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Abstract: Diffuse large B-cell lymphomas (DLBCL) are the most common lymphoid malignancies, and encompass all 
malignant lymphomas characterized by large neoplastic cells and B-cell derivation. In the last decade, DLBCL has been 
subjected to intense clinical, phenotypic and molecular studies, and were found to represent a heterogeneous group of tumors. 
These studies suggested new disease subtypes and variants with distinct clinical characteristics, morphologies, immunophe-
notypes, genotypes or gene expression profi les, associated with distinct prognoses or unique sensitivities to particular 
therapy regimens. Unfortunately, the reliability and reproducibility of the molecular results remains unclear due to contra-
dictory reports in the literature resulting from small sample sizes, referral and selection biases, and variable methodologies 
and cut-off levels used to determine positivity. Here, we review phenotypic studies on the prognostic signifi cance of protein 
expression profi les in DLBCL and reconsider our own retrospective data on 301 primary DLBCL cases obtained on a pre-
viously validated tissue microarray in light of powerful statistical methods of determining optimal cut-off values of pheno-
typic factors for prediction of outcome.
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Introduction
Diffuse large B-cell lymphomas (DLBCL) are the most common lymphoid malignancies, comprising 
35% to 40% of all adult non-Hodgkin lymphomas. This category encompasses all malignant lymphomas 
characterized by large neoplastic cells and B-cell derivation (Gatter and Warnke, 2001; Lossos, 2005; 
Mitterlechner et al. 2006). DLBCL may develop de novo (primary DLBCL) or arise from a previously 
indolent lymphoma (secondary, transformed DLBCL) at virtually every nodal or extranodal location. 
It is most commonly observed in cervical, axillar and mediastinal nodes, the stomach and the ileo-coecal 
region (Gatter and Warnke, 2001). DLBCL are accompanied by an aggressive clinical presentation with 
the need for highly effective chemotherapy regimens (e.g. Coiffi er, 2005). Only about 60% of patients 
can be cured by rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone (R-CHOP) and 
equivalent treatment regimens (Coiffi er, 2005; Mitterlchner et al. 2006). The gold standard of predicting 
survival and stratifying patients for risk-adjusted therapy is the international prognostic index (IPI) 
(Shipp et al. 1993), which consists of easily assessable clinical and laboratory parameters: age, serum 
lactate dehydrogenase (LDH), stage, performance status and >1 extranodal sites involved. No such 
histopathologically-defi ned parameters exist and although the current World Health Organization (WHO) 
classifi cation (Gatter and Warnke, 2001) accepts different morphologic variants and subtypes of DLBCL, 
their prognostic utility is hampered by a high rate of interobserver variation, which generally minimizes 
their infl uence in therapy. In the last decade, extensive studies of the clinical, phenotypic and molecular 
aspects of DLBCL have identifi ed them as a heterogeneous group of tumors. These studies suggested 
new disease subtypes and variants with distinct clinical characteristics, morphology, immunophenotypes, 
genotypes or gene expression profi les associated with distinct prognoses or unique sensitivities to 
specifi c therapy regimens (Pileri et al. 2002; de Leval and Harris, 2003; Wright et al. 2003; Rosenwald 
and Staudt, 2003; Lossos, 2005; Morgensztern and Lossos, 2005; de Paepe and de Wolf-Peeters, 2006; 
Muris et al. 2006a). Unfortunately, the reliability and reproducibility of the molecular results remains 
unclear, and consequently translation into generally accepted standards to predict survival and stratify 
patients for risk-adjusted therapy has not taken place (for critical remarks see e.g. Hsi, 2001; de Leval 
and Harris, 2003; Gascoyne, 2004). Technical issues (antibody affi nity), lack of standardization of 
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evaluation procedures (defi nition of cut-off values) 
and poor study designs (small sample size and 
collection bias) are the most important factors 
hindering the effi cient clinical translation of these 
molecular data. From the histopathological stand-
point, some of these problems might be resolved 
by (A) application of monoclonal antibodies and 
good working fl uorescent in situ hybridization 
(FISH) probes, (B) standardized high throughput 
analysis methods such as tissue microarrays 
(TMA) (Tzankov et al. 2005a), (C) powerful statis-
tical methods and (D) consideration of both 
biological (tumor-specifi c) and clinical (patient-
specifi c) parameters on thoroughly characterized 
study collectives.

Here, we review phenotypic studies on the 
prognostic significance of protein expression 
profi les in DLBCL. Furthermore, we reconsidered 
our own retrospective data on 301 primary DLBCL 
cases obtained on a previously validated TMA 
(Tzankov et al. 2003a; Went et al. 2004; Zinzani et al. 
2005; Tzankov et al. 2006) in light of powerful 
statistical methods that determine the optimal cut-
off values of phenotypic factors for efficient 
outcome prediction. Since DLBCL with plasma-
blastic differentiation and acquired immunodefi -
ciency syndrome-related lymphomas, as well as 
primary mediastinal B-cell lymphomas, are beyond 
the scope of our review, we refer to recent over-
views on these rare variants (Carbone and Gloghini, 
2005; Teruya-Feldstein, 2005; Levine, 2006; 
Savage, 2006).

