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Abstract
Purpose: Contouring organs at risk remains a largely manual task, which is time consuming and prone to variation. Deep learning-based
delineation (DLD) shows promise both in terms of quality and speed, but it does not yet perform perfectly. Because of that, manual
checking of DLD is still recommended. There are currently no commercial tools to focus attention on the areas of greatest uncertainty
within a DLD contour. Therefore, we explore the use of spatial probability maps (SPMs) to help efficiency and reproducibility of DLD
checking and correction, using the salivary glands as the paradigm.
Methods and Materials: A 3-dimensional fully convolutional network was trained with 315/264 parotid/submandibular glands.
Subsequently, SPMs were created using Monte Carlo dropout (MCD). The method was boosted by placing a Gaussian distribution (GD)
over the model's parameters during sampling (MCD þ GD). MCD and MCD þ GD were quantitatively compared and the SPMs were
visually inspected.
Results: The addition of the GD appears to increase the method's ability to detect uncertainty. In general, this technique demonstrated
uncertainty in areas that (1) have lower contrast, (2) are less consistently contoured by clinicians, and (3) deviate from the anatomic
norm.
Conclusions: We believe the integration of uncertainty information into contours made using DLD is an important step in highlighting
where a contour may be less reliable. We have shown how SPMs are one way to achieve this and how they may be integrated into the
online adaptive radiation therapy workflow.
� 2021 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Online adaptive radiation therapy (OART) accounts
for anatomic changes over the course of treatment by
reoptimizing the dose distribution according to the
anatomy at that moment, improving the balance between
target coverage and organ-at-risk (OAR) doses.1,2 One
prerequisite for the implementation of OART is a short
time between imaging and delivery of the adapted
treatment plan. In recent years, software improvements
and increased computing power have enabled fast
inverse-optimized intensity modulated treatment
planning.3

Contouring OARs, however, remains a largely manual
task, which is time consuming and prone to variation.4-6

Automated deep learning-based delineation (DLD)
shows promise both in terms of quality and speed.7

Although DLD performs well, the average Sørensen-
Dice similarity coefficient (SDC, described in the
following sections), for e.g. a parotid or submandibular
gland model, is rarely higher than 90%,8 and outliers can
drop as low as 40%.7 Therefore, manual checking of DLD
is still recommended.

Although DLD, even for multiple organs, can be as
fast as a few seconds per patient, manually checking the
generated structures is time consuming and can largely
negate the potential time saved by DLD.9 The need for
manual checking due to less-than-optimal DLD is a bar-
rier to its wider implementation. Speeding up manual
checking therefore becomes relevant. One way to do this
could be by highlighting parts of the DLD-generated
structure that have a larger chance of being wrong. This
may be done by showing the uncertainty in a DLD
structure.

In the case of medical image segmentation, uncertainty
in a DLD structure translates to the probability that a
certain voxel is part of that structure. It can be split into
two parts: uncertainty inherent to the model and uncer-
tainty inherent to the data10 and may stem from, for
example, inconsistent clinical training data or imaging
data outside the range of the model. We are currently not
aware of any commercially available radiation therapy
tools that focus attention on the areas of greatest uncer-
tainty in a DLD structure.

We explored the potential of spatial probability
maps (SPMs) to increase the efficiency and reproduc-
ibility of DLD checking and correction, using the
salivary glands as the paradigm. In so doing, our pri-
mary concern was not to develop or compare uncer-
tainty quantification methods, but to take an established
technique from the realms of research and explore how
it can be applied to an area of current clinical need:
automated OART.
Methods and Materials

Data

The potential of SPMs was retrospectively investigated
for the left parotid and submandibular gland (PG/SMG)
using 3-dimensional (3D) computed tomography (CT)
based contours from head and neck cancer treatments.
Whenever the right PG/SMG was available, it was flipped
and added to the data set (assuming symmetry11),
resulting in 315/264 PGs/SMGs. Inclusion of air/bone in
the contour was corrected for by removing all voxels with
a corresponding Hounsfield unit value of less than e300
or greater than 200 in the CT data. No additional curation
was performed. The train set comprised 5/6 of the data,
the test set 1/6 of the data, and the validation set 1/10 of
the train set (all randomly selected). Cross-validation was
not applied because verifying the geometric accuracy of
the model was not the purpose of this study.

The preprocessing of the CT data consisted of crop-
ping a region of interest (64 � 64 � 32/96 � 64 � 64
voxels for SMG/PG) centered on the OAR to limit
memory usage, applying a Hounsfield unit window to
remove extreme values and increase contrast, normalizing
the data to [0,1], and subtracting the mean to center the
data around 0 and in so doing facilitate training.

