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Abstract: Direct metal deposition (DMD) can be used for the cladding of surfaces as well as repairing
and additive manufacturing of parts and features. Process monitoring and control methods ensure
a consistent quality during manufacturing. Monitoring by optical emission spectroscopy of the
process radiation can provide information on process conditions and the deposition layer. The object
of this work is to measure optical emissions from the process using a spectrometer and identify
element lines within the spectra. Single spectra have been recorded from the process. Single tracks
of Co-based powder (MetcoClad21) were clad on an S235 base material. The influence of varying
process parameters on the incidence and intensity of element lines has been investigated. Moreover,
the interactions between the laser beam, powder jet, and substrate with regard to spectral emissions
have been examined individually. The results showed that element lines do not occur regularly.
Therefore, single spectra are sorted into spectra including element lines (type A) and those not
including element lines (type B). Furthermore, only non-ionised elements could be detected, with
chromium appearing frequently. It was shown that increasing the laser power increases the incidence
of type A spectra and the intensity of specific Cr I lines. Moreover, element lines only occurred
frequently during the interaction of the laser beam with the melt pool of the deposition layer.

Keywords: optical emission spectroscopy (OES); direct metal deposition (DMD); laser cladding

1. Introduction

In multiple industry sectors, direct metal deposition (DMD) is present today. It can
provide a bandwidth of different processes such as cladding of surfaces [1,2] as well as the
repairing [3,4] and additive manufacturing of parts [5,6]. In this process, a high-power laser
generates a melt pool on the surface of a metallic material, and filler material (commonly in
powder form) is simultaneously delivered into the melt pool. By controlling the material
flow and the laser power, functional layers can be placed on surfaces by putting tracks
side by side. This process can be used for several types of applications, e.g., cladding of
surfaces for wear protection purposes, repairing large-scale industrial components, and
additive manufacturing of parts and features. Due to the large number of available powder
materials, the process can be used quite flexibly [7]. In order to achieve consistent quality
during manufacturing, numerous process monitoring and control methods have been
developed [8–14].

A specific field of process monitoring methods includes the analysis of optical emission
that is provided by the process itself. Throughout multiple laser welding processes, optical
emission spectroscopy is used. Investigations on laser lap welding used the intensity of
specific spectral lines to determine the electron temperature within the plasma plume and
detect defects [15–17]. Moreover, the detection of defects by process radiation emissions
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was theoretically analysed and discussed [18]. In situ chemical composition monitoring
was performed by Huber during deep penetration laser welding. The procedure is partly
based on the approach of laser-induced breakdown spectroscopy (LIBS). Here, spectral
lines are measured and identified using an atomic spectra database, and element contents
are related to the intensity of one or several element spectral lines [19]. The intensity of
spectral lines can also be used as an indicator for homogeneity within a melt pool during
laser-based experimental materials development where portions of material are remelted
through an oscillating laser beam. In this specific case, the intensity of Cr spectral lines,
provided by process emissions, can be used as a suitable measurement of blending within
the microstructure [20].

Optical emission spectroscopy (OES) has been performed in DMD processes, too.
In [21], a method for lack-of-fusion defect detections in titanium alloy layers has been
investigated. Data of multiple sensors were combined with X-ray computed tomography
data using machine-learning algorithms. It has been investigated that the laser power,
powder flow rate, and hatch pattern have a statistically significant effect on the length
of pores. The sensor system is capable of predicting lack-of-fusion defects across a layer.
Several investigations on defect detection have been done [22,23]. Using the spectroscopic
detection of specific spectral lines allows for generating different information about the
manufactured part and the process parameters. For instance, the detection of Cr spectral
lines in the course of DMD processes has been investigated by Bartkowiak. Here, it was
confirmed that emission spectroscopy can be used as an in situ monitoring system with
lower laser powers [24]. The loss of chromium during the direct metal deposition of the
Ni-based alloy 718 was investigated by Kisielewicz. Optical emission data were measured
from the plasma plume above the melt pool with increasing laser power. Multiple Cr I
spectral lines have been identified. Specimens, built with higher laser power, showed a
lower Cr content related to those built with lower laser power. The intensity of Cr lines
increases with higher laser power. Higher energy input led to increasing vaporisation
and the depletion of Cr atoms from the melt pool [25]. This observation exemplifies
the importance of in situ monitoring of laser welding processes in order to address the
formation of non-stoichiometric laser-generated material.

