dynamics
and nonlinear interactions. Emmert-Streib et al. reviewed
the methods for inferring gene regulatory networks from
observational gene expression data in detail [34, 43].

2.3. Properties of Regulatory Networks. The combination of
all regulatory relations between TFs and TGs of a species can
be regarded as a static network. In general, one gene may be
regulated bymore than oneTF, and oneTFmay regulatemore
than one gene. The TFs themselves may be regulated by the
same or other TFs. One of the global topological properties
of such a static network is its degree distribution. The degree
distribution is the probability distribution function 𝑝(𝑘),
which is a function of degree 𝑘. The function 𝑝(𝑘) shows
the probability that the degree of a randomly selected node
in the network is 𝑘 [44]. Usually, in the case of biolog-
ical networks, the degree distributions are represented as
frequency distributions instead of probability distributions,
and corresponding to both the approaches the shape of
the distribution remains the same. Degree distributions of
TRNs have been analyzed for several species. Overall, the
connectivity follows power law (𝑝(𝑘) ∼ 𝑘−𝛾) with 𝛾 ≈ 2
in the case of E. coli and S. cerevisiae [45, 46]. Networks
for which degree distribution follows power law are highly
nonuniform; that is, most of the nodes have only a few links,
with a few nodes that have many links. TRNs are directed
networks because the edges are directed from TFs to TGs.
For such networks, indegree and outdegree distributions
can be estimated separately. In a separate study, it was
shown that indegree distribution follows exponential law
(𝑝(𝑘) ∼ 𝐴𝑒

−𝛼𝑘
) while outdegree distribution follows power

law in the case of a typical S. cerevisiae regulatory network
[45]. Exponential indegree distribution implies that a similar
number of TFs regulate most TGs. However, the power law
outdegree distribution implies that there are hub TFs in the
network which regulate a disproportionately large number of
TGs. Such hub TFs are usually called global regulators [47].
As certain TFs regulate other TFs, it is possible to discover a
hierarchical structure in a TRN. Indeed, a number of studies
have determined a hierarchical structure in a TRNusing both
top-down and bottom-up approaches [48, 49].

Other studies have determined the occurrence of certain
motifs in TRNs. Figure 1(a) shows the structure of common
networkmotifs, namely, a feed forward loop (FFL), bifan, and
single input motif (SIM). The bifan is a special case of the
more general type multiple input motif (MIM). Figure 1(b)
shows real examples of SIM, MIM, and FFL [50]. The FFLs
can be of two types: coherent and incoherent depending
on the match and mismatch, respectively, of the regulatory
effects via the direct and feed forward paths [51]. In another
work studying the dynamic structure of the TRN of yeast,
five subnetworks were generated based on the static TRN,
two of them related to cell cycle and sporulation (endogenous
conditions), and the other three related to dioxic shift, DNA
damage, and stress response (exogenous conditions) [52].
This study showed that FFLs are overrepresented in the
networks related to endogenous conditions, whereas single
input motifs are overrepresented in the networks related to
exogenous conditions.

3. Protein-Protein Interaction (PPI) Networks

Here we discuss PPI network concepts, how PPIs are deter-
mined, and the properties of PPI networks.

3.1. What Is a PPI Network? In cells, thousands of different
types of proteins act as enzymes, catalysts to chemical reac-
tions of the metabolism, components of cellular machinery
such as ribosomes, regulators of gene expression, and so
on. Some proteins play specific roles in special cellular
compartments, whereas others move from one compartment
to another carrying mass or information.

Usually, more than one protein physically interacts or
binds with other proteins to form a complex performing
certain biological tasks. For example, in adult humans, the
most commonhemoglobin type is a tetramer (which contains
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Figure 2: Cartoon sketch of hemoglobin tetramer (PDB ID: 1GZX).

4 subunit proteins), consisting of two 𝛼 and two 𝛽 subunits
noncovalently bound, each made up of 141 and 146 amino
acid residues, respectively. The subunits are structurally
similar and about the same size. In human infants, the
hemoglobin molecule is made up of 2 𝛼 chains and 2 𝛾
chains. The gamma chains are gradually replaced by 𝛽 chains
as the infant grows. Salt bridges, hydrogen bonds, and the
hydrophobic effect keep the four polypeptide chains together.
The hemoglobin tetramer is a good example of physical
interaction between proteins to form a protein complex.
Figure 2 shows a typical cartoon image of a hemoglobin
tetramer. Numerous PPIs thus construct useful complexes to
perform biologically important tasks. A PPI network usually
refers to a network made of proteins as nodes, with known
or predicted interactions between them as edges. Usually, for
global analysis, all known and predicted interactions in an
organism are used to construct a large PPI network.