Model

The model was a fully convolutional network12 based
on the 3D U-net13 with dropout14 applied to all con-
volutional layers. Dropout turns off a random selection of
parameters (in this case 255,289 in total) during each
training instance. The number of parameters that are
turned off depends on the dropout rate, which was 0.1
(~25,529 parameters turned off). Dropout is used to pre-
vent overfitting. When a model has overfitted, it has been
optimized on the train data too much because of which it
does not generalize well to unseen data. The SDC was
used as cost function. SDC is defined as

SDCZ
2tp

2tpþ fpþ fn

where tp, fp, and fn correspond to true positive, false
positive, and false negative voxels, respectively. Early
stopping was also applied to prevent overfitting; training
was stopped when improvement for the validation set was
<0.001 for at least 5 epochs. Adam15 was the optimizer
(b1 Z 0.928, b2 Z 0.999), allowing each parameter to
have its own learning rate that can be adapted during
training. Hyperparameter values were chosen based on
prior non-exhaustive hyperparameter tuning.7 The model



Figure 1 (a) Graph showing how the voxel-level uncertainty score (y-axis) was derived from the spatial probability map (SPM) voxel
value (x-axis). (b) Graph showing the average uncertainty scores (y-axis) for Monte Carlo dropout (MCD) and MCD þ Gaussian
distribution (GD) for false negative (fn), false positive (fp), and true positive (tp) voxels of parotid and submandibular gland (PG/SMG).
(c) Graph showing the relation between Sørensen-Dice similarity coefficient (SDC) (x-axis) and structure-level uncertainty score (y-
axis) for MCD (red) and MCD þ GD (blue); PGs are crosses, SMGs are dots. (A color version of this figure is available at https://doi.
org/10.1016/j.adro.2021.100658.)
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was built with Keras (https://keras.io/) on top of Tensor-
Flow (https://www.tensorflow.org/) and trained with 1
GeForce RTX 2080ti.

Spatial probability maps

SPMs were created using Monte Carlo dropout
(MCD).16 As explained earlier, dropout is used during
training to prevent overfitting. However, it can also be
used during testing to approximate a model’s uncertainty.
Because dropout turns off a random selection of the
model’s parameters, each pass-through is different. Prior
experiments we ran showed the SPMs resulting from
MCD were not very expressive. Therefore, MCD was
boosted by sampling from a Gaussian distribution (GD; m
is equal to parameter value, s Z .015/.01 for PG/SMG)
for each model parameter (n Z 255289), from now on
referred to as MCD þ GD. Consequently, for each pass-
through, parts of the model’s parameters were turned off,
whereas the remainder were slightly changed. In other
words, the model’s dimensional space and its point of
convergence therein were varied. The s values were
maximized with 1 constraint: the SDC resulting from a
majority vote among the generated models was not sup-
posed to be lower than that of the base model. This
method provided differing predictions for each forward
propagation (n Z 101). 101101 pass-throughs gave a
well-calibrated uncertainty quantification and, having an
odd amount, allowed for a majority vote. Each prediction
was a 3D binary object, where 0 indicated the voxel was
not part of the gland and 1 indicated the voxel was part of
the gland. The predictions were then averaged to acquire
the SPMs, where each voxel’s value indicated the prob-
ability that that voxel was part of the gland.

Analysis

The SPMs were first analyzed in a quantitative manner.
To do so, a voxel-level uncertainty score from 0 to 1 was
defined (Fig 1a). The idea behind this score was as fol-
lows: when the value of a voxel in the SPM is 0.5, an
uncertainty score of 1 is assigned because there is a lot of
uncertainty about whether that voxel should be 0 or 1.
Accordingly, when the value of a voxel in the SPM is
either 0 or 1, the uncertainty score is 0 because there is
very little uncertainty about whether that voxel should be
0 or 1.

The average uncertainty scores for the false negative,
false positive, and true positive voxels were compared for
MCD and MCD þ GD. Like the model’s predictions, the
clinical structure was a 3D binary object, where 0 indi-
cated the voxel was not part of the gland and 1 indicated
the voxel was part of the gland. To retrieve an uncertainty
score for the entire structure, the sum of the uncertainty
score of all the voxels was divided by the sum of the
object depicting the clinical structure because un-
certainties tend to lie around the surface of structures, and
larger structures have more surface area. The relation
between SDC and the structure-level uncertainty score
was then compared for MCD and MCD þ GD. After the
quantitative analysis, the SPMs resulting from MCD þ
GD were visually inspected to see whether they would be
a valuable addition to the DLD checking and correction
process.