DLBCL Immunophenotype
DLBCL are derived from germinal center- (GC) 
or post-GC B-cells, and probably from extrafol-
licularly-activated B-cells (Alizadeh et al. 2000; 
Gatter and Warnke, 2001; Pileri et al. 2002; de 
Leval and Harris, 2003; Rosenwald and Staudt, 
2003; Lossos, 2005). The neoplastic cells usually 
express a series of antigens encountered on mature 
B-cells. Classical DLBCL are often CD19+, CD20+, 
CD79a+, BSAP+ (Gatter and Warnke, 2001; 
Torlakovich et al. 2002; Pileri et al. 2002; de Leval 
and Harris, 2003). The leukocyte common antigen 
(CD45) is absent in about 30% of immunoblastic 
and anaplastic DLBCL (Falini et al. 1990; Gatter 
and Warnke, 2001). Some immunoblastic DLBCL, 
particularly those derived from preterminally-
differentiated post-CG B-cells (plasmablastic-, 
primary effusion- and ALK+ DLBCL), often do 

not express CD20, CD79a and BSAP, but express 
MUM1, VS38c, CD138, or immunoglobulin (Ig) 
heavy or light chains (Delecluse et al. 1997; Delsol 
et al. 1997; Gatter and Warnke, 2001; Carbone and 
Gloghini, 2005; Teruya-Feldstein, 2005; Savage, 
2006). Lineage specifi city in such cases therefore 
requires immunohistochemical analysis utilizing 
a broader marker panel. Importantly, considering 
B-lineage markers, the rituximab era highlights the 
importance of assessing CD20-status in DLBCL 
at primary diagnosis and at every sequential biopsy, 
since therapeutic efficacy is related to CD20 
expression, which exposure to rituximab can abro-
gate (Davis et al. 1999; Held et al. 2006).

Prognostic Signifi cance
of Immunophenotypic Cellular
Differentiation Markers (Table 1)
The concept of varying DLBCL histogenesis from 
GC and non-GC B-cells takes, similar to the Kiel 
and WHO lymphoma-classification concept, 
normal B-cell differentiation into consideration, a 
concept supported by gene expression profi ling 
data (Alizadeh et al. 2000; Pileri et al. 2002; de 
Leval and Harris, 2003; Rosenwald and Staudt, 
2003; Lossos, 2005). Non-neoplastic GC B-cells 
have a distinct protein expression profi le (bcl-6+, 
CD10+, MUM1- and CD44sweakly+). The expression 
of BCL6 and MUM1, both involved in transcription 
regulation of genes important for lymphocyte 
activation and cell cycle control, is virtually recip-
rocal in normal B-cells (Fig. 1) (Shaffer et al. 2000; 
Falini et al. 2000). Protein expression in DLCBL 
in comparison to non-neoplastic B-cells is more 
complex (Fig. 2), suggesting deregulation of their 
gene expression, e.g. MUM1 and bcl-6 expression 
is not exclusive in DLBCL (Falini et al. 2000; 
Falini and Mason, 2002; Pileri et al. 2002; de Leval 
and Harris, 2003; Hans et al. 2004). Expression of 
each of the mentioned differentiation antigens has 
been found to be of prognostic signifi cance in 
DLBCL, but these results remain somewhat contro-
versial.

Bcl-6 is a zinc fi nger sequence-specifi c tran-
scriptional repressor specifi cally expressed on GC 
B-cells (Cattoretti et al. 1995; Shaffer et al. 2000). 
Approximately 50% of DLBCL express Bcl-6 in 
a variable proportion of tumor cells (Fig. 3 and 4A) 
(Skinnider et al. 1999; King et al. 2000; Artiga 
et al. 2002; Pileri et al. 2002; Braaten et al. 2003; 
Colomo et al. 2003; de Leval and Harris, 2003; 
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Chang et al. 2004). Bcl-6 expression in DLBCL 
may be a signature of a GC differentiation stage 
of the original B-cell before malignant transforma-
tion, or may be turned on due to translocations 
involving the BCL6 locus at 3q27 with variable 
partners of either the Ig family or non-Ig genes, or 
due to mutations in the 5’ non-translated regulatory 
region (Ye et al. 1993; Lo Coco et al. 1994; Ye 
et al. 1995; Pescarmona et al. 1997; Kramer et al. 
1998; Skinnider et al. 1999; Capello et al. 2000; 
Butler et al. 2002; Falini and Mason, 2002; 
Pasqualucci et al. 2003; Ohno, 2006). It is likely 
that only co-expression of bcl-6 with CD10 refl ects 
a true GC DLCBL derivation (Dogan et al. 2000; 
King et al. 2000; see Paragraph on expression of 
CD10). Indeed, bcl-6 and CD10 expression cluster 
together in DLBCL (Fig. 3). While bcl-6 protein 
or mRNA expression in DLBCL has been found 
to predict favorable outcomes by some investiga-
tors, this has not been confi rmed by others (Lossos 
et al. 2001; Braaten et al. 2003; Colomo et al. 2003; 
Tzankov et al. 2003a; Chang et al. 2004; Winter et al. 

