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A B S T RA C T The computational method of constrained constructive optimization 
was used to generate complex arterial model trees by optimization with respect to 
a target function. Changing the target function also changes the tree structure ob- 
tained. For a parameterized family of target functions a series of trees was created, 
showing visually striking differences in structure that can also be quantified by ap- 
propriately chosen numerical indexes. Blood transport path length, pressure pro- 
file, and an index for relative segment orientation show clear dependencies on 
the optimization target, and the nature of changes can be explained on theoreti- 
cal grounds. The main goal was to display, quantify, and explain the structural 
changes induced by different optimization target functions. 

I N T R O D U C T I O N  

Types of Computer Models for Arterial Trees 

The  structure of  arterial trees serves the purpose  of efficiently carrying b lood to all 
sites of  tissue supplied by the respective artery. Since a sufficient supply of blood is 
of  vital impor tance  and at the same time a costly task for the organism, the question 
of optimality most  naturally arises (Thompson,  1952; Cohn,  1955; Zamir, 1976). 
Real arterial trees have been  examined morphometr ica l ly  regarding diameter  
shrinkage across bifurcations (Zamir, 1988; Zamir and Sinclair, 1988), segment  
lengths (Zamir and  Chee, 1987), and branching  angles (Zamir and Chee, 1986). 
Theoret ical  work has demonst ra ted  that certain optimization criteria can be formu- 
lated that  are physiologically reasonable on the one  hand  (such as m in imum intra- 
vasal volume) and also lend themselves for optimizing the geometry of single arte- 
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rial model bifurcations under  given conditions of  pressures and flows (Kamiya and 
Toghawa, 1972; Zamir, 1976; Zamir and Bigelow, 1984). 

Parallel to these findings, the computer  simulation of blood flow through arterial 
model  trees has been developed. These simulations draw on either of  two basic 
concepts: (a) compartmental  representations ( lumped parameter  models) (Sun 
and Gewirtz, 1988; Bruinsma, Arts, Dankelman, and Spaan, 1988) or (b) branching 
tube models. These tube models either represent  a specific and rather  small sub- 
tree modeled  after real anatomical data (Rooz, Wiesner, and Nerem, 1985), or they 
are constructed from root to terminals according to concepts of  self-similarity with 
(or without) a stochastic componen t  (Dawant, Levin, and Popel, 1985; Levin, 
Dawant, and Popel, 1986; Pelosi, Saviozzi, Trivella, and L'Abbate, 1987; West and 
Goldberger,  1987). While anatomical models describe severely p runed  trees, frac- 
tal models, even when based on correct  statistical distributions (from which seg- 
ment  diameters, lengths, and angles are drawn), are likely to produce  trees that are 
not  geometrically arrangeable in space (perfusing all sites of  tissue without inter- 
section of  segments). 

The Method of Constrained Constructive Optimization 

In the light of the above arguments, the method  of constrained constructive opti- 
mization (CCO) has been developed. It is a procedure  for growing model  trees un- 
der the guidance of  optimization principles as follows: the piece of  tissue to be per- 
fused is geometrically represented by a perfusion area, and we assume that the total 
perfusion flow (Qper0 is available from a feeding artery at the pressure Ppe,~. The ar- 
terial tree model,  with the root  segment starting at the per imeter  of  the perfusion 
area, consists of straight cylindrical tubes and bifurcations, through which the total 
flow should be distributed over the perfusion area as homogeneously as possible. 
Each terminal segment is assumed to supply a microcirculatory black box, and it is 
in tended that for each black box the same flow (Q4erm) is available at the same pres- 
sure (p~erm). Moreover, and in analogy to real vascular trees (Zamir and Chee, 
1986), we require that radii at each bifurcation fulfill a bifurcation constraint in the 
form of a power law, see Eq. 2 below. It is surprising that all these requirements can 
simultaneously be fulfilled at all, solely by appropriate scaling of  segment radii, and 
regardless of  the particular structure (connective structure, geometrical location of  
segments) of  the tree. This fact, for the proof  of  which we refer to our  technical pa- 
per (Schreiner and Buxbaum, 1993), offers the possibility to construct and simulta- 
neously optimize a model tree by adding segment after segment, while the tree in 
each stage of development  fulfills all constraints ment ioned above. 

