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Abstract: A series of waterborne polyurethane dispersions (WPUs) modified with hydroxyl-terminated
polydimethylsiloxane (PDMS) were prepared by incorporating PDMS into the soft segments of
polyurethane chains. The structural characteristics of the prepared samples were analyzed by Fourier
transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy
(XPS), and particle size analysis (PSA). The effect of PDMS content on the thermal and mechanical
properties of PDMS-modified waterborne polyurethanes (PS-WPU) was investigated. In addition,
the water resistance and dimensional stability of the PS-WPU were investigated by measuring its
water absorption ratio and water contact angle along with universal testing machine measurements.

Keywords: waterborne polyurethanes; polyurethane coatings; polydimethylsiloxanes; hydrophobic-
ity; marine applications

1. Introduction

Polyurethane (PU), a polymer joined by urethane bonds, is produced by the reaction
of polyols with isocyanates. Currently, PUs are one of the most commonly used materials in
various applications such as coatings [1,2], adhesives [3,4], foams [5,6], and elastomers [7,8].
The properties of PU are dependent on the type of polyols and isocyanates used, and the
soft segment of PU is formed from a polyol, while the hard segment is composed of an
isocyanate and a chain extender.

In recent years, with increasingly strict regulations for volatile organic compounds,
waterborne polyurethanes (WPUs), which utilize water as a dispersion medium, have re-
ceived significant attention [9]. WPUs are synthesized by introducing hydrophilic segments
or ionic groups, which act as emulsifiers, into the molecular chains of the polymers [10].
WPUs have been applied in a wide range of adhesives and coatings for textile, plastic,
metal, and offshore structures owing to their tunable properties, which can be controlled
by the proportion of soft and hard segments [9,11]. However, their low resistance in water
and solvents, apart from limited thermal stability and mechanical properties, needs to be
improved in order to replace solvent-based PUs.

Considerable efforts have been devoted into overcoming these problems, including
the introduction of a network structure enabled by a crosslinking reaction of epoxy [12] and
acrylic groups [13,14], blending WPU with different polymers to form interpenetrating net-
works (IPNs) [15], modifying the chemical structures of WPUs with nanoparticles [16,17],
and copolymerization [18,19]. Another promising approach is the use of polydimethyl-
siloxane (PDMS) because of its advantageous properties, such as high thermal stability,
biocompatibility, flexibility, water resistance, and low surface energy [20–25]. Vlad et al.
reported that IPNs prepared by the combination of castor-oil-based PUs and PDMS provide
enhanced mechanical properties. However, the IPNs exhibited significant phase separation
due to a large difference in the solubility parameter between the PU network and PDMS
network [26]. Compared with solvent-based PUs, WPUs containing ionic moieties or
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hydrophilic segments are more polar; this results in a large polarity difference between
WPUs and PDMS and their poor compatibility. Hence, research has largely focused on
chemical modifications to increase the compatibility of WPUs and PDMS [27,28].

In this study, different amounts of hydroxyl-terminated PDMS were incorporated
into the molecular chains of WPU as soft segments to investigate the effects of the PDMS
content on the mechanical and thermal properties of PDMS-modified PU. Analytical results
revealed that an increase in the PDMS content resulted in improved thermal stability,
elongation properties, and water resistance, while decreasing the tensile strength. These
findings are important for understanding the potential marine applications of PDMS-
modified PUs.

2. Materials and Methods
2.1. Materials

Polytetramethylene ether glycol (PTMG, Aldrich, St. Louis, MO, USA) (Mn = 2000 g mol−1),
hydroxyl-terminated PDMS (Aldrich) (Mn = 4200 g mol−1), isophorone diisocyanate (IPDI,
Aldrich; 98%), 2,2-bis(hydroxymethyl) propionic acid (DMPA, Aldrich; 98%), dibutyltin
dilaurate (DBTDL, Aldrich; 95%), triethylamine (TEA, Samchun Chemical Co., Ltd. Pingze,
Korea; 99%), and ethylenediamine (EDA, Samchun Chemical Co., Ltd.; 99%) were used
as received.

