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Abstract
Introduction
Ventricular shunting remains the standard of care for patients with idiopathic normal pressure hydrocephalus
(iNPH); however, not all patients benefit from the shunting. Prediction of response in advance can result in
improved patient selection for ventricular shunting. This study aims to develop a machine learning predictive
model for treatment response after shunt placement using the clinical and radiomics features.

Methods
In this retrospective pilot study, the medical records of iNPH patients who underwent ventricular shunting
were evaluated. In each patient, the “idiopathic normal pressure hydrocephalus grading scale” (iNPHGS)
and a “Modified Rankin Scale” were calculated before and after surgery. The subsequent treatment
response was calculated as the difference between the iNPHGS scores before and after surgery. iNPHGS
score reduction of two or more than two were considered as treatment response. The presurgical MRI scans
were evaluated by radiologists, the ventricular systems were segmented on the T2-weighted images, and
the radiomics features were extracted from the segmented ventricular system. Using Orange data mining
open-source platform, different machine learning models were then developed based on the presurgical
clinical features and the selected radiomics features to predict treatment response after shunt placement.

Results
After the implementation of the inclusion criteria, 78 patients were included in this study. One hundred
twenty radiomics features were extracted, and the 12 best predictive radiomics features were selected.
Using only clinical data (iNPHGS and Modified Rankin Scale), the random forest model achieved the best
performance in treatment prediction with an area under the curve (AUC) of 0.71. Adding the Radiomics
analysis to the clinical data improved the prediction performance, with the support vector machine (SVM)
achieving the highest rank in treatment prediction with an AUC of 0.8. Adding age and sex to the analysis
did not improve the prediction.

Conclusion
Using machine learning models for treatment response prediction in patients with iNPH is feasible with
acceptable accuracy. Adding the Radiomics analysis to the clinical features can further improve the
predictive performance. SVM is likely the best model for this task.

Categories: Radiology
Keywords: magnetic resonance imaging, artificial intelligence, radiomics, machine learning, normal pressure
hydrocephalus

Introduction
Normal pressure hydrocephalus (NPH) was first described in 1965 by Hakeem and Adams in patients with
ventriculomegaly without elevated intracranial pressure [1]. Moreover, they reported clinical triad of urinary
incontinence, dementia, and gait abnormality in these patients. Since then, the NPH has remained a
diagnostic challenge. In addition to the classical triad, additional neurologic symptoms such as sexual
dysfunction and psychiatric manifestation have been reported in NPH. Besides, there is a significant overlap
between the clinical presentation of NPH and other neurodegenerative disorders such as Parkinson's
disease and Alzheimer's dementia. NPH is a challenging diagnosis for neuroimaging community; even by
utilizing advanced imaging modalities, differentiation between NPH and excavatum ventriculomegaly
secondary to age-related cerebral volume loss is a daunting task [2]. It is believed that the prevalence of the
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NPH is about 1.3% in patients older than 65 years old [3], and up to 80% of patients with NPH remain
undiagnosed [4]. NPH is divided into idiopathic (iNPH) and secondary types. In the idiopathic subtype, there
is no prior history of the central nervous systems (CNS) disease; however, the secondary type is believed to
be secondary to fibrosis and adhesions in the subarachnoid space secondary to previous CNS pathologies,
such as meningitis, trauma, malignancy, and intracranial hemorrhages. Regardless of iNPH
physiopathology, ventriculoperitoneal shunt placement to drain the CSF remains the standard of care in
patients with iNPH for many decades [5].

It will make great clinical sense if physicians and researchers can predict the treatment response after
shunting in these iNPH patients in advance. Several published studies have tried to explore this avenue.
Currently, the positive “spinal tap test” (gait improvement after drainage of a large amount of CSF during
lumbar puncture) is the main predictive test, but with an overall ‘flip-coin’ accuracy of about 53% [6-8]. It
appears that the patient's age is not associated with treatment response [9]. Treatment response prediction
by neuroimaging is also controversial. In several studies, the radiologist-driven characteristics, including
disproportionately enlarged subarachnoid space hydrocephalus (DESH) sign, Evans-index, callosal angle
(CA), and periventricular T2 FLAIR hyperintensities, were not associated with treatment response [10].
However, in several other studies, DESH sign, augmented post-ischemic CSF space, CA, and anterior
callosal angle (ACA) were found to be associated with treatment response [11].