Results

Generating the SPM for 1 gland took <2.5 seconds,
which can be further optimized. Figure 1b,c shows the
quantitative results of using MCD versus MCD þ GD.
The addition of a GD over the model’s weights appears to
increase the ability to detect uncertainties.

The difference in SPMs resulting from MCD and
MCD þ GD is illustrated by 2 examples in Figure 2. The
dashed contours indicate that a certain percentage of the
generated models agree that all voxels within that contour
are part of the gland, so they are not generated by an
individual model but illustrate a probability of the

https://keras.io/
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Figure 2 Difference in spatial probability maps (SPMs) for 2 slices (a,b and c,d) between Monte Carlo dropout (MCD) (a,c) and MCD
þ Gaussian distribution (GD) (b,d). Red contour means >10% of the generated models agree that the voxels within that contour are part
of the structure. Orange >35%, yellow >60%, green >85%. (A color version of this figure is available at https://doi.org/10.1016/j.
adro.2021.100658.)
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underlying model. For visual inspection, we define the
amount of spatial uncertainty for a particular area as the
distance between the 4 lines, that is, there is more un-
certainty when the dashed contours are farther apart.

Examples of PG/SMGs and their corresponding SPMs
generated by MCD þ GD can be seen in Figures 3 and 4.
There is more uncertainty in areas that have a low amount
of image contrast, as illustrated by the medial versus
lateral parts in Figure 3a-c and Figure 4a versus 4b.
Consistent with the low contrast in Figure 4c, there is
considerable uncertainty. In a different slice from the
same patient (Fig 4d), the gland is more clearly visible,
and there is less uncertainty. In Figure 4e, there is more
uncertainty compared with a different slice from the same
patient (Fig 4f) where the structure is more visible. SPMs
can draw attention to parts of an OAR that might be
missed. An example of this is seen in Figure 3d where
attention is drawn to the anterior PG.

We observed more uncertainty in areas that are less
consistently contoured by clinicians. For the PG, these are
the anterior and medial part of the gland (Fig 3e,f) and the
cranial-most slices (Fig 3g,h). In Figure 4g, there is un-
certainty surrounding the blood vessel. This may be due
to the training data containing cases where the blood
vessel is incorporated in the structure and cases where it is
not.

Uncertain areas can be the result of unusual features in
the data. An example is Figure 4h, where the SMG lies
adjacent to a pathologic lymph node, degrading the model
performance.
Discussion

We have analyzed the use of SPMs to highlight un-
certainty in DLD contours. In general, the technique that
was used demonstrated more uncertainty in areas that (1)
have lower contrast, (2) are less consistently contoured by
clinicians, and (3) deviate from the anatomic norm. This
implies that the model is more sensitive to changes
(dropout/GD) when it has to process data that contain
more uncertainty (eg, low contrast). For obvious reasons,
we could only show a selection of slices. Although the
examples in Figure 1 and 2 were typical, there were also
slices for which the observations we described did not
hold. For instance, within Figure 4d, there is comparable
uncertainty for both high- (anterior, lateral, posterior) and
low-contrast (medial) areas within the image.

When comparing MCD to MCD þ GD in a quantita-
tive manner, the addition of the GD over the model’s
parameters appeared to increase the ability to detect un-
certainty; in false positive, false negative, and true posi-
tive voxels, the MCD þ GD showed more uncertainty.
Ideally, these methods would only show uncertainty in the
false voxels and not in the true voxels. The fact that they
do not does not imply that the uncertainty method is
failing, but may be due to a less-than-perfect model,
which is to be expected with the limited amount of data
that are available for training and the inherent error those
data contain.4-6 In fact, the sigma values were optimized
to show the most uncertainty while not degrading the
performance of the underlying model. If the sigma is
lower, the method will show less uncertainty, and we will
receive less information on where the contour may need
to be checked. If the sigma is higher, the method will
show an even higher amount of variance in the SPM, but
will do so at the cost of degrading the underlying model.
Future work could compare the SPM-derived uncertainty
with the presence and magnitude of clinical edits by
multiple observers to see if they concur.

There are several ways in which SPMs could be
applied in a clinical setting. When all the OARs for a

https://doi.org/10.1016/j.adro.2021.100658
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Figure 3 Illustrative examples of parotid gland slices with the spatial probability maps (SPMs) generated by Monte Carlo dropout
(MCD) þ Gaussian distribution (GD) overlaid. Red contour means >10% of the generated models agree that the voxels within that
contour are part of the structure. Orange >35%, yellow >60%, green >85%. (A color version of this figure is available at https://doi.
org/10.1016/j.adro.2021.100658.)