3.2. Detection of Protein Interactions. There are various ways
to detect protein interactions. A comprehensive list of the
different experimental procedures can be found in scientific
literatures [79, 80]. The two most popular high-throughput
methods are the yeast two-hybrid system (Y2H) [81] and
affinity purification coupled to mass-spectrometry (AP-MS)
[82]. Below we discuss some details about the Y2H system.

As an example, we discuss Y2H method in the context
of the GAL4 protein. GAL4 is a global TF that activates
galactose metabolic pathways. It has a DNA binding domain
(BD) that binds to the specific sequence upstream of the
GAL4 regulated genes and an activating domain (AD) which
binds to other proteins to activate the transcription. Both
domains are small parts of GAL4 proteins and are capable
of functioning independently but they need to be in close
proximity. If these two domains are expressed as separate
polypeptide chains in the same cell, they are not in close
proximity and thus they fail to activate transcription. It is
therefore reasonable to hypothesize that if BD is fused to
protein P1 and AD is fused to protein P2, with both fusions
coexpressed in the same cell so that the transcription of
GAL4 regulated genes can be activated; then we conclude

that P1 and P2 physically interacted to bring BD and AD into
close proximity. Y2H systems exploit this idea to determine
interactions between two unknown proteins. A “bait” is
constructed by fusing a protein, such as P1 to BD, and a
“prey” is constructed by fusing another protein, such as P2 to
AD, and both fusions are coexpressed in the same reporter
cell. Then the expression level of GAL4 regulated genes is
measured to determine whether P1 and P2 interact.

Fields and Song pioneered Y2H in 1989 [83]. Since then,
the same principle has been adapted to describe many alter-
native methods, including some that detect protein-DNA
interactions [84] or those that detect DNA-DNA interactions
and use Escherichia coli instead of yeast [85]. Large-scale
two-hybrid studies have also been used to study interac-
tions in yeast [81], Caenorhabditis elegans [86], Drosophila
melanogaster [87], and humans [88].

The other popular method for detecting PPI is AP-MS.
Thedetails of thismethod can be found in [82, 89, 90]. Studies
such as [91, 92] utilized it, where each work identified roughly
300 protein complexes in yeast.

3.3. Insights into Protein Interaction Networks. Other than
degree distribution, two other global topological properties
of a network are average path length and clustering coefficient
[44]. A path between two nodes in a graph is a sequence of
edges, starting from one node and ending at the other. The
distance between two nodes is the length of the shortest path
between them. In a graph consisting of 𝑁 nodes, there are
(

𝑁

2
) = 𝑁(𝑁 − 1)/2 distinct node pairs, and the average path

length of the graph is defined as the average distance between
all possible node pairs. The clustering coefficient of a node
is the ratio of the actual number of edges and the maximum
possible number of edges among its neighbors.The clustering
coefficient of a graph, then, is the average of the clustering
coefficients of all its nodes.

It has been shown that for random networks both the
average path length and the clustering coefficient are low,
while for PPI networks the average path length is low, but
the clustering coefficient is high, identifying such networks
as the “small-world” type [44]. The high clustering coeffi-
cient indicates that there are high-density modules in the
networks. A number of algorithms have been developed to
identify high-densitymodules in PPI networks [93–96]. Such
modules show relevance to the known protein complexes.

The degree distribution of PPI networks is reported to be
of power-law type (𝑝(𝑘) ∼ 𝑘−𝛾) [44]. The power-law degree
distribution indicates that the structure of the PPI networks is
of “scale-free” type, which means there are a few high-degree
hubnodes andmany low-degree peripheral nodes. It has been
reported that many of the hub nodes of PPI networks are
essential, evolutionarily conserved proteins serving central
roles in cellular processes [97]. The nodes of a network can
be ranked based on their degree and also based on other
centrality measures such as betweenness [98] or eigenvector
centrality [99]. The proteins in the PPI networks for which
such centrality measures are high are also more likely to be
essential proteins. A PPI network of yeast was shown to be a
combination of high-density and star-like modules [93].
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Figure 3:The degree distribution of a yeast PPI network and that of
a random network of the same size.