We start from a degenerate  tree of  one segment with its proximal end at the pe- 
r imeter  of  the perfusion area and the location of  its distal end (perfusion site) be- 
ing drawn from a pseudo random number  sequence (PRNS). With the segment 
length thus given, the radius is set to yield the suitable resistance for the flow Qa ...... 
against Pt .... when being perfused with the pressure pperf at its proximal end (Poi- 
seuille's law [Fung, 1984]). Note that in this early stage of  the tree, a single seg- 
ment  experiences the whole pressure gradient pper f - -P t  . . . . . .  Next, the location of  the 
second perfusion site is chosen, and the new terminal segment is connected to the 
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first, thereby generat ing a bifurcation at some arbitrary location along the first seg- 
ment .  In this tree, now consisting of  three segments, again radii can be scaled so 
that all constraints are fulfilled for a total inflow of 2 * Q, se~m and equal flow-splitting 
into both  terminals. Part of  the pressure gradient  occurs along the root  segment  
between the inlet (ppe~) and  the bifurcation, while the remaining pressure drops 
along both  terminals to reach Pt ..... at their distal ends. Note that this can be at- 
tained regardless of  the precise location of  the bifurcation. This fact is exploited to 
introduce optimization as follows: we adop t  a target function, e.g., the total volume 
of the tree, and compute  its value for the current  geometry.  For a different location 
of the bifurcation we usually can expect  a different value of  the target function, 
since moving the bifurcation requires concomitant  changes in radii, so as to main- 
tain the constraints. On this basis, a gradient  me thod  (Press, Teukolsky, Vetterling, 
and Flannery, 1992) can be implemen ted  to achieve a geometr ic  optimization by 
moving the bifurcation so as to minimize the target function while the connective 
structure remains unchanged.  

For the third and all remaining  terminal segments the p rocedure  of  segment  
adding involves not  only geometrical  but  also structural optimization. Upon  casting 
the location for a new perfusion site (via PRNS), the new terminal  is tentatively 
connected  to each of  the preexisting segments of  the tree, one after the other. 
Each connect ion is geometrically optimized, the target function recorded and the 
connect ion dissolved again (connect ion search). Finally the new terminal  is con- 
nected permanent ly  to that segment  that provided the op t imum connect ion site in 
terms of  the target  function. 

This p rocedure  of  repeatedly adding segments comprises the construction pro- 
cess within constrained constructive optimization. 

Structures obtained by CCO combine  the complexity of  fractal tree models  with a 
perfect  arrangeability in space and optimized functionality. Technical  details of  
CCO have been  described in a previous article (Schreiner and Buxbaum, 1993). 

Previous Results and Scope of Present Study 

CCO models were found to reproduce  branching  angles (Zamir and Chee, 1986), 
segment  radii (Zamir, 1988; Zamir and Sinclair, 1988), and pressure profiles (Chil- 
ian, Layne, Klausner, Eastham, and Marcus, 1989) of  real coronary arterial trees to 
a satisfying extent  (Schreiner and Buxbaum, 1993; Schreiner,  Neumann ,  Neu- 
mann,  Roedler, End, Buxbaum, Mfiller, and Spieckermann,  1994), which legiti- 
mizes their  use as a reasonable substrate for compute r  simulations of  blood flow 
through arterial trees. 

However, whenever p lunging into optimization, the question of  what should be 
opt imized most  realistically inevitably arises. Although several possible target func- 
tions and their relative merits have been contrasted in theoretical t reatments 
(Sherman,  1981; Lefevre, 1982, 1983), we have (for reasons of  clarity) restricted 
our  previous CCO studies to total intravasal volume as target function, which is an 
arbitrary but  reasonable choice out  of  several possible candidates. In the present  
work, however, we extend the me thod  of CCO to a class of  target functions, to ex- 
amine the impact  of  the optimization target on structure. For the sake of  clarity we 
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construct a simple family of  target functions T b y  varying the exponen t  in the fol- 
lowing expression: 

Nlol 

T = const  �9 ~ l (i) rX(i) -+ minimum,  (1) 
i = 1  

where Ntot is the total n u m b e r  of  segments in the tree, i is the segment  index and 
k(i) and r(i) are segment  length and radius, respectively. Choosing this family al- 
lows to tune continuously between target functions via the parameter .  The  constant  
factor does not  influence optimization and  is chosen adequately so as to make 7" 
represent  the sum of  segment  lengths, surface, volume et cetera of  the tree for the 
respective values of  k. 

To compare  the genera ted  trees and thus evaluate the impact  of  target functions 
on structure, we calculate a n u m b e r  of  characteristic propert ies  of  the tree such as 
the blood t ransport  path length and the pressure profile. For each of  these proper-  
ties the dependence  on the target function pa ramete r  can be evaluated. 

Besides the fact that CCO trees with different target functions look totally differ- 
ent, the impact  of  the optimization target on functional propert ies  is thus put  on a 
quantitative basis in the present  work. 