Regarding such monitoring of the chemical composition during deep penetration laser
welding [19], the methodology has also been investigated in DMD processes. Studies on
real-time Cr measurement were performed by using spectral line intensity ratios of neutral
Cr and Fe lines. The element contents are determined on the basis of calibration curves.
Approaches for element content prediction using the detection of plasma temperature or
electron density occurred to be less accurate [26]. The monitoring of nickel and chromium
content had also been performed using line ratios of specific neutral Ni and Cr lines. The
prediction calibration curve was built through multiple experiments using different powder
materials with varying Ni content [27]. In order to expand the quantity of elements to
be measured, Wang and Liu used four different Ni-based alloy powders on an Fe-based
substrate. Calibration curves for different elements were generated by correlating the
weight ratio and the line intensity ratio of two elements. The prediction showed quite
suitable results, although elements with lower concentration within the alloy could be
measured with a much lower accuracy [28]. In [29], four composition monitoring methods
are compared to predict the Al content within an Al-Ti-powder deposited layer. The
investigation focuses on the accuracy and stability of element concentration prediction
of each method. Input data for every method contain the line-intensity ratio of both Al
and Ti lines. Additionally, the integrated intensity of a specific bandwidth is included.
The methods to be compared are calibration curves, artificial neural network (ANN),
partial least square regression (PLSR), and support vector regression (SVR). It has been
observed that SVR using line intensity and integrated intensity data provides an improved
performance for predicting the Al concentration compared to the other three methods.

Different approaches for chemical composition monitoring during DMD are based on
the integration of separate LIBS systems. For instance, a LIBS probe was attached to a DMD



Materials 2021, 14, 4401 3 of 14

processing head and aligned to measure the chemical composition within the powder
jet. Compared to measurements at solid metal targets, a poor reproducibility within the
powder jet was observed. This effect is explained by the low probability of a reproduceable
interaction between moving powder particles and the laser beam [30]. In contrast, the use
of LIBS on already applied coatings was investigated. Element spectral lines were used
to determine the degree of mixing. The LIBS probe was attached to the processing head
and performed measurements shortly after deposition. Results confirmed the method
being suitable for quality assurance during the laser cladding process [31]. Against this
background, the impact of process parameters during laser cladding on emission spectra
formed in the course of the process was investigated in the present work.

2. Materials and Methods

Laser cladding experiments were performed using a diode laser (Laserline LDM 4000 60,
Laserline GmbH, Mülheim-Kärlich, Germany) with a maximum output power of 4 kW,
900 to 980 nm wavelength, and a beam parameter product of 66 mm mrad. The laser
radiation was delivered via an optical fibre with a core diameter of 600 µm to a robot-guided
working head. A 72 mm collimation lens and 250 mm focusing lens generated a circular
spot with a diameter of 2.1 mm on the surface of the specimen. For providing the powder,
a feeder system (GTV PF2/2, GTV Verschleißschutz GmbH, Luckenbach, Germany) was
used. Powder material was fed through a four-jet powder nozzle (Fraunhofer Coax12V7,
Fraunhofer IWS, Dresden, Germany) with a circular powder spot diameter of 2–3 mm. As
carrier and shielding gas, Argon 4.6 was used. The carrier gas flow was set to 5 L/min, and
the shielding gas flow was set to 10 L/min. Figure 1A shows the schematic diagram of the
DMD working head including the laser beam and powder jet orientation. Figure 1B shows
the real DMD working head during additive manufacturing of a cylindric demonstrator.
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Figure 1. (A) Schematic diagram of DMD process using a four-jet powder nozzle. (B) DMD process during additive
manufacturing of a cylindric demonstration part.