Figure 3 shows the degree distribution of a PPI network
and a random network of equal size. The PPI network of S.
cerevisiae consists of 12487 unique binary interactions involv-
ing 4648 proteins collected from the Munich Information
Center for Protein Sequences (MIPS) database [100]. Notice
that the degree distribution of the PPI network is of power-
law type while that of the random network follows Poisson’s
distribution (𝑝(𝑘) = 𝑒−𝜆𝜆𝑘/𝑘!) [101].

4. Metabolic Pathways

In this section, we discuss the biological basics of metabolic
pathways and their properties.

4.1. Biological Basics of Metabolic Pathways. Living cells
generate energy and produce building material for cell
components and replenishing enzymes by the process of
metabolism. All organisms live and grow by receiving food
or nutrients from the environment and assimilating those
chemicals. The foods are processed through thousands of
reactions. In cells, chemical reactions take place constantly,
breaking and making chemical molecules and transferring
ions and electrons. These reactions are typical of metabolic
pathways. As an example, the first stage of glycolysis pathway
is shown in Figure 4.The glycolysis pathway is very primitive
in terms of evolution and is common to essentially all living
organisms. Metabolites can therefore be considered as the
preliminary level molecules generated from food intakes
which are gradually transformed into building blocks for
producing proteins, RNAs, and DNAs, along with other
useful matter and energy for creating and maintaining cells
and life.

Metabolic reactions follow the laws of physics and chem-
istry, so modeling metabolic reactions requires considering

many physicochemical constraints [102]. Considering the
balance of inflow and outflow of every chemical reaction
within the entiremetabolic network, we can estimate reaction
flow under a steady state and predict optimal performance
for bioproduction [103]. However, it is still difficult to model
dynamic behavior of the whole metabolic network, since
kinetic parameters and the regulatory interaction of enzymes
are not fully determined. Actually, to respond to external
perturbations and internal needs, metabolic pathways must
be efficiently regulated, so they are linked to signaling
networks. Metabolic imbalance causes many severe human
diseases such as diabetes, cancer, cardiovascular problems,
obesity, gout, and tyrosinemia.

Metabolism is a general term for two kinds of reactions,
catabolic and anabolic reactions. Catabolic reactions refer
to chemical reactions that break more complex organic
molecules into simpler substances. They usually release
energy that drives chemical reactions. In these reactions,
large molecules such as polysaccharides, lipids, nucleic acids,
and proteins are broken down into smaller units such as
monosaccharides, fatty acids, nucleotides, and amino acids.
The energy from catabolic reactions is used to drive anabolic
reactions. Anabolic reactions refer to chemical reactions
in which simpler substances are combined to form more
complex molecules. These reactions usually require energy
to build new molecules and/or store energy. The energy for
chemical reactions is stored in adenosine triphosphate (ATP).

The term metabolic network usually means a collection
of metabolic reactions represented as networks, where the
metabolites are the nodes, and twometabolites are connected
if one of them is a substrate and the other is the product
of a reaction. Genome scale reconstruction of a metabolic
network involves thousands of metabolites and reactions.
Metabolic reactions are catalyzed by enzymes, which in a
broader sense are themselves gene products or proteins.
Metabolic networks therefore contain information about
both metabolites and proteins where the metabolites are
nodes and the proteins/enzymes are edges. There are other
ways of representing metabolic pathways, such as Bipartite
graphs or Petri nets [104, 105]. A metabolic pathway can
be represented as a bipartite graph by considering the
metabolites as one set of nodes and the enzymes as another
set of nodes. Such a representation can provide some overall
preliminary information about the system.

4.2. Characteristics of Metabolic Pathways. Usually, large-
scale metabolic pathways are represented as networks by
replacing the enzymes/reactions as unidirectional/bidirec-
tional edges and keeping the metabolites as nodes. However,
to make it biologically meaningful, usually the currency
metabolites are excluded from the network. There is no
strict definition of the currency metabolites. However, the
metabolites that are used as carriers for transferring electrons
and certain functional groups such as phosphate, amino, or
methyl group are often called currency metabolites. Different
studies use different sets of currency metabolites for the
sake of extracting meaningful results. One study showed that
even when currency metabolites are included in the network,
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Figure 4: The first stage of glycolysis.

metabolic networks are scale-free networks, that is, their
degree distribution follows power law [106]. The work of Ma
and Zeng [107] found that, after deletion of the currency
metabolites, the structure of the metabolite networks still has
a scale-free structure.