2.2. Preparation of PS-WPU

A series of WPU samples with different PDMS contents (0, 5, 10, 15 and 20%) were
synthesized using the prepolymer method as follows: PTMG, PDMS, and DMPA were first
placed in a three-necked glass reactor equipped with a physical stirrer, dropping funnel,
and a screw tube cooler. The mixture was then stirred at 80 ◦C. After 1 h, IPDI and DBTDL
were added dropwise to the reactor. The reaction was carried out at 80 ◦C for 3 h to obtain
the NCO-terminated prepolymer. During the reaction, acetone was added to adjust the
viscosity of the solution. After reaction completion, the solution was cooled to 40 ◦C, and
then TEA was added to neutralize the carboxyl groups of PU. After 1 h of neutralization,
distilled water was added with vigorous stirring for 1 h, and then EDA was added for
chain extension for another 1 h. Finally, acetone was removed under vacuum to obtain
the WPU dispersion. The WPU films were prepared by casting the WPU dispersion into
a glass mold and drying at room temperature until all the solvents had evaporated. The
sample designations and compositions are summarized in Table 1, and the reaction process
is illustrated in Scheme 1.

Table 1. Composition of PS-WPU samples.

Samples
Composition (mol)

PDMS PTMG DMPA IPDI TEA EDA

PS-WPU 1 0 0.033 0.067 0.12 0.067 0.02
PS-WPU 2 0.00165 0.03135 0.067 0.12 0.067 0.02
PS-WPU 3 0.0033 0.0297 0.067 0.12 0.067 0.02
PS-WPU 4 0.00495 0.02805 0.067 0.12 0.067 0.02
PS-WPU 5 0.0066 0.0264 0.067 0.12 0.067 0.02

2.3. Characterization

Fourier-transform infrared (FTIR) spectra of the samples were analyzed using an
FTIR spectrometer (JASCO Co., FT/IR-6200, Tokyo, Japan) using attenuated total reflection
(ATR) method. The spectra were recorded in the range of 4000–400 cm−1 at a resolution of
4 cm−1, and each sample was scanned 64 times.

The particle sizes of the samples were determined using a particle size analyzer (PSA)
(Malvern Panalytical, Mastersizer 3000, Malvern, UK). The samples were diluted to a
concentration of 0.01% using deionized water (D.W).
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Scheme 1. Preparation of PS-WPU.

X-ray diffraction (XRD) patterns were obtained using an X-ray diffractometer (Philips,
X’pert 3, Eindhoven, Netherlands) with Cu-Kα radiation (λ = 1.54060 Å) at 40 kV and
30 mA. The angle was between 20◦ and 40◦ with a step size of 0.01◦.

Qualitative and quantitative information on the surface elemental compositions of
the samples were obtained via X-ray photoelectron spectroscopy (XPS, Thermo Fisher
Scientific, Waltham, MA, USA) with Al Ka achromatic X-ray. The spectra were recorded in
the range of 0–1300 eV under 90◦ take-off angles.

Dynamic mechanical analysis (DMA) was conducted using a DMA instrument (TA
Instruments, DMA 850, New Castle, DE, USA). The temperature was in the range of
−100 ◦C to 100 ◦C, with a heating rate of 5 ◦C/min at an oscillating frequency of 1 Hz.

Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) analysis
were conducted using a thermal analyzer (TA Instruments, TGA Q500, New Castle, DE,
USA) at a heating rate of 10 ◦C/min in a nitrogen atmosphere, with temperatures in the
range of 100 ◦C to 800 ◦C.

The tensile properties were measured using a universal testing machine (Instron Co.,
Instron 3345, Canton, OH, USA) at a crosshead speed of 50 mm/min at room temperature
and −60 ◦C. The mechanical test on each dumbbell-shaped sample was conducted five
times, and the average value was calculated according to the ASTM D638.

Water contact angles (WCAs) were measured with a contact angle goniometer (Femto-
biomed, Smart Drop Standard, Seongnam, Korea) at room temperature with water droplets
(deionized water (D.W) and seawater (S.W)). Each sample was analyzed thrice at three
different locations, and the average value of the contact angle was calculated. The surface
free energy was calculated by inputting the value of the contact angle to the surface energy
calculation software.
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To measure the swelling in water, the films were immersed in water (D.W and S.W) at
25 ◦C. The water swelling properties were calculated from the differences in the mass of
the samples using the following equation:

Swelling ratio =
100(W − W0)

W0

where W0 and W represent the initial and final (after water swelling) film weights, respec-
tively.