Data acquisition was performed with the use of an UV-Vis spectrometer (OCEAN-
HDX-UV-VIS, Ocean Insight, Orlando, FL, USA) with a spectral measurement range from
200 to 800 nm. The resolution at FWHM is 0.73 nm using a 10 µm entry slit. For efficient
light collection, a fused silica collimation lens was attached horizontally to the processing
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head and aligned to the optical centre line of the laser beam. A pipe with 6 mm inner
diameter and a blackened inner cylinder was attached to the collimation lens to reduce the
impact of scattered radiation. The distance between the collimation lens and the optical
axis of the laser was set to 250 mm. Cladding was performed at an orthogonal orientation
of the collimation lens with respect to the processing direction. The lower edge of the
collimation beam was set at a distance of 1 mm above the substrate surface. Figure 2
shows the measurement setup and collimation lens alignment. Coupling of the lens to the
spectrometer was achieved by a multi-mode fibre with a core diameter of 100 µm.
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Figure 2. Measurement setup and collimation lens alignment.

Transient spectral measurements were performed using a constant integration time
of 10 ms during the cladding process. Measurements were recorded and stored without
any interruptions. The delay between the measurements averages 100 µs. According to
the 10 ms integration time, the delay is negligible. In order to identify the origin of spectra
emission, three different experimental setups were used. For each setup, the laser power
was increased in five parameter sets. In order to generate a track with a sound quality
in terms of dilution between the filler material and base material on the surface with the
DMD process, more than one parameter has to be changed. Increasing the power leads to
a stronger burn into the base material. Therefore, the scan velocity has to be increased in
the same manner so that the placed energy per unit length is kept constant. In addition,
the mass per unit length has to be equal in every experiment in order to keep the ratio
of delivered energy by the laser and delivered mass by the powder feeder in the same
order. Hence, the powder feed rate and the scan velocity were increased equally, as listed
in Table 1. This methodology of changing various parameters at once can deliver a process
window for a cladded layer with sound quality. For each setup, a linear track with a length
of 300 mm was carried out. The particularly investigated experimental setups are shown
in Figure 3 and include.
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Table 1. Process parameter sets.

Parameter Set Setup Laser Power
(W)

Scan Velocity
(m/min)

Powder Feed Rate
(g/min)

Working Distance
(mm)

1

1

1200 1
12

13

2 100

3 0 13

2

1

1500 1.25
15

13

2 100

3 0 13

3

1

1800 1.5
18

13

2 100

3 0 13

4

1

2100 1.75
21

13

2 100

3 0 13

5

1

2400 2
24

13

2 100

3 0 13
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Figure 3. Experimental setups investigated in the present work.

• Setup 1: Powder material on the substrate,
• Setup 2: Only powder material without the substrate, and
• Setup 3: No powder material on the substrate.

In setup 1, the powder nozzle had a working distance of 13 mm above the substrate
surface and the powder material was fed according to the parameter sets listed in Table 1.
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In setup 2, the working distance was increased to 100 mm above the substrate surface, and
the powder material was fed according to the given parameter sets. Thus, no track was
placed, and the substrate surface was heated by the expanded laser beam. In setup 3, the
powder feed rate was set to 0 g/min, but the carrying gas flow remained at 10 L/min and
the working distance remained at 13 mm. Hence, merely the substrate material is remelted.
The position of the collimation lens remained constant for all setups. For each combination
of experimental setup and parameter set, one experiment was performed.

In the course of experimentation, plates (400 mm × 40 mm × 12 mm) made of steel
(S235) were used as substrate. The chemical composition of this steel was determined by arc
spark optical emission spectrometry performed by a stationary metal analyser (Spectrolab,
SPECTRO Analytical Instruments GmbH, Kleve, Germany). The analysis configuration was
set to low-alloyed steel. Analysis results are averaged after three separate measurements.
For each measurement, the upper side of the substrate material was grinded with P80
SiC-paper and cleaned with denatured alcohol. The applied powder material was a cobalt-
based alloy (MetcoClad21). Its chemical composition was determined by energy-dispersive
X-ray spectroscopy (EDX) (Quantax energy-dispersive X-ray spectrometer with X-Flash
5010 detector, Bruker Corporation, Billerica, MA, USA). The energy resolution < 129 eV.
Both results are shown in Table 2.

Table 2. Chemical composition of substrate material (S235) measured via optical emission spectrometry and powder
material (MetcoClad21) measured via EDX.