S I M U L A T I O N S  P E R F O R M E D  

Parameters and Constraints 

Each CCO run has to be based on a set of  boundary  conditions (constrained CO) 
represent ing reasonable physiologic conditions. As in our  previous work (Schrei- 
ner  and Buxbaum, 1993; Schreiner  et al., 1994) we assume that a two-dimensional 
representat ion of  100 g of  left ventricular myocardial tissue should be supplied. 
This setting is representative for, e.g., a reference LAD or LCX bed in humans  
(Netter, 1983). Bearing in mind  the general  concepts of  CCO we now list the set- 
tings in detail: (a) Nt . . . .  ( :  4,000) terminal segments for the binary tree model;  (b) 
perfusion pressure Ppe,f = 100 mmHg;  (c) equal pressures at the distal ends of  all 
terminals ( P t ~  = 60 m m H g ) ;  (d) total perfusion flow Qpe~ = 500 m l / m i n ,  based 
on the following standardized conditions: (i) a fully vasodilated state, which in- 
creases flow about  fourfold (400 m l / ( m i n  •  g) (Marzitli, Goldstein, Sabbah, 
Lee, and Stein, 1979); and (ii) fur thermore ,  we assume cardiac arrest, so that in ad- 
dition to diastole systole also becomes available for perfusion, which increases flow 
by ano ther  25% (1.25 X 400 m l / m i n  = 500 m l / m i n ) ;  (e) equal flows through all 
terminals (Germ = Q p e r f / N t e r m )  ; ( f )  blood viscosity (h = 3.6 cP), cor responding to 
the high shear rate limit (Milnor, 1989; Lowe and Barbenel,  1988); and ( f )  flow 
resistance given by Poiseuille's law (Fung, 1984). 

These conditions, jointly called "perfusion constraints," are supp lemented  by a 
bifurcation law 

k k k 
r o = r 1 + r2 (2) 
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which governs the shrinkage of  segment  radii across bifurcations. This form of  
power law (with different values for the exponen t  ) has been  suggested by theoreti- 
cal considerations (Rodbard, 1975; Sherman,  1981) as well as by morphomet r i c  
measurements  on coronary artery corrosion casts (Zamir, 1988). (r0 is the parent  
and r~ and r2 are the larger and smaller daughter  segments.) 

The  perfusion area, represent ing the piece of  tissue to be supplied (100 g, see 
above),  was chosen to be a flat circular disk of 5-cm radius, perfused f rom a point  
on the per imete r  (Netter, 1983). 

The  locations of  the distal ends of  terminal segments are chosen using PRNS 
(Press et al., 1992; The  Numerical  Algorithms Group,  1993). Depending  on the ar- 
bitrarily chosen initial value of  the PRNS used, one obtains a specific instance of  
the model  under  otherwise unchanged  conditions. Different instances cor respond 
to the anatomical  variability between individuals on top of a generally similar type 
of  branching.  

Trees Generated 

The target function pa ramete r  was varied between X = 0 and ~ = 2 in steps of  0.2, 
and  two different trees were genera ted (from different PRNS seeds) for each value 
of  ~. Additionally, two trees each were genera ted  for k = 3 and 4, yielding a total of  
26 trees. For several choices of  ~ there are intuitive geometrical  interpretations: (a) 

= 0, optimization towards m i n i m u m  sum of  segment  lengths (regardless of  ra- 
dii); (b) k -- 1, optimization towards min imum total surface of  the tree; and (c)), = 
2, optimization towards m i n i m u m  total volume (classic choice).  

We note  that for ), = 1 the target function (see Eq. 1) must  be multiplied by 2 ~r 
to actually yield the surface area. Since constant  factors are irrelevant for minimiza- 
tion, we may with full right claim to minimize surface area when put t ing ~ = 1 in 
Eq. 1. Likewise, a factor w is necessary to arrive at the actual volume when inserting 

= 2 into Eq. 1. In termedia te  (noninteger)  values of  X as well as the choices ~ = 
3,4 do not  lend themselves to immediate  geometrical  interpretations.  However, the 
fact that CCO works for arbitrary choices of  ~, offers the unique oppor tuni ty  to 
continuously vary the target  function f rom length to volume and beyond and ob- 
serve how the resulting structure responds. Since the constant  in Eq. 1 nei ther  in- 
fluences the process nor  the result of  optimization it can be put  equal to unity and 
need  not  be varied when optimizing for different values of  ~. 

Visual Inspection and Interpretation of CCO Trees for Different Target Functions 

In Fig. 1 we display visualizations of  the trees genera ted  for the integer values of  
(=  0, 1, 2, 3). Even on visual inspection the impact  of  target function on structure 
is out of  question. 