The lack of clear returns on conventional neuroimaging in predicting the treatment response can be partially
attributed to the inability of the human eyes to detect numerous imaging features. A few radiologist-driven
features such as DESH sign, Evans-index, CA, periventricular T2 FLAIR hyperintensities, and ACA
probably do not contain enough predictive information. In this context, radiomics analysis has gained a
strong research momentum and is expected to impact multiple areas of radiology. In radiomics, the regions
of Interest/lesions are usually segmented by the radiologists, and then hundreds and thousands of the
features are extracted from the segmented area by the software. These features are essentially the
relationship between the different pixels/voxels within the segmented regions. Subsequently, the most
predictive features will be selected and used to develop the machine learning models for different
predictions (e.g., tumor grade, gene mutation in tumors, patient’s survival, treatment response, etc.).
Radiomics was first developed mainly for oncologic imaging and benefits are well published. However, the
application of radiomics is not limited to tumors, and this technique can be used to evaluate benign non-
oncologic conditions as well [12].

This study aims to develop a machine learning model based on the clinical and neuroimaging data to
predict the treatment response in iNPH after shunt placement. However, instead of radiologist-driven
imaging features, we present the benefits of hybrid radiomics analysis.

Materials And Methods
This feasibility study was approved by the ethical committee of our university institutional review board
(IRB). The IRB waived the requirement to obtain any additional informed consent. Medical records of
patients with a diagnosis of iNPH were evaluated retrospectively from 2009 to 2021. Before medical chart
review, the researchers (ZS, AR, and HS) were trained to extract the medical data from the patients' records
based on the three variables of iNPH grading scale [13], as well as the Modified Rankin Scale to evaluate
the patients’ performance (Table 1 and Table 2).
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 Findings Scores

A. Cognitive impairment

Normal 0

Complaints of amnesia or inattention, but no objective memory and attentional impairment 1

Existence of amnesia or inattention, but no disorientation of time and place 2

Existence of disorientation of time and place, but the conversation is possible 3

Disorientation for the situation or meaningful conversation impossible 4

B. Gait disturbance

Normal 0

Complaints of dizziness of drift and dysbasia, but no objective gait disturbance 1

Unstable but independent gait 2

Walking with any support 3

Walking not possible 4

C. Urinary disturbance

Normal 0

Pollakiuria or urinary urgency 1

Occasional urinary incontinence (1–3 or more times per week, but less than once per day) 2

Continuous urinary incontinence (1 or more times per day) 3

Bladder function is almost or entirely deficient 4

TABLE 1: Idiopathic normal pressure hydrocephalus (iNPH) grading scale (sum of
A, B, and C).

Findings Scores

No symptoms 0

No significant disability. Able to carry out all usual activities, despite some symptoms 1

Slight disability. Able to look after own affairs without assistance, but unable to carry out all previous activities 2

Moderate disability. Requires some help but able to walk unassisted 3

Moderately severe disability. Unable to attend to own bodily needs without assistance and unable to walk unassisted 4

Severe disability. Requires constant nursing care and attention, bedridden, incontinent 5

TABLE 2: Modified Rankin Scale.