2006). The same contradictory results have been 
found for BCL6 rearrangements, which some 
authors report to be associated with a favorable 
outcome and others report no distinct prognostic 
signifi cance (Lo Coco, 1994; Offi t et al. 1994; 
Pescarmona et al. 1997; Kramer et al. 1998; 
Barrans et al. 2002a; Jerkeman et al. 2004). This 
controversy can be explained by the fact that trans-
locations, leading to non-Ig/BCL6 fusion products, 
indicate a poor prognosis, while those leading to 
Ig/BCL6 fusions do not (Akasaka et al. 2000; Ueda 
et al. 2002; Ohno, 2006). Bcl-6 mutations are prob-
ably also associated with distinct outcomes in 
DLBCL (Vitolo et al. 2002; Artiga et al. 2002).

CD10 is a membrane metalloproteinase 
expressed in GC B-cells (Shipp et al. 1989; King 
et al. 2000). Approximately 35% of DLBCL 
express CD10 (Fig. 3 and 4B) (Dogan et al. 2000; 
King et al. 2000; Fabiani et al. 2002; de Leval and 
Harris 2003; Tzankov et al. 2003a; Hans et al. 
2004), but the prognostic relevance of such expres-
sion is controversial. Some authors reported an 

Table 1. Review of prognostic phenotypic markers in diffuse large B-cell lymphoma; cut-off levels according to 
varying reports in the literature. Note the broad range of cut-off levels applied.

Protein Outcome* Mechanism Cut-off**
Bax favorable reciprocal relationship to Bcl-2 >50%
Bcl-2 unfavorable anti-apoptosis, drug resistance >10 to >50%
Bcl-6 favorable/uncertain repression of post-GC gene transcription, >10 to >30%
  reciprocal to MUM-1
CD5 unfavorable/uncertain distinct cellular origin >10 to >20%
CD10 favorable signature of GC-phenotype >10 to >30%
CD44s & v6 unfavorable tumor dissemination promotion >20 to >80%
CDK1 & 2 unfavorable cell cycle promotion >50 to >80%
CCNB1 unfavorable facilitation of G2-M transition >1%
CCND2 unfavorable mitogen-dependent cell cycle progression >30%
CCND3 unfavorable  >5 to >50%
CCNE unfavorable mitogen-independent cell cycle progression, >2 to >80%
  chromosomal instability
FOXP1 unfavorable transcriptional repressor in activated B-cells >30 to 100%
Ki-67 uncertain unknown <60, >50,
   >65, >85%
Mcm2 unfavorable effi cient proliferation >40%
Mdm2 unfavorable increased degradation of p53 >10%
MUM-1 unfavorable promotion of post-GC gene transcription, >30%
  reciprocal to Bcl-6
p21 probably favorable should be interpreted together with p53 >10%
p27 unfavorable inactivation by CCND3 or SKP2 >5 to >15%
p53 unfavorable/uncertain inactivation lost cell cycle control >5 to >20%
pRb unfavorable inactivation cell cycle progression >80%
SKP2 unfavorable G1-S-transition by degradation of p27 >60 to >80%
Survivin unfavorable inhibition of apoptosis at G2-M >10%
*indicates the mainstream fi nding of the reviewed studies.
**references from which data arose are mentioned in the according manuscript sections dealing with the individual markers.
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association of the CD10+ phenotype with a signif-
icantly lower rate of complete remissions, but most 
studies showed CD10 expression to be a favorable 
prognostic factor in DLBCL (Xu et al. 2001; 
Oshima et al. 2001; Uherova et al. 2001; Fabiani 
et al. 2002; Colomo et al. 2003; Biasoli et al. 2005; 
Muris et al. 2006b). A large proportion of CD10+ 
DLBCL express Bcl-6 (Fig. 3), indicating a 
GC-origin, and this phenotype seems to be 
particularly predictive of a favorable outcome (Ree 

et al. 2001; Barrans et al. 2002b; Colomo et al. 
2003; Huang et al. 2002; McCluggage et al. 2002; 
Tzankov et al. 2003a; Chang et al. 2004; Hans et al. 
2004; Zinzani et al. 2005; Berglund et al. 2005; 
van Imhoff et al. 2006).

In normal B-cells, MUM1/IRF4 expression prob-
ably drives the fi nal steps of intra-GC B-cell differen-
tiation and initiates subsequent steps of maturation 
towards plasma cells. Thus, MUM1 can be detected 
by immunohistochemistry in a small percentage of 

Figure 1. Reciprocal expression of Bcl-6 (left) and MUM1 (right) in normal germinal centers. Note striking Bcl-6 nuclear positivity in the 
centroblast-rich follicle dark zone and the majority of cells in the centrocyte-rich pale zone on the left as well as isolated MUM1+ cells within 
the germinal center on the right.