Overall, metabolic networks can be regarded as small-
world networks for their power-law degree distribution, high
clustering coefficient, low average path length, and diameter
[108]. High clustering coefficient implies the existence of
high-density modules in the networks. It has been proposed
that the combined properties of power-law degree distribu-
tion and high clustering coefficient indicate that modules
in the networks are linked to one another in a hierarchi-
cal manner [3]. It implies physicochemical constraints and
evolutionary bias in development of metabolic networks,
exemplified by living organisms acquiring new reaction paths
by slight modification of existing enzymes. When a network
consists of many small, highly integrated modules and the
modules are hierarchically organized, such a network is called
a hierarchical network. The most important signature of
hierarchicalmodularity is that the average clustering of nodes
of degree 𝑘 defined as 𝐶(𝑘) follows the power law (𝐶(𝑘) ∼
𝑘

−𝛾
) [44]. It has been reported that hierarchical modularity

exists in metabolic networks of E. coli and S. cerevisiae [106,
109].

Topological features of metabolic networks can also be
used to compare taxa from different kingdoms of life, for
example, archaea, bacteria, and eukarya [106, 107, 110]. These
studies show that some properties are shared by all taxa; for
example, the metabolic networks show scale-free structure,
but other properties are different; for example, bacteria have
a shorter average path length than archaea and eukarya.

Also, compared to the metabolic networks of bacteria and
eukarya, those of archaea have a lower average clustering
coefficient, betweenness centrality, and scale-freeness [110].
Furthermore, the organization ofmetabolism can be linked to
the species’ lifestyle and phenotype, for example, to the vari-
ability of habitat [111] and growth temperature [112]. Another
study used a novel representation of metabolic networks,
called a network of interacting pathways (NIP) and tried to
identify the most relevant aspect of cellular organization that
changes under evolutionary pressure [113].This work focused
on the transitions from prokarya to eukarya, from unicellular
to multicellular eukarya, from free living to host-associated
bacteria, and from anaerobic to aerobic respiration, in the
context of the structure of NIPs.

5. Signaling Networks

In this section, we discuss the basic mechanism of signal
transduction, alongwith the differences of signaling networks
from metabolic and regulatory networks. In addition, we
provide examples of signal transduction systems and the
properties of signaling networks.

5.1. Mechanism of Signal Transduction. Signaling networks
are above the gene regulatory networks. Signaling networks
are related to the transduction of “signals,” usually from
outside to inside the cell. At the molecular level, signaling
involves the same type of processes as metabolism, such
as production and degradation of substances, molecular
modifications (mainly phosphorylation but also methylation
and acetylation), and activation or inhibition of reactions,
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Figure 5: Illustration of difference between signaling andmetabolic
pathways.

although signaling is about changes in protein activity involv-
ing conformational changes of proteins, while metabolism is
primarily about changes in small molecules. Furthermore,
signaling pathways mainly serve for information process-
ing or transfer of information, while metabolism provides
mainly mass transfer [114]. To clarify the difference between
the metabolic network and signal transduction network,
as depicted in Figure 5, we can compare the generalized
topology of a signal transduction pathway with that of a
metabolic pathway. Figure 5(a) shows that, in a signaling
pathway, one active enzyme E1 modulates the activity of the
another enzyme E2, which in turn modulates the activity of
a third enzyme E3 without being consumed by the reaction.
On the other hand, Figure 5(b) shows that, in metabolic
reactions, the substrate metabolites are consumed by the
reactions to produce new metabolites, and the reactions are
catalyzed by the enzymes. In signal transduction pathways,
the state of the enzymes toggles between on and off to
propagate a signal, while, inmetabolic pathways, the enzymes
work as catalysts and are produced in the cell when needed.
This production of enzymes may be a result of some signal
propagation, which indicates that signaling networks are
related to regulatory networks. But there are good reasons
for treating signaling networks separately from regulatory
networks [115]. Signaling networks are strongly defined by
their structural layers—input, intermediate, and output—
which involve crosstalk, integrated decision making, and
feedforward and feedback control [116]. Thus they are differ-
ent from regulatory networks, which are strongly determined
by feedback loops [116]. However, all the interfaces between
signaling and regulation are not known [117].