3. Results and Discussion
3.1. FTIR Analysis

The chemical structures of the PS-WPU samples are investigated by FTIR spectroscopy,
as shown in Figure 1. All the samples indicate the absorption peaks of typical PU at
1530 cm−1 (–NH bending in urethane), 1717 cm−1 (–C=O stretching in urethane), 1160 cm−1

(C–O–C ether group) and 2923–2850 cm−1 (C–H symmetric and asymmetric stretching
of CH2 group, respectively) [29]. The absorption peaks near 3480 cm−1 and 3320 cm−1

indicate free NH stretching and hydrogen-bonded NH stretching, respectively [30]. The
absence of an NCO peak at 2270 cm−1 in all the samples indicates the complete reaction of
the NCO group. Furthermore, except for PS-WPU 1, all the remaining PS-WPU samples
indicate the characteristic absorption peaks of Si–CH3 at 1261 cm−1 (Si–CH3 deformation),
Si–O–Si at 1023 cm−1 (Si–O stretching), and Si–CH3 at 806−10 (CH3 rocking and Si–C
stretching), which indicates that PDMS was successfully incorporated into WPU [31]. In
addition, the intensity of the absorption peak increases with increasing PDMS content.
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3.2. Particle Size of the PS−WPU Dispersions

Figure 2 and Table 2 present the particle size distribution of the PS-WPU dispersions
with different PDMS contents. The average particle size of the PS-WPU dispersions
increase with increasing PDMS content from 0.331 to 4.45 µm. However, the PS-WPU
dispersions exhibited bimodal particle-size distributions. These results may be ascribed
to the hydrophobicity of the PDMS chains. During the formation of colloidal particles in
the water-based dispersions, the hydrophilic groups and segments tend to be on the outer
layers, while the hydrophobic PDMS favored the inner layers. As a result, a higher content
of PDMS results in a larger free volume and lower chain packing density in the interior of
the colloidal particles, and thus, larger particles [1,32–34]. Furthermore, all the PS-WPU
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dispersions showed good stability with no precipitation at room temperature for a period
of three months.
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Table 2. Particle size of PS-WPU samples.

Samples Particle Size (µm)

PS-WPU 1 0.331
PS-WPU 2 3.65
PS-WPU 3 3.70
PS-WPU 4 3.79
PS-WPU 5 4.45

3.3. XRD and XPS Analyses

The crystalline structures of the PS-WPUs were investigated using XRD. As shown
in Figure 4, there are no sharp peaks in the diffraction patterns, which indicates the
amorphous structures of the PS-WPUs. All the PS-WPU samples show a broad peak
centered at 2θ = 20◦, indicating the typical crystalline nature of PU. The crystallinity of
PU is due to the hydrogen bonds that occur in the molecules [35,36]. PDMS exhibits a
characteristic amorphous halo at 2θ of 12◦ [37]. All of the samples, except that of PS-WPU
1, show characteristic peaks corresponding to PDMS, and the peak intensity increases
with increasing PDMS content. Furthermore, the diffraction pattern becomes weaker and
broader, which indicates that the crystallinity and orientation of the PU chains are disturbed
by the addition of PDMS.

The elemental composition of the PS-PU coating surface was investigated using XPS.
Figure 3a shows the XPS spectra of PS-WPU 1 observed at binding energies of 284, 399,
and 532 eV, which are attributed to C 1s, N 1s, and O 1s, respectively. The PDMS-modified
samples (PS-WPU 2, 3, 4, and 5) exhibit strong characteristic Si 2p and Si 2s peaks at 102
and 155 eV, respectively. In addition, as the PDMS content increases, the Si atomic content
increases from 0 to 20.85% (Figure 3b and Table 3). The presence of the Si peak and the
increase in the atomic concentration of Si atoms indicate the successful incorporation of
PDMS, which further confirm the FTIR and XRD results.
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PS-WPU 4 46.82 0.34 33.26 19.58
PS-WPU 5 46.39 0.30 32.46 20.85
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3.4. DMA Analysis