Figure 2. Cluster center analysis in our own series of diffuse large B-cell lymphomas considering expression of differentiation markers. The 
overlap of the red and green ellipsoids with the protein expression circles indicates cluster center tendency. Note the strict segregation of 
CD10- and MUM1 expression, but the comparatively low segregation of Bcl-6- and CD44s- and even lower Bcl-2- and FOXP1 expression 
within the diffuse large B-cell lymphoma clusters.
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Figure 3. Outcome cluster analysis of phenotypic markers and phenotypes according to the “Hans’ algorithm” (Hans et al. 2004) and cut-off 
values from Table 2, as well as clinical parameters in diffuse large B-cell lymphomas (DLBCL). Cases expressing markers higher than the 
cut-offs, males, and patients >66 years are indicated in red, while negative cases, females, and individuals <66 are in green. Phenotypic 
germinal center DLBCL are indicated in orange, while non-germinal center DLBCL are in blue; only one DLBCL case (brown) co-expressed 
all three CD10, Bcl-6 and MUM1. Note the aggregation of FOXP1+, MUM1+ and Bcl-2+ cases in the lymphoma-related deaths cluster as well 
as the slight predominance of CD10+, Bcl-6+ and highly proliferative tumors in the survival cluster. Empty balks represent analysis failure or 
lacking LDH data.
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Bcl-6– GC B-cells, post-GC B-cells and plasma cells 
(Falini et al. 2000). In DLBCL, MUM1 is expressed 
in 50 to 75% of both Bcl-6+ and Bcl-6− samples, and 
may refl ect derivation from B-cells at a late GC or 
post-GC stage of differentiation (Fig. 3 and 4C) (Falini 
et al. 2000; Tsuboi et al. 2000; Natkunam et al. 2001; 
Pileri et al. 2002; Chang et al. 2004; Hans et al. 2004; 
Saez et al. 2004; Zinzani et al. 2005). Gene expression 
profi le analyses showed that MUM1 clustered within 
the group of genes expressed by activated B-cell like 
DLBCL (Alizadeh et al. 2000). Subsequent TMA 
studies demonstrated that expression of MUM1 in at 
least 30% of tumor cells was associated with a 
signifi cantly worse outcome (Chang et al. 2004; Hans 
et al. 2004; Tzankov et al. 2006; Muris et al. 2006b; 
van Imhoff et al. 2006), while other studies found no 
association between MUM1 expression and outcome 
(Colomo et al. 2003; Berglund et al. 2005).

FOXP1 (FORKHEAD BOX P1) is a transcrip-
tion factor containing a forkhead DNA-binding 
domain (Kaestner et al. 2000). The FOXP1 gene is 
located on chromosome 3 and is expressed in normal 
activated B-cells and in a subset of DLBCL with a 
predominantly non-GC phenotype (Fig. 3) (Barrans 
et al. 2004; Hans et al. 2004; Banham et al. 2005; 
Wlodarska et al. 2005). FOXP1 expression corre-
lates with poor survival in DLBCL patients (Barrans 
et al. 2004; Banham et al. 2005). Interestingly, 
FOXP1 can be also detected in marginal zone B-cell 
lymphomas. Studies on the molecular mechanisms 
underlying FOXP1 expression in both DLBCL and 
MZL showed that its expression can result from a 
translocation t(3;14) (p13; q32) in 1% of cases, or 
may be related to an increased gene copy number, 
since 60% of FOXP1+ DLBCL harbor the trisomy 
3 (Wlodarska et al. 2005; Fenton et al. 2006). Inter-
estingly, 45% of FOXP1+ extranodal marginal zone 
B-cell lymphomas also have trisomy 3, and FOXP1 
expression correlates with poor survival (Sagaert 
et al. 2006).

CD44 is a family of cell surface adhesion glyco-
proteins that act as receptors for hyaluronate. CD44 
molecules play a key role in normal lymphocyte 
development, homing and activation and are 
important for tumor spread (Irving et al. 1998). 
CD44 exist in a variety of alternatively spliced 
isoforms. Normal lymphocytes express the stan-
dard CD44 isoform (CD44s). In addition to CD44s, 
DLBCL may express larger splicing variants 
(CD44v), especially those containing exon v6/7, 
which are associated with disseminated malignan-
cies in experimental models (Drillenburg and Pals 

2000). Expression of CD44s and/or CD44v6 has 
been associated with shortened survival in DLBCL 
and clustered in bcl-6– (non-GC) cases (Ristamaki 
et al. 1995; Drillenburg et al. 1999; Inagaki et al. 
1999; Tzankov et al. 2003a).

A few studies point to the CD5 expression in 
DLBCL (Harada et al. 1999; Kroft et al. 2000; 
Suguro 2006). Its fi nding in 109 de novo cases was 
supposed to represent a unique subgroup of 
DLBCL because of the uniform phenotype (CD5+/
CD10–/CD19+/CD20+/CD21+/CD23–/cyclin D1–), 
usual centroblastic morphology and aggressive 
clinical behavior (Yamaguchi et al. 2002; Suguro 
et al. 2006). However, the putative adverse prog-
nostic relevance of CD5 expression has not been 
confi rmed by other studies, which instead corre-
lated CD5 positivity to the occurrence of other 
specifi c molecular aberrations (Katzenberger et al. 
2002; Karnan et al. 2004; Zimpfer et al. 2004; 
Yoshioka et al. 2005).