The consecutive patients with iNPH who underwent ventriculoperitoneal shunt placement and had clinical
follow-up after surgery were included in this study. Those with any other known CNS pathologies, including
known neurodegenerative disorder other than NPH, history of brain tumors, old infarctions,
encephalomalacia, prior surgery, prior CNS infections, and patients with incomplete follow-up after surgery
were excluded. As commonly prevalent, white matter disease was not considered as an exclusion criteria,
and patients with any grade of periventricular T2/FLAIR hyperintensities were included. Clinical
presentations of the included patients were documented using a questionnaire based on the already
described iNPH and the Modified Rankin Scale (ZS and AR). The most recent brain MRI before surgery
was also collected for each patient. For each patient, after normalization of the images, the ventricular
system, including the lateral, third, and fourth ventricles were manually segmented on T2-weighted
sequence using the 3D slicer software package [14]. The segmentation was performed independently by
two board-certified radiologists, each with 12 years of experience (ZS and AR), and the segmentation was
confirmed by a third board-certified neuroradiologist with 13 years of experience (HS). All radiologists were
blind to the post-surgical outcomes at the time of segmentation. Subsequently, different Radiomics features
were extracted for each patient using the Pyradiomics library [15]. For treatment response assessment, the
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changes in the iNPH scale before and after surgery were used. The sum of 11 iNPH criteria was calculated
for these two time points. The patients with two and more than two scale decrease were considered
“responders.” The patients with one or less than one scale decrease were considered as “non-responders.”

The radiomics features were first normalized. Considering responder/non-responder status as the target
end-points, the radiomics features were evaluated by Least Absolute Shrinkage and Selection Operator
(Lasso) and “Information Gain Ratio” to select the most predictive features. Subsequently, different machine
learning models, including logistic regression, decision tree, random forest, neural network, AdaBoost, k-
nearest neighbors, and Support Vector Machine (SVM) models, were implemented using the clinical data
(iNPH grading scale and Modified Rankin Scale) as well as selected radiomics features to predict responder
versus non-responder patients after shunt placement. The performance of each model was tested using
leave-one-out cross-validation technique. The performance of each model was reported based on the area
under the curve (AUC), accuracy, sensitivity, and specificity. AUC was used to select the best model. The
machine learning training testing was performed by the “Orange Data mining” platform [16]. The
demographic data were analyzed by SPSS (Version 27.0. Armonk, NY: IBM Corp).

The detailed structure for each model includes KNN (Number of neighbors: 8, Metric: Euclidean, and
Weight: Uniform), Decision Tree ( Induce binary tree, Minimum number of instances in leave: 9, No split
subsets smaller than 8, Maximum tree depth: 100, and Stop when majority reaches: 95%), Random Forest
(Number of trees: 30, Replicable training, No split subsets smaller than 9), SVM ( Cost: 1.7, Regression
loss epsilon: 0.2, Kernel: Sigmoid, Optimization Numerical Tolerance: 0.01, and Optimization Iteration Limit:
100), Logistic Regression (Regularization type: Ridge L2, Strength C=1), AdaBoost (Base estimator: Tree,
Number of estimators: 57, Learning rate: 1, Classification algorithm: SAMME.R, and Regression loss
function: Linear), and Neural Network (Neurons in the hidden layers: 100,50,20, Activation: tanh, Solver:
Adam, Regularization α=0.0001, and Maximum number of iterations: 300).

Results
After reviewing the medical records, 111 patients diagnosed with iNPH underwent VP shunting in our center
from 2009 to 2021. After the implementation of inclusion and exclusion criteria, 78 patients were included in
the final analysis. The patients include 47 males and 31 females with an average age of 69.4 ± 9 years.
The average iNPH grading scale was 4.19, and the average Modified Rankin Scale was 2.45. The average
time between the surgery and follow-up was 7.3 weeks. After shunt placement, 34 patients (two or more
than two score interval decrease) were considered as responders, and 44 were considered as non-
responders (Table 3).

Cases Sex P-value
Age

Mean Standard Deviation P-value

Responder
Female 12 (35.3 %)

0.49*

70 8.2

0.14**

Male 22 (64.7 %) 71.7 9.1

Non-responder
Female 19 (43.1 %) 69.8 9.7

Male 25 (56.9 %) 66.8 9

Total 78 69.4 9

TABLE 3: Demographic characteristics of the patients.
We found no statistical association between patients’ sex (*) and age (**) with the outcome.

For each patient, 120 radiomics features were extracted from the ventricular system on T2-weighted
images. After implementation of the LASSO (alpha 0.01) and Information Gain Ratio, 12 Radiomics features
were selected as the most predictive features to predict responder versus non-responder. The selected
features include, DifferenceAverage, DifferenceEntropy, Contrast, ZonePercentage,
SmallDependenceEmphasis, Skewness, LongRunEmphasis, RunVariance, Id, Idm, ZoneEntropy, and
LargeAreaLowGrayLevelEmphasis.