Considering )t = 0 (Fig. 1 A), the target  is to minimize the total sum of segment  
lengths, regardless of  radii. In this case, the length of  a small segment  (small means  
small in radius) contributes to the sum with the same weight as the length of  a large 
segment  does. However, because there are many  more  small than large segments in 
a tree, the large ones make only a minor  contr ibution to the total sum. Hence,  to 
keep  the total sum low (---~ minimization),  it is more  rewarding for CCO to keep 
the (majority of) small segments short  ra ther  than shorten the few large ones. The 
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FIGURE 1. Visual impact of optimization target on vascular tree model structure. Trees of 4,000 
terminals each were generated by constrained constructive optimization for several members of the 
target function family, Eq. 1. (A) X = 0 (minimum sum of segment lengths). (B) ~. = 1 (minimum 
total surface of tree). (C) X = 2 (minimum total volume of tree). (D) X = 3 (minimum hypervol- 
u m e ) .  

i m p a c t  on  s t ruc tu re  is evident :  la rge  segmen t s  a re  a l lowed to fo rm very curved  ves- 
sels, each  f e a t u r i n g  f r e q u e n t  changes  in d i r ec t ion .  Wi th  k = 0, t h e r e  is a lmos t  no  
t a rge t  f u n c t i o n  pena l ty  for  d e t o u r s  as l ong  as they  do  n o t  involve a la rge  n u m b e r  o f  
segments ,  which  is n o t  the  case wi th in  the  m a j o r  b ranches .  

O p t i m i z i n g  with k = 1 (Fig. 1 B) m e a n s  m i n i m i z i n g  the  to ta l  surface  o f  the  t ree.  
In  t e rms  o f  sums a n d  weights  this can  also be  i n t e r p r e t e d  as follows: each  t e rm  l(i) 
in the  t a rge t  f unc t ion  Eq. 1 is m u l t i p l i e d  by a fac tor  r(i), which  may  be  c o n s i d e r e d  
as a we igh t  p r o p o r t i o n a l  to s e g m e n t  radius .  H e n c e ,  the  l e n g t h  o f  a large  s e g m e n t  
en te r s  with h i g h e r  we igh t  t han  the  l e n g t h  o f  a small  one ,  which  intui t ively  corre-  
s p o n d s  to the  relat ive i m p o r t a n c e s .  In  t e rms  o f  t a rge t  f u n c t i o n  strategy,  CCO now 
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has to be more  restrictive in creating detours within major vessels. As a result, con- 
spicuous detours are suppressed relative to X = 0 (Fig. 1 A). 

Turning  to volume as minimization target (h = 2; Fig. 1 C), this t rend continues, 
and large vessels follow rather  straight paths. In the target sum, each segment 
length is assigned a weight proport ional  to the cross-sectional area of  the segment. 
Minimum volume is one of  the generally accepted targets for optimization (Kamiya 
and Togawa, 1972), and we have exclusively used it in our  previous studies on CCO 
(Schreiner and Buxbaum, 1993; Schreiner et al., 1994). 

Setting k = 3, i.e., minimizing the "hypervolume" of the tree (Fig. 1 D), means 
summing segment lengths with weights that depend more strongly on radius than 
the cross sectional area does. The  result is striking: we obtain a totally straightened 
course for the large vessels. Moreover, large vessels now bifurcate very early, i.e., 
shortly downstream from the root. Branching angles become even more  acute and 
the tree looks as if blood had to be conveyed to its deposition site as directly as pos- 
sible. 

As ment ioned  before, noninteger  values of  h do not  have direct geometrical in- 
terpretations. However, since we do not  know according to which target nature 

T A B L E  I 

The Dua l  Role of  Target Functions and Computed Quantities 

Target 
Function 

Sum of Surface x Volume x 
segment cross-section cross-section 
lengths Surface Volume (hypervolume) (hypervolume) 

Nto~ Ntot Ntot Ntot Ntot 

l(i) 2rr ~ l(i) r ~ (i) 7r ~ l(i) r2(i) 2~2 ~1/ ( i  ) r3(i) ~2 ~1/( i  ) ra (i) 
i = 1  i = 1  i = 1  "= ' =  

cm cm 2 cm ~ cm 4 cnP 

N tot 

Z j l ( i )  591.1 87.8 2.2817 1.2793 0.072601 
i :  