VS38c and CD138 are markers of late post-GC 
differentiation and are often expressed in HIV-
associated-, plasmablastic-, primary effusion- and 
ALK+ lymphomas (Delecluse et al. 1997; Delsol 
et al. 1997; Gatter and Warnke, 2001; Carbone and 
Gloghini, 2005; Teruya-Feldstein 2005; Levine 
2006). Common DLBCL are rarely reactive with 
these markers (Pileri et al. 2002; de Leval and 
Harris, 2003).

Considering the expression of bcl-6, CD10 and 
MUM1 as well as CD44, CD138, bcl-2 and other 
biomarkers, different algorithms to identify GC 
and non-CG DLBCL have been proposed (e.g. 
Barrans et al. 2002b; Colomo et al. 2003; Tzankov 
et al. 2003a; Chang et al. 2004; Hans et al. 2004; 
Zinzani et al. 2005, Tzankov et al. 2006; Muris 
et al. 2006b; Oh et al. 2006; van Imhoff et al. 2006), 
but confi rming the relevance of most of them is 
hampered by failures in results reproducibility and 
low validity.

Prognostic Signifi cance 
of Immunophenotypic Cell Cycle- 
and Apoptosis-controlling Proteins 
in DLBCL (Table 1)
Disruption of the physiological balance between 
cell proliferation and cell death is a universal 
feature of malignant tumors. Two major concurrent 
regulatory pathways control the cell cycle: The p53 
pathway, which regulates apoptosis and arrest in 
the G1-phase of the cell cycle, and the retinoblastoma 
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(Rb) pathway, which regulates the G1-S transition. 
Cell cycle progression is regulated by a complex 
molecular network involving cyclins (CCN), 
cyclin-dependent kinases (CDK) and CDK inhib-
itors (CDKI). Genetic alterations and/or deregula-
tions of many of these factors are frequently 
detected in DLBCL (Sherr 2000).

p53, one of the most frequently mutated genes 
in human cancer, monitors DNA integrity by 
arresting cells at the G1-phase or programming them 
to cell death when DNA is defective (Somasun-
daram 2000). p53 is usually immunohistochemically 
undetectable in normal cells because of its rapid 
degradation. Missense mutations of p53 usually 
result in protein stabilization, making it detectable 
by immunohistochemistry, but the absence of p53 
expression cannot be regarded as an unequivocal 
sign of a wild-type gene, since rare nonsense or 
frameshift mutations produce rapidly degradable 
p53 proteins that fail to accumulate (Soussi and 
Beroud 2001). In DLBCL, p53 is immunohisto-
chemically detectable in 30 to 40% of cases, but 
only a fraction of p53+ DLBCL have an underlying 
mutation, thus p53 mutational status can obviously 
not be deduced from immunohistochemically 
detected p53 expression alone. Importantly, only 
p53 mutations, which are found in about 20% of 
DLBCL, appear to be associated with clinical drug 
resistance and poor outcome (Villuendas et al. 1993; 
Piris et al. 1994; Kramer et al. 1996; Ichikawa et al. 
1997; Koduru et al. 1997; Wilson et al. 1997; Moller 
et al. 1999; Llanos et al. 2001; Leroy et al. 2002; 
Kerbauy et al. 2004). The combined analysis of p53 
and its downstream target, p21, comprises the 
distinction between p53 immunopositivity associ-
ated with p53 mutation (p53+/p21–) and that, 
refl ecting accumulation of wild-type p53 (p53+/
p21+) (Villuendas et al. 1993; Chilosi et al. 1996; 
Moller et al. 1999). Some studies showed that the 
p53+/p21– (∆p53) immunophenotype, used as a 
surrogate for p53 mutations, is associated with treat-
ment failure and poor survival in DLBCL as well, 
particularly in GC DLBCL (Moller et al. 1999; 
Pagano et al. 2001; Visco et al. 2006). We recently 
performed a TMA-based study on 297 DLBCL 
considering the prognostic signifi cance ∆p53 (Went 
et al. 2004), which was found in 21% of cases. In a 
multivariate model, high IPI and ∆p53 were inde-
pendent prognostic markers of poor survival.

Bcl-2, a mitochondrial inner membrane anti-
apoptotic protein (Hockenbery et al. 1990), should 
be particularly discussed, because its prognostic 