Although lipids, proteins, and metabolites are the prin-
cipal components of signaling networks, further research in
molecular biology may uncover additional signaling compo-
nents [118], such as the discovery of the regulatory functions
of miRNAs [119]. From an engineering perspective, the
components of a signaling pathway can be viewed as sensors,
transducers, and actuators [120]. The general sequence of
steps in signal transduction are (i) binding of a ligand to a
receptor, usually to an extracellular receptor embedded in the
cell membrane, (ii) phosphorylation of intracellular enzymes,
(iii) amplification and propagation of the signal, and (iv)

consequential changes in the cellular function, for example,
increase/decrease in the expression of one or more genes.

5.2. Examples of Signal Transduction Systems. Mitogen-
activated protein kinase (MAPK) cascades are a well-known
signal transduction system that is a particular part of many
signaling pathways. In response to a range of stimuli, MAPKs
propagate signals from the cell membrane to the nucleus.
MAPK cascades are widely involved in eukaryotic signal
transduction for a variety of cellular processes, including cell
growth, differentiation, transformation, and apoptosis. It is
worth noting thatMAPKs pathways are conserved from yeast
to mammal.

Figure 6 shows the general format of a MAPK cascade.
The signal propagates through several levels, usually 3, by
phosphorylation of theMAPKs, and acts as an enzyme for the
phosphorylation of the next stage MAPKs. There are several
mechanisms to activate MAPKKKs by phosphorylation of
a tyrosine residue. The active MAPKK kinase MAPKKK-
P phosphorylates MAPK kinase MAPKK at serine and
threonine residues to produce MAPKK-PP. The terminal
level is the MAP kinase MAPK, and MAPKK-PP phospho-
rylates MAPK at two sites: conserved threonine and tyrosine
residues to produce MAPK-PP which is the active state
signal for the downstream. At all levels, dephosphorylation
is assumed to occur continuously by phosphatases or autode-
phosphorylation. Some other important signal transduction
mechanisms are G-protein signaling [114] and JAK-STAT
pathways [114].

5.3. Towards Genome-Scale Signaling Networks. Like
organism-wide gene regulatory networks, PPI networks, and
metabolic pathways, it is also essential to construct genome-
wide signal transduction networks. Signaling networks
work as interfaces between the environment, the genome,
and metabolism, so reconstructing genome-scale signaling
networks is useful for understanding complex diseases and
developing therapies [115]. Though many details of different
signal transduction pathways are known, they are often
fragmented, with different fragments referring to different
species and cell types, making the task of constructing
the large-scale signal transduction network problematic.
To overcome this problem, it has been suggested that the
network be constructed at the genome level instead of
the species level [121]. For this purpose, it is necessary to
represent the molecules by their ortholog abstractions.
Despite such difficulties, a network of several thousand
nodes and edges can be made by collecting information
from the TRANSPATH database [122]. This network is
sparse and shows scale-free properties in terms of degree
distribution and small-world properties in the context
of its diameter and clustering coefficient [121]. It is now
possible to simultaneously measure a substantial portion
of the molecular components of a cell; therefore it is
time to develop and test systems-level models of cellular
signaling and regulatory processes, which will facilitate
gaining insights into the “thought” processes of a cell
[115]. Recently, a method called CCELL was proposed, for
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cell-scale signaling network inference over a predefined
timescale using time series immunoprecipitation data based
on Bayesian compressive sensing [123].

6. Omics Network-Related Databases

By facilitating organized curation and search options for
data, currently databases have become an important part
of systems biology and big data biology. In recent years,
molecular biological data in different omics fields including
genomics, transcriptomics, proteomics, and metabolomics
have drastically expanded both in quantity and diversity.
Different biological databases focus on different aspects of
molecular biology, and a number of them can be directly or
indirectly linked to biological networks.Themajor objectives
of developing these databases are curation of data and allow-
ing analysis of the data by providing useful analytical software
tools. Curation includes storage, retrieval, dissemination,
filtration, and integration of data [1]. Many databases are
regularly updated, and the updated information is published
in journals. Comprehensive information about the omics
databases can be found by searching the Internet, including
thewebsite of the journal of nucleic acid research.On the next
page inTable 1, we list a few of the important databases related
to omics networks.

7. Conclusions

To understand the cell as a system, it is important to know
the functions of different types of molecules at genome,
transcriptome, proteome, and metabolome levels. At the
same time, it is important to know how these molecules
interact with each other and function as a whole. To achieve
both these goals, the initial step is to construct their networks
based on versatile biological information and to analyze such
networks.

Some of the topological properties of a network such
as degree distribution, average path length, and clustering

coefficient can indicate which network model it belongs to
among several network models, such as random, scale-free,
and small-world models. Different centrality measures of the
nodes can indicate important nodes in a network. Clustering
of a biological network can determine biologically relevant
groups of elements which can be utilized to extract novel
biological information and predict the functions of some
elements whose functions are not known.