N~ot 

1 2rr ~ l(i) r ~ (i) 626.5 62.6 1.0081 0.40245 0.018109 
i = 1  

Ntot 

2 "tr ~ l(i) r2(i) 700.6 64.7 0.94515 0.34424 0.014242 
K J 

i = 1  

Ntot 

3 27r2~" l(i) r3(iS,, 752.0 71.8 1.0124 0.33304 0.012309 
' = 1  

N1~t 

4 ~r 2 ~ l(i) r4(i) 764.1 90.1 1.3692 0.38222 0.010939 
i = 1  

Arterial tree models were generated by CCO for a family of five target functions (column 2), being parameter- 
ized by the exponent ~. = 0, 1, 2, 3, 4 (column 1), see Eq. 1. Each line in the table corresponds to one target 
function. For each tree generated, the target function's minimum is given in the bold-framed cells in the main 
diagonal. While one member of the target function family governs optimization (the "very" target function) the 
other members retreat into the roles of "computed quantities" which characterize the tree but do not influence 
its growth. Not that two trees were grown (from different random numbers) for each target function and mean 
values are given here. For one of the computed quantities, namely total volume, the spread within each pair of 
trees can be seen in Fig. 2. Also, Fig. 2 shows additional results for total volume in the range 0 < k < 2. 
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Target function parameter )~ 

F~GURE 2. Impact of target on total volume. For each value of the target function parameter k 
(x-axis), two trees were grown from different pseudo random number seeds. (y-axis) Total volume 
of tree model (cubic centimeters). The line joins mean values, bars denote standard deviations. 

really optimized arterial trees, it is a strength of CCO that it can cope even with the 
formal extensions of geometrically interpretable targets. 

Degree of Optimization Achieved 

Considering a tree with ~ = 2, the total volume plays the role of the optimization 
target. Of  course, the sum of segment lengths and the total surface area may be 
computed as well, even though they have no influence on the optimization of  the 
tree. Conversely, for h = 1 the surface area assumes the role of  the target while the 
sum of segment lengths and total volume may be computed for the resulting tree. 
A similar situation holds for h = 0. 

It is interesting to see how much difference it makes for each of  these three quan- 
tities (sum of lengths, surface, volume) whether they guide or just accompany opti- 
mization, i.e., whether they are used as target function or not. Obviously each 
quantity must take on minimum value when being target itself, since it is the object 
of minimization. This is confirmed by the results shown in Table I, where column 
minima always occur at the main diagonal of the matrix. From its column mini- 
mum, each quantity increases steadily towards both larger and smaller values of h. 
For the total volume, this dependence  is shown in more detail in Fig. 2, including 
also noninteger  values of  k. 

For each computed quantity the degree of  optimality achieved can be character- 
ized by comparing its column minimum and maximum. For example, the sum of 
segment lengths increases from 591.1 (top of column) to 764.1 (bottom of col- 
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umn) .  In other  words, the total length rises (i.e., becomes  suboptimal)  by a factor 
of  1.29 if we optimize for  k = 4 instead of  k = 0. This is really a surprisingly small 
increase if we consider the striking difference in visual appearance  (see Fig. 1). It  
means  that  the sum of  segment  lengths by itself is not  a sensitive pa rame te r  to dis- 
cr iminate differences in tree structure as shown in Fig. 1. The  mono tonous  in- 
crease of  the sum of  segment  lengths towards k = 4 can be explained by the con- 
comitant  decrease of  the relative weight of  segment  length within the target function. 

The  o ther  global measures show a larger increase when being deprived of  their  
role as optimization target. Surface rises by a factor o f  1.44 for  k = 4 (compared  to 
k = 1) and volume by a factor  of  2.41 for k = 0 (compared  to k = 2). The  hypervol- 
umes (k - 3 and 4) appear  even more  sensitive and  increase by factors of  3.84 and  
6.64, respectively, for k = 0. Whereas in the first co lumn of  Table I the sum of  seg- 
m e n t  lengths increases with k (from top to bo t tom) ,  the compu ted  quantity in the 
r ightmost  co lumn (volume x cross-section) increases steadily as k decreases (bot- 
tom to top). 

Numerical Characterization of Structural Features 

In addit ion to various member s  of  the family of  target  functions (Eq. 1), a n u m b e r  
of  o ther  quantities can be constructed and calculated to describe structural fea- 
tures of  an arterial model  tree. O f  course, we are primarily interested in quantities 
represent ing functional aspects relevant for b lood t ransport  capability. 

16 

I I I I 

0 1 2 3 
Target function parameter ~. 