Figure 4 Illustrative examples of submandibular gland (SMG) slices with the spatial probability maps (SPMs) generated by Monte
Carlo dropout (MCD) þ Gaussian distribution (GD) overlaid. Red contour means >10% of the generated models agree that the voxels
within that contour are part of the structure. Orange >35%, yellow >60%, green >85%. (A color version of this figure is available at
https://doi.org/10.1016/j.adro.2021.100658.)
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specific treatment are contoured by DLD, the clinician
would be able to see the SPM of each OAR. One option is
that the clinician is immediately presented with the SPMs
of all OARs. However, in cases where there are a lot of
OARs, like head and neck cancer, checking all SPMs may
be too time-consuming. Therefore, other options include
that (1) the clinician selects the OARs for which he/she
would like to see the SPM, for instance based on

https://doi.org/10.1016/j.adro.2021.100658
https://doi.org/10.1016/j.adro.2021.100658
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Figure 5 Example of how spatial probability maps (SPMs) could be used in a simplified manner in clinical practice. (a) An image
with the SPM overlaid. (b) The same image with the contour generated by the model without distribution over the parameters (green,
Sørensen-Dice similarity coefficient [SDC] Z 0.86) and red dotted circles indicating uncertain areas based on the SPM in (a). (A color
version of this figure is available at https://doi.org/10.1016/j.adro.2021.100658.)
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proximity to the planning target volume or other a priori
knowledge; (2) only particular areas are highlighted based
on the distance between uncertainty lines of the SPMs
(Fig 5); (3) a separate model is used to predict the per-
formance of the DLD model17 and flag OARs that are
likely to have been poorly contoured, showing an SPM
only for those OARs.4 A standardized score indicates the
amount of uncertainty in the contour, and SPMs are
shown depending on whether or not the score exceeds a
particular threshold. One could also think of functional-
ities to enable the fast-paced workflow of OART, like
being able to select one of the uncertainty lines as the
contour. Alternatively, SPMs could be exploited when a
model is being trained by giving more weight to uncertain
areas when updating the model’s parameters, similar to
active learning principles.18

In the case of OART, this could result in the following
workflow (Fig 6): imaging data are acquired that are
passed through a DLD model, resulting in a contour for
each OAR. Next, some method is used to generate the
corresponding SPMs. Based on the SPMs and other var-
iables (e.g., image characteristics like amount of contrast)
a performance estimator can be used, together with prior
knowledge, to select those structures for which the SPM
should be presented. Subsequently, the selected contours
can be adjusted and the entire array of OAR contours can
be used as input for an automated treatment planning
system.

In this analysis, we only explored two (related)
methods of generating uncertainty information, with the
purpose of demonstrating the use of SPMs in a clinical
setting. A considerable body of research has looked into
ways of quantifying DLD uncertainty, using various
methods, the most prevalent of which by far is MCD.16,19-
22 Another method is to train an ensemble of multiple
models and average their predictions.23,24 Both MCD and
ensembles only tend to capture the uncertainty that is
inherent to the model; uncertainty that can be explained
away by having an infinite amount of data samples.10 To
capture the uncertainty that is inherent to the data, other
methods have been investigated, like using a hetero-
scedastic noise model10 or performing data augmentation
during testing.25 These methods may be useful for certain
radiation therapy purposes, where there is known to be a
lot of variance in contouring.4-6 When multiple classes
need to be segmented in a single image, these methods are
not suitable to capture the relations between voxels of the
same class. To tackle that problem, more advanced
models have been designed.26-28 Because our model only
has to output a single class, we did not need such complex
models. Furthermore, our aim was specifically to
demonstrate how a relatively simple technique can be of
use in a clinical setting. Future work should focus on
systematically comparing various methods to quantify
spatial uncertainty. Such systematic comparisons should
tackle both data uncertainty and model uncertainty and
should include validated evaluation metrics and identical
data across methods.

In summary, we believe the integration of uncertainty
information into contours made using DLD is an

https://doi.org/10.1016/j.adro.2021.100658


Figure 6 Diagram depicting the online adaptive radiation therapy (OART) workflow with the incorporation of spatial probability
maps (SPMs).
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important step in highlighting where a contour may be
less reliable. We have shown how SPMs are one way to
achieve this and how they may be integrated into the
OART workflow.
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