Material C Si Mn Cr Mo Ni Al Co Cu Fe

(wt.%)

Substrate
(S235) 0.10 0.19 1.02 0.03 0.01 0.03 0.03 0.01 0.02 98.56

Powder
(MetcoClad21) 3.49 0.88 0.74 25.21 4.93 3.10 - 61.65 - -

Additionally, Figure 4 shows the powder particles using a scanning electron micro-
scope (SEM) (Phillips XL30 TMP, Philips Electron Optics, Eindhoven, The Netherlands). It
can be seen that the particles are spherical in shape. Moreover, some smaller particles that
are attached to bigger ones (satellites) have been found. From this SEM investigation, a
sound flux ability and a stable continuous mass flow could be expected [32,33].
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The spectra were measured back to back with a 10 ms integration time. The individual
spectra were analysed and sorted in the first step. Single spectra were sorted into two types:
In type A spectra, significant elemental peaks can be observed, whereas type B spectra
feature no significant peaks. The identification of single peaks within type A spectra was
carried out with the aid of the NIST Atomic Spectra Database [34]. Data are analysed
for every experimental setup and parameter set. For the individual peak identification,
a Matlab function called “findpeaks” has been used. The function also returns the peak
intensity for type A spectra peaks. The peak intensity is described by the intensity of a
peak minus the background radiation at this position. Figure 6 shows this definition at an
exemplary type A spectrum. The chemical composition of both the substrate material and
the powder material limit the quantity of possible emission lines to the following elements:
C, Cr, Mn, Fe, Co, Mo, Cu, Si, Ni, Al, Ar, O, and N, where further possible traces and
impurities are neglected. The corresponding element lines can be determined by transition
probabilities and probable energy levels.

3. Results and Discussion
3.1. Deposition Track Analysis

Figure 5 shows a cross-sectional image of a single track cladded using experimental
setup 1 and 2400 W laser power, 24 g/min powder feed rate, and 2 m/min scan velocity.
Spherical pores with a maximum diameter of 25 µm have been detected within the deposi-
tion track. In relation to the dimensions of the track, these pores are negligible and indicate
a qualitative coating. Additionally, the track geometry remains constant throughout the
whole length of the track, as also observed for the other applied parameters.
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Figure 5. Cross-section cladded using experimental setup 1 and 2400 W laser power, 24 g/min
powder feed rate, and 2 m/min scan velocity. Grinding with SiC-paper, polishing with 3 µm
diamond suspension, and fine polishing with 0.05 µm colloidal silica.

3.2. Element Identification

Even though a larger wavelength range from 200 to 800 nm was considered during
spectroscopic measurements, the most significant peaks were observed in a comparatively
small range from 400 to 540 nm. Moreover, such peaks were not detected permanently
in every single spectrum that was taken (compare definition of spectra types A and B in
Section 2). An example of a well-evaluable spectrum of type A including the identification
of significant spectral lines is shown in Figure 6. A type B spectrum is shown as well.
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Figure 6. Identification of element lines via the evaluation of a single spectrum taken under the experimental conditions of
setup 1 and parameter set 5 as defined in Figure 3 and Table 1.

The relatively broad line at an observation wavelength of 403.2 nm most likely fol-
lows from the superposition of the two Mn I transitions at 403.076 nm and 403.307 nm;
see Table 3. Such superposition of single spectral lines, namely the Co I transitions at
411.877 nm and 412.132 nm, likely results in the broad line detected at 411.9 nm. Both
elements, cobalt and manganese, are constituents in the used powder as verified by the
results of the preliminary EDX measurements listed in Table 2. However, it should be noted
that an accurate identification or separation of single Mn and Co element lines was not
possible due to the comparatively low spectral resolution of the used spectrometer. The
further significant peaks observed can mainly be attributed to another major constituent
of the used powder, chromium. The three single lines measured at 425.1 nm, 427.4 nm,
and 429.0 nm correspond to the chromium resonance triplet [35,36]. The Cr lines at higher
wavelengths feature quite different shapes and appearances; both nearly symmetric single
lines (e.g., at 529.8 nm) and rather broad and asymmetric lines (465.2 nm) are observed.
In some cases, the detected peaks probably consist of several elemental lines, either in-
cluding other elements—that are not considered in the present work—or single Cr lines.
The latter effect might apply to the moderately broad line at 520.6 nm. It is most likely
composed of the three closely neighboured Cr I transitions at 520.44981 nm, 520.60229 nm,
and 520.84094 nm. The first two of these lines are known to be asymmetric [34], explaining
the slight asymmetry of the observed line. The most significant lines observed in Figure 6
are listed in Table 3.