Using four clinical features (1. Cognitive impairment, 2. Gait disturbance, 3. Urinary incontinence from the
iNPH grading scale, and 4. Modified Rankin Scale), the random forest model achieved the best
performance to predict responder/non-responder target with an AUC of 0.71 (Table 4).
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Model AUC Accuracy Sensitivity Specificity

Decision tree 0.60 0.55 0.44 0.63

SVM 0.63 0.59 0.61 0.56

Neural network 0.66 0.67 0.61 0.72

Logistic regression 0.70 0.64 0.58 0.68

AdaBoost 0.70 0.67 0.58 0.75

k-nearest neighbors 0.71 0.64 0.55 0.70

Random forest 0.71 0.70 0.55 0.81

TABLE 4: The performance of different machine learning models to predict the
outcome using various clinical features.
AUC: area under the curve; SVM: support vector machine.

Adding selected radiomics features to four clinical features (as described above) further improved the
predictive performance. Among various machine learning models, SVM achieved the best performance with
an AUC of 0.80 (Table 5).

Model AUC Accuracy Sensitivity Specificity

AdaBoost 0.57 0.57 0.52 0.61

Decision Tree 0.62 0.55 0.55 0.54

k-nearest neighbors 0.69 0.66 0.52 0.77

Logistic Regression 0.72 0.65 0.61 0.68

Neural Network 0.72 0.69 0.67 0.70

Random Forest 0.75 0.69 0.55 0.79

SVM 0.80 0.76 0.67 0.84

TABLE 5: The performance of different machine learning models to predict the
outcome using combination of clinical and radiomics features.
AUC: area under the curve; SVM: support vector machine.

Discussion
iNPH is one of the most common differential diagnoses of neurodegenerative disorders and one of the few
types of dementias that can be amenable to treatment if appropriately diagnosed and managed [1].
Diagnosis and management of the iNPH by no means are straightforward. iNPH has substantial overlap
with other neurodegenerative and cognitive diseases in clinical presentations [6]. Especially, in elderly
patients, “pure” iNPH is not always common. The exact physiopathology of iNPH is still controversial, but
excessive CSF accumulation within the ventricular system eventually causes brain parenchymal damage
and subsequent clinical symptoms. VP shunt placement remains the main treatment for these patients.
Currently, after drainage of a large amount of CSF (tap test), gait improvement is the main technique utilized
to select appropriate patients for shunt placement.

Same as the diagnosis, treatment response prediction after shunting in iNPH also remains challenging. This
prediction was the subject of many studies with varying results. So far, evaluation of CSF pulsation patterns
(CSF pressure changes secondary to cardiac pulsation) was not associated with treatment response [7,17-
20]. Similar to CSF pulsation pattern, the patient’s age cannot predict the shunting response [7]. Based on
the already existent guidelines, symptom improvement after “external lumbar drainage” is associated with a
higher response rate after shunting, and this test is recommended for patient selection before shunting [7]. It
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seems even the combination of intracranial pressure monitoring and lumbar infusion is not able to predict
the treatment response in iNPH after shunting [21]. It has been reported that abnormal single-photon
emission computed tomography (SPECT) brain cerebral blood flow reactivity to acetazolamide can be
associated with treatment response after shunting [7,22]. Besides, higher CSF velocity across the aqueduct
has been reported to be associated with response to shunting [7,23-26]. However, other researchers did not
observe such association, such as Dixon et al., who evaluated 49 patients who underwent shunting for
iNPH. They concluded that CSF flow measurement at the level of the aqueduct could not predict the shunt
response [23]. There is no significant association between the periventricular T2/FLAIR hyperintensities and
treatment response to shunting [7,27]. In one study, small callosal angle, wide temporal horns, and
occurrence of disproportionately enlarged subarachnoid space have been reported to be associated with
treatment response [28], but this association was not detected in other similar studies [6,10,27].