FXGURE 3. Impact of target on blood transport path length. (x-axis) Optimization target function 
parameter k. (y-axis) Path-to-bee-line ratio, averaged over all terminal segments of a tree: (/-~tJ 
/-~,lind ~J t~,~in~,. The line joins the mean values, bars denote minima and maxima. 
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Path Length for Blood Transport 

From the inlet of the model  tree towards a given terminal segment blood has to 
traverse a certain sequence of segments, called "path." Its length Lpath is the sum of 
the individual segment lengths that is obviously always longer than a straight line 
(the bee-line with length Lbee-lin~) between the proximal end of  the root  and the dis- 
tal end of the respective terminal segment. The presence of  detours lengthens the 
path as compared to the bee-line, which can be expressed quantitatively by consid- 
ering the ratio Lpath/Lo~e-line which is a dimensionless quantity. Averaging this ratio 
over all terminal segments we obtain the path-to-bee-line-ratio 

RE = <Lpath/Lbee-line> allterminals (3) 

which is a measure for the relative increase in path length because of detours 
within a given model  tree. Fig. 3 shows the dependence  of  Re on the target function 
parameter  k, and quantitatively confirms what has already been qualitatively de- 
scribed: for k = 0 the path length from the root  to a terminal is on the average 2.3 
times longer than the bee-line, which is a consequence of  numerous  severe detours 
through the strongly curved vessels, see Fig. 1 A. The extent  of detours varies be- 
tween regions of  the tree as indicated by the HI-LO bars. As k increases, the extent  
of  detours decreases steadily towards a surprisingly low value of  1.08 for k = 3. This 
corresponds to a markedly streamlined course of the vessels as seen in Fig. 1, D, 
where the average path through the vasculature is only 8% longer than a straight 
line! For k = 4, Re even decreases to 1.04. 

Within each tree the distribution of path-to-bee-line ratios is skewed towards 
lower values. For each terminal segment, the path-to-bee-line ratio must be larger 
than 1, and in fact very straight paths occur even in trees with k > 1, as shown by 
the LO-bars in Fig. 3. The longest detours are observed for ~ = 0 (indicated by the 
HI-bars in Fig. 3), reaching up to 16 times the length of  a straight line, and de- 
creased continuously for the more  streamlined structures with k > 0. 

Pressure Profile 

At the inlet, our  model  tree is perfused by a pressure Ppe~. According to Poiseuille's 
law, pressure decreases along each segment and, when tracing a path distally, we 
reach a uniform, preset terminal pressure, Pt . . . .  at the respective terminal. In be- 
tween we may compute  the pressure profile that is considered to be a key descrip- 
tor of  vascular tree functionality and results f rom several determinants.  

Above all, it is the bifurcation law that determines the area expansion ratio (van 
Bavel and Spaan, 1992) via the shrinkage of  radii and thus has the largest effect on 
the pressure profile. This has been demonstrated previously in the framework of  
CCO models (Schreiner and Buxbaum, 1993), when we found that the choice ~/= 
2.55 seemed more  adequate than the classical value of 3.0. Incidentally, ~ = 2.55 
would be necessary to minimize wave reflections at bifurcations (Arts, Kruger, van 
Gerven, Lambregts, and Reneman,  1979) whereas ~/ = 3.00 is a condit ion for uni- 
form shear stress and was also confirmed experimentally on corrosion casts (Zamir 
and Chee, 1987; Zamir, 1988). 
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FIGURE 4. Impact of target on pressure profile for bifurcation constraint ~ = 3. (x-axis) Segment 
radius (millimeters). (y-axis) Pressure [mmHg] at distal end of segment. The lines join mean values 
over segment classes equidistant on a log scale, for the profile ~ = 0 (i.e., sum of segment length is 
target) bars denote standard deviations. Each line corresponds to a whole tree with the optimization 
parameter given in the legend. 

Second,  a d i f ferent  geome t ry  may also inf luence  the pressure profile. After  all we 
can expec t  that  it is no t  i r relevant  a long  which path  (curved or  straight) one  
reaches  a terminal.  Thus,  we also investigated the impac t  o f  c h a n g i n g  targets on  
the pressure profiles in o u r  CCO models .  

Se gm e n t  radii were b i n n e d  into equidis tant  classes o f  radius on  a logar i thmic  
scale, and  m e a n  pressures (at the distal ends  o f  the segment )  c o m p u t e d .  O n e  
m o d e l  tree each for  )~ = 0, 1, 2, 3, and  4 was examined ,  yielding results shown in 
Fig. 4. For  the  target  ~ = 0 pressure first decreases  rapidly, indicat ing that  a major  
par t  o f  resistance is located  in the large segments.  Conversely, the very straight  
s t ruc ture  with ~ = 4 shows very little resistance in the  large segments  and  has its 
major  decrease  o f  pressure (slope) in the m e d i u m  sized segments .  T h e  o the r  pro- 
files lie somewhere  in be tween and,  despite a distinct effect o f  target, n o n e  o f  the 
profiles looks realistic and  satisfying, since pressure profiles (in the vasodilated 
state) are expec ted  to appea r  as straight  lines in a semi-logari thmic p lot  (van Beek, 
Roger,  and  Bassingthwaighte,  1989). 