Table 3. Observed peaks as well as corresponding element lines including the corresponding energy levels. Data taken
from [34].

Peak No. Observed Wavelength (nm) Element Line (nm) Energy Levels Ei−Ek (cm−1) Line Ref.

1 403.2
403.076 (Mn I) 0–24,802.25

[37]
403.307 (Mn I) 0–24,788.05

2 411.9
411.877 (Co I) 8460.81–32,733.07

412.132 (Co I) 7442.41–31,699.69
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Table 3. Cont.

Peak No. Observed Wavelength (nm) Element Line (nm) Energy Levels Ei−Ek (cm−1) Line Ref.

3 425.1 425.43517 (Cr I) 0–23,498.8156

[38]4 427.4 427.48117 (Cr I) 0–23,386.3419

5 429.0 428.97307 (Cr I) 0–23,305.0026

6 465.2 465.1291 (Cr I) 7927.441–29,420.8645 [39]

7 520.6

520.44981 (Cr I) 7593.1484–26,801.9009

[38]

520.60229 (Cr I) 7593.1484–26,796.2691

520.84094 (Cr I) 7593.1484–26,787.464

8 526.5
526.4153 (Cr I) 7810.7795–26,801.9009

526.57143 (Cr I) 7810.7795–26,796.2691

9 529.8

529.66905 (Cr I) 7927.441–26,801.9009

529.82715 (Cr I) 7927.4–26,796.3

530.07451 (Cr I) 7927.4–26,787.5

10 534.8
534.57959 (Cr I) 8095.2–26,796.3

534.83141 (Cr I) 8095.2–26,787.5

11 540.9 540.97834 (Cr I) 8307.6–26,787.5

It turns out that the detected peaks are provided by non-ionised but excited atoms
(Mn I, Co I, and Cr I). No peaks of ionised metals (Mn II, Co II, and Cr II) could be detected
in the region below 400 nm, even though the transmission of UV radiation is possible. Due
to lower laser power, the DMD process is below the deep penetration threshold, which
abruptly increases the penetration depth of the weld seam. This corresponds to increasing
absorption of radiation caused by multiple reflections within evaporated material [40].
The cross-section shown in Figure 5 also indicates a heat-conduction process due to a low
penetration depth of the weld seam. Moreover, the observed and detected lines within the
measured spectra originate from transitions in the lower energy level range. This implies
that preferentially, the incident laser irradiation causes the excitation of moderate electronic
states within the powder material instead of an ionisation of its elements. This fact can
be explained by the low applied laser power of a maximum of 2.4 kW (see Table 1). For
instance, the first ionisation energy of chromium amounts to 653 kJ/mol. Thus, the incident
laser intensity is most likely not sufficient for ionisation. However, it can be summarised
that the major metallic constituents of the powder as detected via EDX are also found and
quite clearly defined in the measured type A spectra.

3.3. Dependency of Line Intensity on Laser Power

In order to gain information on the impact of applied laser process parameters on the
formation and radiance of spectra, the intensities of a selected peak—the most intense one
at a wavelength of 520.6 nm—was plotted as a function of laser power, powder feed rate,
and scan velocity, respectively. This peak was chosen since it is composed of three different
Cr I transitions as mentioned above and listed in Table 3. These transitions feature a very
high intensity [34]; thus, the signal is prominent and easy to detect. In Figure 7, the peak
intensities for each type A spectra are shown.
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It can be seen that the values for peak intensities increase with increasing laser power.
In addition, the number of measurable peaks is also increasing. Such behaviour is also
quite typical for laser-induced heating where the surface temperature of irradiated metal
increases linearly with increasing incident laser power [41,42]. Thus, it can be assumed
that the observed increase in peak intensity is—to a certain extent—simply caused by the
temperature rise of the irradiated powder material. This presumption is also supported by
the fact that with increasing laser power, an increase in background was observed in the
particular spectra. As this background showed the basic shape of blackbody radiation, the
impact of thermal processes becomes verisimilar.