importance in DLBCL has been confirmed by 
numerous studies (Moni et al. 1999; Rantanen et al. 
2001; Shivakumar and Armitage, 2006) and bcl-2 
associated treatment resistance can be abolished by 
the addition of rituximab to CHOP-therapy regimens 
(Mounier et al. 2003; Coiffi er 2005). Bcl-2 is widely 
expressed in normal lymphoid tissues, but is absent 
in GC B-cells (Pezzella et al. 1990). The exemplary 
t(14;18) (q32; q21) translocation characteristic of 
follicular lymphoma (Tsujimoto et al. 1985), which 
induces production of high levels of bcl-2 protein, 
is observed in about 25% of DLBCL, but bcl-2 
protein expression is found in >50% of DLBCL 
(Fig. 3) (Jacobson et al. 1993; Piris et al. 1994; 
Dalla-Favera et al. 1994; Gascoyne et al. 1997a; 
Pescarmona et al. 1997; Kramer et al. 1998; 
Skinnider et al. 1999; Rantanen et al. 2001; Huang 
et al. 2002; McCluggage et al. 2002; de Leval and 
Harris 2003; Barrans et al. 2003; Tzankov et al. 
2003a; Iqbal et al 2004). Indeed, in the absence of 
BCL-2 translocation, amplification of 18q21 
(containing the BCL2 gene) is another important 
mechanism for bcl-2 protein over-expression in 
DLBCL, and can be detected in about 30% of cases 
(Monni et al. 1997; Rao et al. 1998; Skinnider et al. 
1999; Rantanen et al. 2001). Amplifi cations seem 
to be more frequent in non-GC DLBCL (18%) than 
GC DLBCL (5%), while the latter more frequently 
harbor the t(14;18) (q32; q21) (Huang et al. 2002; 
McCluggage et al. 2002; Rosenwald et al. 2002; 
Barrans et al. 2003; Iqbal et al. 2004; Kusumoto 
et al. 2005). There is no evidence that the presence 
of a BCL-2 translocation at diagnosis has any impact 
on the survival of patients with DLBCL, though the 
prognostic impact of bcl-2 protein expression, 
evaluated in multiple large-scale trials, is signifi cant 
(Hill et al. 1996; Gascoyne et al. 1997a; Pescarmona 
et al. 1997; Bebb et al. 2002; Muris et al. 2006b). A 
recent publication supported the prognostic signifi -
cance of t(14,18) in GC DLBCL (Barrans et al. 
2003), while others suggest that bcl-2 expression 
may be of greater prognostic signifi cance in non-GC 
DLBCL (Iqbal et al. 2006). The anti-apoptotic 
activity of bcl-2 is modulated in part by its ability 
to heterodimerize with bax, another member of the 
bcl-2 protein family with a pro-apoptotic activity 
(Oltvai et al. 1993). In two studies, low bax expres-
sion tended to be correlated with an adverse outcome 
in DLBCL (Gascoyne et al. 1997b; Sohn et al. 
2003).

Survivin is a member of the apoptosis-inhibiting 
protein family and is expressed during mitosis, 
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inhibiting apoptosis at the G2-M transition (Li and 
Ling, 2006). It is normally undetectable in adult 
tissues. In a large prospective DLBCL trial, 
survivin expression was detected in 60% of the 
cases and was an independent predictor of 
decreased survival (Adida et al. 2000). A second 
smaller study confi rmed these observations for 
both phenotypical GC- and non-GC DLBCL 
(Watanuki-Miyauchi et al. 2005).

The monoclonal anti-Ki-67 antibody (MIB-1), 
which detects a protein expressed in the G1-, S-, 
G2- and M- but not G0-phases of the cell cycle, is 
widely used as a proliferation marker (Brown and 
Gatter, 2002). The functional signifi cance of Ki-67 
remains unclear (Scholzen and Gerdes, 2000). In 
DLBCL, the cell cycle fraction assessed by Ki-67 
is variable, usually ranging from 30 to 100%, but 
is typically high (de Leval and Harris, 2003). A 
high proliferation index has been associated with 
an unfavorable clinical outcome in some studies, 
but not in others (Miller et al. 1994; Llanos et al. 
2001; personal observations, (Fig. 3)). Since it has 
been suggested that Ki-67 plays a role in the ribo-
some biosynthesis rather than being directly 
responsible for cell proliferation (Scholzen and 
Gerdes, 2000), detecting markers directly involved 
in DNA replication might be a more precise method 
to evaluate the proliferative behavior of a tumor. 
The minichromosome maintenance (MCM) protein 
family, consisting of six abundant members of 
DNA-binding proteins, stands at the end of many 
signaling pathways involved in cell proliferation. 
MCMs ensure that synthesis of DNA is initiated 
only once during each cell cycle and are only 
expressed in cycling, but not in quiescent and 
differentiating cells (Tye, 1999). We recently 
demonstrated that expression of MCM2 in �40% 
of tumor cells is a negative prognostic marker for 
disease-specifi c survival in a large series of DLBCL 
(Obermann et al. 2005a).

In normal cells, transition through the restriction 
point of the cell cycle in the G1-phase, beyond 
which cell proliferation is independent of external 
signaling, is negatively regulated by the Rb protein, 
which binds and inactivates E2F transcription 
factors whose activity is necessary for expression 
of S-phase genes. Under mitogenic stimulation, 
accumulation of D-type CCNs allows formation 
of active CDK4/CCND complexes that inactivate 

Rb, thus promoting E2F-mediated transcription 
and subsequent progression through the early 
(mitogen-dependent) G1-phase of the cell cycle. 