Given the difficulty of treatment response prediction in iNPH, as mentioned above, we aimed to develop
machine learning models to solve this challenging task. Moreover, we believe that MRI images contain
information beyond the ability of human eyes. Subtle changes in the diameter of ventricles, their shape and
sphericity, and subtle changes of CSF signal due to different intraventricular CSF motion may be able to
stratify different patients and can help us separate out the responders from non-responders. In our study, by
using the clinical data (iNPH grading scale and Modified Rankin Scale), we were able to predict the shunt
response with moderate accuracy. As we predicted, adding selected predictive radiomics features improved
the performance. Using the SVM, we predicted the response with an AUC of 0.8, which is acceptable for a
challenging task and better than many prior studies. Interestingly, in one recently published study, the SVM
had a better accuracy of iNPH diagnosis in comparison to radiologists [29]. In our study, the patients' age
and sex were not predictive (neither in statistical analysis nor in machine learning models), which matches
results from previous studies [6]. Our results match with another recently published study by Wu et al.; they
evaluated 41 iNPH patients after shunt placement, after segmentation of 283 brain regions, volumetric
analysis, and selection of the most predictive features, their machine learning model had high relation to the
outcome (r = 0.80 for Tinetti scale and r = 0.88 for mini-mental state examination prediction) [30]. On the
other hand, our segmentation was based only on ventricular segmentation and we believe it is more
practical. In contrast to the lumbar tap test, our model is entirely based on non-invasive clinical and
radiomics data, requires no additional test, and can eventually improve patient selection for iNPH shunting.

There are a few limitations in our conceptual study design. This study was a proof of concept- pilot study
performed in a retrospective fashion. Non-structured medical data in medical records was extracted and
converted to questionnaire format for model development which is not an optimum design for clinical data
gathering. Although radiologists were blind to the patients’ outcomes, the physicians who did the post-op
assessment knew that the patients have undergone shunt surgery. Additionally, only neurologic presentation
was used for model development. Adding other clinical data, including cardiovascular risk factors as well as
results of spinal tap test, may further improve the performance of the current predictive models. Besides,
only the T2-weighted sequence was used for radiomics analysis for this study. Using multiparametric MRI
sequences can potentially improve the performance of the final predictive models.

Conclusions
NPH is one of the common etiologies of dementia. Accurate diagnosis of NPH is critical because it is
potentially treatable. Ventricular shunting has been the standard of care of iNPH for a long time. However,
shunting is not effective in all patients. Having an accurate estimate of the chance of treatment response for
every patient will improve patient selection. The treatment response prediction in iNPH remains a
challenging task. Many prior attempts failed to develop a standard prediction system with high accuracy.
Given our findings, machine learning approaches based on the neurologic clinical manifestation of the
patients are feasible for response prediction after ventricular shunt placement with acceptable performance
(ROC of 0.71 in our model based on four clinical features: Cognitive impairment, Gait disturbance, Urinary
incontinence, and Modified Rankin Scale). Importantly, adding the Radiomics analysis to clinical features
can further augment the performance of such models (ROC of 0.8 in our model). We believe our Radiomics
approach based on segmentation of the ventricular system on T2 is a simple approach that can be
easily implemented in daily clinical practice without a financial challenge. Among different machine learning
models, the random forest and support vector machine techniques are the most promising methods for
treatment response prediction in iNPH. Further prospective studies are needed to evaluate the clinical
implementation of such clinical/Radiomics machine learning approaches.

Additional Information
Disclosures
Human subjects: Consent was obtained or waived by all participants in this study. Ethical committee and
Institutional Review Board for Human Use of University of Alabama at Birmingham issued approval
300006827. This research was conducted ethically in accordance with the World Medical Association
Declaration of Helsinki. Written informed consents were obtained from all patients upon admission and
before medical imaging and surgery. The study protocol was reviewed and approved by the ethical
committee and Institutional Review Board for Human Use of University of Alabama at Birmingham (IRB-
300006827). Animal subjects: All authors have confirmed that this study did not involve animal subjects or

2021 Sotoudeh et al. Cureus 13(10): e18497. DOI 10.7759/cureus.18497 6 of 8



tissue. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the
following: Payment/services info: All authors have declared that no financial support was received from
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