3.4. Spectrum Type Distribution

As already mentioned above, evaluable spectra of type A with distinct and charac-
teristic lines or peaks were not obtained throughout the experiment. Thus, the incidence
of such spectra as a function of process time and parameters was evaluated, as shown
in Figure 8. This consideration was performed for spectra taken for all parameter sets in
setup 1.
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Figure 8. Incidence of detected type A spectra for setup 1 vs. process time; each blue line represents a type A spectrum
whereas for the white ranges, merely type B spectra occurred. Note that the process time decreases with increasing scan
velocity, since the process parameters were adapted to obtain a constant linear energy and linear mass as described in
Section 2.

It turns out that the occurrence and incidence of type A spectra increases with in-
creasing laser power. Moreover, the incidence is much higher at the beginning of the
experiments, i.e., for shorter process times. With increasing process time, the density of
type A spectra decreases notably. For the very beginning of the laser process, the high
number of such spectra can be explained by an excessively high surface heating, since at
the cut-in point of the incident laser irradiation, the scan velocity amounts to 0 m/min
for a certain duration in the range of several milliseconds. This leads to a higher energy
input and thus a local accumulation of heat and thermal glow, respectively. The highest
type A spectra density is found for the highest laser power at the beginning of the process
where such thermal influence has the most significant impact. This observation is in good
accordance with the assumption stated in Section 3.3: The higher the temperature and
incident photon density, the more evaluable spectra are formed.

This assumption is also supported when comparing the particular ratio of type A
spectra for the three investigated experimental settings visualised in Figure 3. This ratio,
given by the quotient of the number of type A spectra nA with respect to the total number
of spectra nA + nB and thus the incidence of detected type A spectra, drastically increases
with increasing laser power, powder feed rate, and scan velocity in the case of setup 1, as
shown in Figure 9.

In contrast, marginal changes were observed for setup 2 where type A spectra were
detected very rarely and only for higher laser powers. For setup 3, no type A spectrum
was recorded. This observation can be explained by the experimental conditions during
data acquisition. Setup 1 is the most suitable for heat accumulation within the considered
volume of the power since here, both the heat emission of the substrate and the heated
powder are observed. In setup 2, merely the directly laser-heated powder is detected,
leading to a lower temperature and emission of spectra, respectively. This also applies to
setup 3, where merely heat emission from the substrate surface was measured.
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4. Conclusions

Laser cladding experiments with five different sets of parameters have been performed.
The process emission has been inspected with a spectrometer in the process. Moreover,
the emission of the laser powder interaction itself and the emission of the laser and base
material interaction have been measured. It turned out that discrete line spectra only
occurred in the process containing powder jet and base material. The spectral emission of
the process was changing over time and correlated to the set of parameters. In conclusion,
the following key facts have been shown:

• Spectral element lines have been observed in the laser cladding process.
• Element lines are provided by non-ionised atoms. Lines of ionised atoms have not been

found. Cr lines have been observed more frequently compared to Co and Mn lines.
• With increasing laser power, the incidence and peak intensity of element lines increase.
• The observed correlation between the laser power, the powder feed rate, and the scan

velocity on the one hand and the line intensity on the other hand opens an interesting
aspect: The measurement of a line or spectrum intensity could be used for dynamic
process control. A first analysis of cross-sections (compare Figure 5) revealed a certain
dependency of the cladding dilution and the type of observed spectrum. Extensive
investigations on this aspect will be carried out in ongoing work. Moreover, the
footprint of full spectra may be suitable for an indirect in-line detection or monitoring
of the composition of the laser-molten powder material. This approach seems to be
promising for avoiding the deposition of non-stoichiometric layers.
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Overall, it could have been shown that the spectral lines occur only rarely, even
though based on the SEM analysis of the powder material, a constant and stable powder
flux is most likely. The higher the laser power, the more often spectral lines occur in the
process. This is valid only when the powder jet is switched on. The characterisation of the
mechanisms that lead to the emission of discrete spectral lines rather than a continuous
thermal spectrum only frequently is investigated in ongoing work.
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