Later, CDK2/CCNE complexes drive the mitogen-
independent G1-phase progression as well as the 
G1-S transition. CDK1/CCNB1 complexes play an 
important role in G2-M transition and execution of 
mitosis (Sherr 2000). Considering cell cycle 
regulation in DLBCL, expression of CCNB1, 
CCND2, CCND3, CCNE, CDK1 and CDK2 and 
CDKI p27 have been shown to be prognostically 
relevant (Erlanson et al. 1998; Saez et al. 1999; 
Sanchez-Beato et al. 1999; Ferreri et al. 2001; 
Moller et al. 2001; Filipits et al. 2002; Kuttler et al. 
2002; Lin et al. 2003; Saez et al. 2004; Hans et al. 
2005; Obermann et al. 2005b; Tzankov et al. 2006). 
Expression of CCND2 in more than 30% or of 
CCND3 in more than 50% of neoplastic cells, 
respectively, seems to predict inferior overall 
survival (Filipits et al. 2002; Hans et al. 2004 and 
2005). In addition to the direct activation of CDK4, 
CCND3 can further promote cell proliferation by 
the sequestration of p27 and indirect activation of 
CDK2/CCNE, which might explain why high p27 
expression (probably sequestered by CCND3) is 
an adverse prognostic factor in DLBCL (Saez et al. 
1999; Sanchez-Beato et al. 1999; Lin et al. 2003). 
We recently showed that 35% of DLBCL express 
CCNE in >20% of tumor cells (Fig. 4D) despite 
the general lack of CCNE gene amplification 
(Tzankov et al. 2006), a constellation similar to 
that in classical Hodgkin lymphoma (Tzankov 
et al. 2003b). In classical Hodgkin lymphoma, 
CCNE over-expression seems to refl ect profound 
deregulation of the cell cycle in Hodgkin and 
Reed-Sternberg cells (Tzankov et al. 2003b; 
Tzankov et al. 2005b) and has no prognostic 
signifi cance, while CCNE in DLBCL obviously 
preserves its oncogenic potential to promote G1-S 
transition independent of extracellular mitogenic 
stimuli (Gong et al. 1995; Bortner and Rosenberg 
1997). CCNE expression in >20% of tumor cells 
is an IPI-independent prognostic factor for both 
overall- and disease-specific survival and a 
predictive factor for poor response to CHOP 
treatment regimens in DLBCL (Tzankov et al. 
2006). Expression of CCNE did not correlate with 
proliferation as assessed by Ki-67 (Tzankov et al. 
2006), in agreement with previous observations 
(Erlanson et al. 1998). Thus, mitogen-independent 
deregulation of the G1-S transition possibly plays 
a more important oncogenic role than proliferative 
activity. Interestingly in that context, we and others 
demonstrated that detection of >1% CCNB1 
stainable cells in DLBCL is also a stage-independent 
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negative prognostic factor (Kuttler et al. 2002; 
Obermann et al. 2005b). In summary, deregulation 
of the G1-S (CCNE/CDK2) and G2-M transitions 
(CCNB1/CDK1) are probably most critical for the 
malignant potential of DLBCL (Fig. 5).

Implementation of Receiver 
Operating Characteristic (ROC) 
Curves and Area Under ROC 
(AUROC) to Determine Optimize 
Prognostic Cut-Off Values 
of Immunophenotypic Markers 
in DLBCL
One of the main obstacles for practical translation 
of the marker profiles reviewed herein is the 

considerable variation in criteria used by different 
investigators to classify positive and negative 
cases, as well as the fact that in some instances 
(e.g. Bcl-2 and Bcl-6), the multiple mechanisms 
driving protein expression have not been taken into 
consideration. The quantity of positive cells and 
staining intensity for many of the phenotypic 
markers considered shows a continuous distribu-
tion from 0 to 100% in DLBCL. Cut-off levels for 
the different markers have a broad range and their 
sensitivity and specifi city have not yet been criti-
cally addressed (Table 1).

When a diagnostic test is based on a continuous 
variable, a range of different cut-off values may 
be investigated to decide which value should be 
used to discriminate between patients according to 

A B

C
D

Figure 4A. Expression of Bcl-6 in diffuse large B-cell lymphoma (DLBCL). Note intense and moderate nuclear signals in lymphoma cells as 
well as internal negative controls (endothelial nuclei). B. Expression of CD10 in DLBCL. Note intense membranous signals in lymphoma 
cells as well as internal negative controls (small lymphocytes). C. Expression of MUM1 in DLBCL. Note intense and moderate nuclear 
signals in lymphoma cells. D. Expression of cyclin E in diffuse large B-cell lymphoma. Note moderate and isolated intense nuclear signals 
in lymphoma cells.
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outcome (Bewick et al. 2004). In most instances, 
it is desirable to choose a test that has highest 
possible values for both sensitivity and specifi city. 
A graphic of sensitivity against 1 – specifi city is 
called a receiver operating characteristic (ROC) 
curve (Fig. 6). A perfect test would have a sensi-
tivity and specifi city both equal to 1. The ROC 

curve would start at coordinates X0; Y0, go 
vertically up the y-axis and then horizontally across 
to coordinates X1; Y1. A good test would be some-
where close to this ideal (Bewick et al. 2004). If a 
variable has no diagnostic or prognostic value, then 
a test based on it would be equally random and the 
ROC curve would run diagonally (Fig. 6). The 
performance of a diagnostic variable can be quan-
tifi ed by calculating the area under the ROC curve 
(AUROC). The ideal test would have an AUROC 
of 1, whereas a random guess would have an 
AUROC of 0.5. If there is no particular require-
ment on the sensitivity and specifi city of a test, 
then the Youden’s index (Y) may be used to choose 
an appropriate cut-off for the descriptive values 
from the ROC curve:

Y = sensitivity + specifi city – 1 (Perkins and 
Schisterman, 2006).