There fore ,  we p e r f o r m e d  five addi t ional  s imulat ions with a di f ferent  b i furcat ion 
constraint ,  namely  ~ = 2.55, and  k = 0, 1, 2, 3, and  4, result ing in the pressure pro-  
files shown in Fig. 5. Indeed ,  fo r  ~ = 1, 2, and  3 the plots now a p p e a r  to be m o r e  
consis tent  with straight  lines. 

O u r  ma jo r  conclus ion,  which we like to ant icipate  he re  in the result  section, is 
that  ~ = 0 and  k -- 4 can be ru led  ou t  and  the family o f  realistic targets thus re- 
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duces to 1 ~< k ~< 3 as far as the reproduct ion of  a realistic pressure profile is con- 
cerned. However, even in these cases a different bifurcation constraint of  7 < 3 is 
mandatory. As a consequence of  these findings we shall comment  on a few aspects 
of the dual relation between constraints, targets, and computed  quantities in the 
f lame of  CCO in the discussion section. 

Segment Orientation 

Branching angles characterize the difference in orientat ion between successive seg- 
ments (parent, daughters).  In our  previous study (Schreiner et al., 1994) we have 
demonstra ted that for the target h = 2 the dependence  of  branching angles on the 
diameter  ratio satisfactorily reproduces measurements from corrosion casts (Zamir 
and Chee, 1986). Preliminary evaluations revealed that the distribution of  branch- 
ing angles can only discriminate between k = 0, 1, and 2, but  not  between ~ = 2, 3, 
and 4, al though visually the difference is obvious. Excessive streamlining (h > 2) 
seems to have no additional impact on the angles between parent  and daughters. 

We therefore constructed the segment orientation as a new morphometr ic  de- 
scriptor of  tree structure. Considering a particular segment we compute  the angle 
between the segment 's direction and the straight line between the tree's inlet and 
the distal end of  that segment (bee-line for arbitrary segments). This angle charac- 
terizes the deviation between the direction in which blood is conveyed within the 
segment and the direction in which blood would be conveyed directly (bee-line). 
When inspecting the streamlined structures in Fig. 1, one can expect  especially the 
large segments to closely parallel the corresponding bee-lines. Hence,  in Fig. 6 we 
averaged segment-to-bee-line-angles (q~) over classes of radii and found (as ex- 
pected) that: (a) angles are generally lower for large targets (i.e., large values of  h). 
(b) for  all targets the orientation of  large segments is closer to the bee-line's orien- 
tation than it is for small radii; and (c) for  ~ = 0 angles decrease slowly with increas- 
ing radius (the zig-zag course is still present even in large arteries) whereas for ~ --- 
4 large angles are found in the smallest segments only. 

In conclusion, the angle between segment and bee-line discriminates structures 
over the whole range of  targets 0 ~< ~ ~< 4 and is an indicator particularly for the de- 
gree of  stream-lining. In contrast, branching angles only discern the diminishing 
zigzag course of  vessels when h increases from 0 to 2. 

D I S C U S S I O N  

Aims, Findings, and Concepts 

The aim of  the present  paper  was to investigate if and how the model  tree structure 
reacts on changing the target function used in Constrained Constructive Optimiza- 
tion. To these ends, we extended the method  of  CCO for the first time to a param- 
eterized class of  target functions, of  which the previously used total intravasal vol- 
ume is a representative. 