In this review, we discussed the major molecular bio-
logical networks involving gene regulation, protein-protein
interaction, metabolic, and signaling pathways.We also sum-
marized the biological mechanisms and information relevant
to such networks that are important for researchers working
in the area of big data and network biology.

Omics networks have gradually become an indispensable
part of biology and will become more and more useful in
the future in various fields, including ecology and medicine.
Despite their interrelations, signaling, protein-protein, gene
regulatory, and metabolic networks frequently have been
modeled independently in the context of well-defined sub-
systems. For such purposes, algorithms and mathematical
formalisms have been developed according to the needs of
each particular network under study. However, a deeper
understanding of cellular behavior requires the integration of
these various systems to discover how they cooperate with
each other to function together.
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Table 1: A list of selected databases related to omics networks.

Database name Short description Web address

BioGRID [53] A database of proteins, genes, and posttranslational modifications
curated from the scientific literature http://thebiogrid.org/

BRENDA [54] A database of molecular and biochemical information on
enzymes http://www.brenda-enzymes.org/

ChEBI [55] A database and ontology of molecular entities http://www.ebi.ac.uk/chebi/
ChemSpider
[56]

A database of chemicals. It contains more than 34 million unique
molecules from over 450 data sources http://www.chemspider.com/

DIP [57] A manually curated database of experimentally elucidated
interactions between proteins http://dip.doe-mbi.ucla.edu/dip/

EcoCyc [58]
A database of the entire genome, and of transcriptional
regulation, transporters, and metabolic pathways in Escherichia
coli K-12, curated from the literature

http://ecocyc.org/

GenBank [59] A comprehensive database of publicly available nucleotide
sequences http://www.ncbi.nlm.nih.gov/genbank/

Gene Ontology
[60]

A database of annotations of genes and gene products for aiming
to provide a common language to make data machine readable http://geneontology.org/

IntAct [61] A database of molecular interaction derived from literature
curation or direct user submissions http://www.ebi.ac.uk/intact/

InterPro [62]

A database for classification and analysis of protein sequences. It
includes resources from PROSITE, HAMAP, Pfam, PRINTS,
PRoDom, SMART, TIGRFAMs, PIRSF, SUPERFAMILY,
CATH-Gene3D, and PANTHER

http://www.ebi.ac.uk/interpro/

KEGG [63]
An integrated database resource consisting of seventeen
databases which are categorized into systems, genomic, chemical,
and health information

http://www.genome.jp/kegg/

KNApSAcK
[64, 65]

An integrated database constituting a database of manually
curated metabolite-plant species, metabolic pathways, biological
activities, and so forth for metabolomics studies

http://kanaya.naist.jp/KNApSAcK Family/

MetaboLights
[66]

A data repository for metabolomics experiments and obtained
information http://www.ebi.ac.uk/metabolights/

MetaCyc [67] A metabolic database containing metabolic pathways, enzymes,
metabolites, and reactions from many organisms http://metacyc.org/

OMIM [68] A database of diseases with human genes and genetic conditions http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim
ProteomeScout
[69] A database of proteins and post-translational modifications https://proteomescout.wustl.edu/

PubChem [70] A database of chemical molecules and their activities http://pubchem.ncbi.nlm.nih.gov/
Reactome
[71, 72]

A database of human biological processes authored by expert
biologists http://www.reactome.org/

RegulonDB [73] A database of regulatory network and operon organization in
Escherichia coli K-12 http://regulondb.ccg.unam.mx/

STRING [74] A database of protein interactions (direct or indirect) derived
from manual curation or text mining http://string-db.org/

TAIR [75] A comprehensive database of information and materials of
Arabidopsis thaliana https://www.arabidopsis.org/

TRANSFAC
[76]

A manually curated database of eukaryotic transcription factors,
their experimentally elucidated binding sites and DNA binding
profiles. It needs a license for the up-to-date version

http://genexplain.com/transfac-db

TRANSPATH
[77]

A database of mammalian signal transduction and metabolic
pathways http://genexplain.com/transpath-db

UniProtKB [78]
A database of functional information on proteins. It consists of
UniProtKB/Swiss-Prot (manually annotated, reviewed) and
UniProtKB/TrEMBL (automatically annotated, not reviewed)

http://www.uniprot.org/
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