The maximum value Y can attain is 1, when the 
test is perfect. The coordinates from the ROC curve 
can be easily calculated and sorted by this index. 
Optimal cut-off values then should be determined 
with reference to Y nearest to 1. The potentials of 
implementation of ROC/AUROC for diagnostic 
purposes in immunohistochemistry have only 
recently been realized and addressed (e.g. 
Obermann et al. 2005a; Obermann et al. 2005b; 
Zlobec et al. 2006).

Taking into consideration these statistic opera-
tors, we critically re-evaluated our own TMA 
series of 301 primary DLBCL (Tzankov et al. 
2003a; Went et al. 2004; Zinzani et al. 2005; 
Tzankov et al. 2005a; Tzankov et al. 2006) to 
determine the optimal cut-off values for differen-
tiation-associated antigen expression (Table 2). 
We linked the results to the clinical end-point 
“disease-related mortality” and critically compared 
the outcomes obtained considering the cut-off 
levels form the ROC curves and Y with those 
suggested in the literature. Comparison of the 
results linked to disease-related mortality by the 
Kaplan-Meier method for every factor unequivo-
cally showed the superior discriminating power 
(increased sensitivity and specifi city) of the cut-off 
levels calculated considering the ROC curves and 
Y (e.g. Bcl-6, Fig. 7). Furthermore, we compared 
the results on the molecular classifi cation of our 
DLBCL series according to the “Hans’ algorithm” 
(Hans et al. 2004) using cut-off values of the 

Figure 5. Schematic demonstration of cell cycle regulation. The most 
critically disturbed phases in diffuse large B-cell lymphomas are 
delineated in blue (G1-S transition) and red color (G2-M transition).

Figure 6. Typical receiver operating characteristics (ROC)-curve of 
a prognostic marker in diffuse large B-cell lymphoma (DLBCL) (blue), 
in that particular case FOXP1. The area under the ROC-curve is 
0.583, p = 0.015, suggesting that FOXP1 determination in DLBCL is 
of signifi cant prognostic importance. The optimal cut-off value for 
FOXP1 expression considering survival determined by ROC and 
Youden’s transformation was at 47,5% positivity (arrow) with a 
specifi city of 59% and sensitivity of 57%; note that the cut-off point 
indicated by the arrow is as next to the coordinates 0.0;1.0. The 
reference diagonal green line corresponds to a variable without di-
agnostic capability. The ideal ROC-curve is delineated in red.
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Table 2. Determination of optimal cut-off levels considering disease-specifi c survival (DSS) for selected pheno-
typic markers and clinical parameters in our own series of diffuse large B-cell lymphomas applying receiver 
operating characteristic curves (ROC). The signifi cance of each biomarker considering DSS was fi nally tested 
after dichotomization by the Kaplan-Meier (K-M) method. Factors in which values > cut-off have adverse prog-
nostic effects are italicized.

Factor AUROC p-valueROC Optimal cut-offDSS Sensitivity Specifi city p-valueDSS(K-M)

Bcl-2 0.552 0.118 57.5% (60%) 57% 57% 0.082
Bcl-6 0.542 0.207 14.0% (15%) 49% 64% 0.122
CD10 0.538 0.199 7.5% (10%) 32% 77% 0.184
FOXP1 0.583 0.015 47.5% (50%) 57% 59% 0.014
MUM1 0.513 0.383 64.5% (65%) 52% 79% 0.007
LDH 0.593 0.027 295 U/L 63% 54% <0.001
Ki-67 0.537 0.195 72.5% (75%) 42% 70% 0.122
age 0.599 <0.0001 65.5 (66) 61% 56% 0.005

Figure 7. Comparison of results for the prognostic value of Bcl-6 in our diffuse large B-cell lymphoma series linked to disease-related mortality 
by the Kaplan-Meier method applying cut-off levels suggested in the literature (upper) and the ROC curves (lower).

A
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variables from the original publication and those 
suggested by the ROC curves and Y. The Kaplan-
Meier analysis showed a superior prognostic value 
of the phenotypic DLBCL classifi cation according 
to the cut-off values from the ROC curves (data 
not shown).

Perspectives
A high number of strong candidate biomarkers, 
particularly expressed proteins, that contribute to 
prognosis in DLBCL have been identifi ed but not 
yet translated to practical utility mainly because of 
contradictory reports in the literature resulting from 
small sample sizes, referral and selection biases, 
and variable methodologies and cut-off levels used 
to determine positivity. These obstacles must be 
addressed before these biomarkers can be intro-
duced into clinical practice. First, biomarker 
assessment in DLBCL should be standardized and 
validated applying powerful statistical methods. 
Second, the clinical material required to study such 
questions should be clearly documented and 
brought into TMAs, which should become an 
integral part of all clinical trials. The combination 
of tumor-specifi c biomarkers with patient-specifi c 
clinical factors in new predictive and prognostic 
models will enable successful individual risk-
adjusted patient treatment.
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