The effect of  changing the target was both visually displayed (Fig. 1) and quanti- 
tatively characterized. In a first step towards quantification of  structure, we com- 
puted quantities intrinsically related to the tree as a whole, such as total volume, to- 
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tal surface, and the sum of  segment lengths. Second, we considered quantities that 
primarily have a local meaning, such as the path-to-bee-line ratio and relative seg- 
ment  orientation. Computing averages of  these quantities over a whole tree also 
provides suitable global descriptors of  structure. In particular, the following results 
were obtained: (a) global characteristics generally react in a smooth rather  than in 
a discontinuous way on gradual changes of  the target function via its parameter;  (b) 
sum of  segment lengths, total surface, volume, and hypervolumes are lowest if and 
only if they are used as target functions (these quantities may be up to six times 
larger if the tree is optimized for a different target); (c) different computed  charac- 
teristics, such as path lengths and relative segment orientation, can be used to illu- 
minate different aspects of  the same p h e n o m e n o n  (zig-zag vs straight course of  ves- 
sels); (d) it is possible to unders tand why an increase in h changes structure from 
twisted to straight (see the discussion on the increasing weight of  radii) (in this 
sense, the intrinsic mechanism of  CCO has been made transparent regarding the 
relation between our  family of  target functions and structural aspects of the result- 
ing model  trees); (e) in most cases the path-to-bee-line-ratio came out  surprisingly 
low, which means that a more or less direct access to blood deposition sites was 
achieved despite the full implementat ion of  all constraints; ( f )  the pressure profile 
seems to depend  more strongly on ~/than on h; (g) segment orientation with refer- 
ence to the respective bee-line was found to discriminate satisfactorily between tar- 
get functions, even for ~/> 2, were conventional branching angles cannot  discrimi- 
nate any more; and (h) as a by-product not  ment ioned  before, we found that the 
number  of  bifurcation levels decreases drastically as k increases. While the trees 
with k = 0 had ,--d60 bifurcation levels, we found ~105,  115, 100, and 70 bifurca- 
tion levels for h = 1, 2, 3, and 4, respectively. Inspecting Fig. 1 D, the reason is clear: 
in the straight tree, large branches bifurcate early, fairly symmetrically and in rapid 
succession. Because each (approximately) symmetric bifurcation roughly doubles 
the number  of  distal terminals that can be supplied, fewer bifurcation levels suffice 
to split into a given number  of  terminals. Conversely, highly asymmetric offsprings 
from large segments (Fig. 1 A) increase the bifurcation levels of  all distal segments 
while supplying only a very limited number  of  terminals themselves. 

Reviewing Specific Aspects of CCO 

The  method  of  CCO is applicable to various types of perfusion areas in two or three 
dimensions. In the present  work we choose a circle as the most simple case, since it 
already suffices to demonstrate the key issue, namely the impact of  optimization 
target selection. A realistically shaped two-dimensional perfusion area has previ- 
ously been illustrated (Schreiner, 1993) and a concept  for possible generalizations 
to three dimensions has been outl ined (Schreiner et al., 1994). 

The  previous section on pressure profiles is a vivid example for the simultaneous 
dependence  of  CCO models on both constraints and optimization targets. 

Thus, to successfully model nature, we have to make sensible assumptions about  
targets and constraints. This demonstrates both the versatility and the pitfalls of  
CCO. An unfortunate  choice of  constraints may preclude satisfying results even un- 
der p roper  optimization targets and vice versa. For example, imposing an unrealis- 
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tic constraint (i.e., 7 = 1) would still yield literally optimized trees (e.g., for minimum 
volume),  but  daughter  segments would in this scenario systematically be too thin in 
relation to their parents, thus leading to an unrealistic pressure profile. This exam- 
ple also illustrates that each specific constraint usually exerts a specific influence on 
one (or several) functional characteristics, and we therefore need  to investigate sev- 
eral characteristics to comprehensively evaluate the performance of  a given CCO 
setup (constraints and target). 

There  is a dual relation (interchangeability) between constraints and target. For 
example, the bifurcation constraint has originally been chosen as ~/= 3 to allow for 
uniform distribution of  shear stress (Rodbard, 1975; Sherman,  1981) that could 
also be selected as a target for optimization. In the present  form of  CCO however, it 
enters as boundary condition. In fact, to some extent  we have the choice what to 
impose as constraint and what to optimize under  that constraint. Other  settings of  
CCO could be thought  of, in which constraints and targets interchange roles. Simi- 
lar arguments apply to o ther  possible interchanges within constraints and resulting 
quantities. For example in the present  setup, equal flows and equal pressures at all 
terminals are the constraints, and (unequal) radii of  terminal segments result there- 
from. These constraints aim at supplying microcirculatory black boxes of  similar 
size with equal flows (at equal pressures). Alternatively one could require equality 
of  terminal radii. Then  we would have to sacrifice the equality of  ei ther terminal 
flows or else of  terminal pressures. 

In this work we have implicitly assumed that the very same set of  target and con- 
straints applies all over the tree. One may also think of  spatially changing, or b lended 
targets which, e.g., optimize large and small vessels according to different rules. 
This could lead to even more  realistic structures, since large and small vessels have 
different physiologic tasks to perform (transport of  blood vs delivery of  nutrients).  
Up to now however, due to the lack of  a quantitative basis, any such approach would 
be highly speculative. 

In summary, a whole variety of  different modes of  CCO can be thought  of, and 
the evaluation of  their relative merits is a challenging task for coming studies. In 
the present work, we have investigated only one special representative of CCO for one  
parameterized class of  target functions. 
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