The viscoelastic properties of the PS-WPU samples were investigated using DMA.
Figure 5 presents the storage modulus and damping factor (tan δ) of the PS-WPUs as
a function of temperature. As shown in Figure 5a, the storage modulus curves of all
PS-WPU samples decrease abruptly over the temperature range from −100 ◦C to −35 ◦C,
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which is ascribed to the glass transition in the soft segment [38]. PS-WPU 1 without
PDMS exhibits the highest storage modulus, and the storage modulus of the PS-WPU
samples decreases with increasing PDMS content. The storage modulus is a measure of
material stiffness [39–41], and the incorporation of PDMS into the soft segment of the WPU
decreases the stiffness because of the high flexibility of the PDMS. Figure 5b displays the
tan δ curves, which are directly related to the Tg of the PS-WPU samples. The relatively
sharp peak in the tan δ curves is ascribed to the primary dispersion (αa) associated with
the glass transition of PU. In this transition temperature region, the storage modulus
decreases abruptly, and the micro-Brownian motions of the PU chains become clear in the
soft domains [42]. The values of Tg decrease from −59.87 ◦C to −62.49 ◦C with increasing
PDMS content because of the enhanced motion of PDMS chains.
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3.5. TGA and DTG Analyses

To investigate the effect of PDMS on the thermal stability, TGA and DTG analyses were
carried out. The results are shown in Figure 6. The characteristic degradation temperatures
associated with the thermal degradation are summarized in Table 4. All the PS-WPU
samples exhibit similar thermal decomposition behaviors. The slight weight loss before
200 ◦C is caused by the volatilization of solvents in the PS-WPU film. The temperature
at which 10% weight loss occurs (T10%) and the mid-point temperature of the weight loss
(T50%) are employed to determine the thermal stability of the PS-WPU films, as shown in
Table 4. Both the weight loss temperatures, T10% and T50%, increase with increasing PDMS
content. The improvement in thermal stability indicates that PDMS plays an important
role in preventing the decomposition of the main chain of WPU. This improved stability
can be attributed to the higher energy of the Si–O bond (~460 kJ/mol) compared to the
energies of the C–C and C–O bonds (~345 kJ/mol) [43,44].

According to the TGA and DTG curves, all the PS-WPU samples exhibit a three-step
degradation profile. The first degradation step from 250 ◦C to 350 ◦C is related to the
decomposition of the hard segment of PU, since the C–N bond breaks more easily than the
C–O and C–C bonds [45,46]. The second degradation step at around 400 ◦C is due to the
scission of the soft segment. The third degradation step above 500 ◦C may correspond to
the depolymerization of residual components [47]. These results indicate that increasing
the PDMS content improves the thermal stability of the PS-WPU samples.
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Table 4. Thermal properties of PS-WPU samples.

Samples
Decomposition Temperature

T10% (◦C) T50% (◦C) Tmax% (◦C)

PS-WPU 1 257.4 398.3 412.7
PS-WPU 2 260.5 399.9 413.7
PS-WPU 3 262.3 404.4 414.8
PS-WPU 4 262.4 404.5 415.7
PS-WPU 5 262.4 407.9 416.8

3.6. Mechanical Properties

The stress–strain curves of the PS-WPU samples are shown in Figure 7, and the
obtained values of tensile strength, elongation at break, and modulus are summarized in
Table 5. The PS-WPU 1 without PDMS shows a maximum stress of 23.27 MPa, modulus of
4.42 MPa, and strain of 246% at room temperature. Tensile strength and modulus gradually
decrease with increasing PDMS content from 23.27 to 10.05 MPa and 4.42 to 0.51 MPa,
respectively. However, the strain at break increases from 246 to 434% with increasing
PDMS content. As shown in Table 5, a similar trend is observed at −60 ◦C. With increasing
PDMS content, tensile strength and modulus decrease from 32.84 to 20.97 MPa and 11.81
to 3.59 MPa, respectively. The elongation at break increases from 211 to 392%. Interestingly,
the obtained tensile strength and modulus values at −60 ◦C are higher than those obtained
at room temperature. The elongation at break is lower at −60 ◦C than at room temperature.
These results indicate that the incorporation of PDMS can improve the flexibility, elasticity,
and low temperature properties [31].

Table 5. Mechanical properties of PS-WPU samples.

Samples
Tensile Strength

(MPa)
Elongation at Break

(%)
Young’s Modulus

(MPa)

25 ◦C −60 ◦C 25 ◦C −60 ◦C 25 ◦C −60 ◦C

PS-WPU 1 23.27 32.84 246 211 4.42 11.81
PS-WPU 2 17.94 28.18 277 223 2.58 7.12
PS-WPU 3 16.01 25.56 335 298 1.89 6.04
PS-WPU 4 13.37 22.84 377 325 1.56 5.82
PS-WPU 5 10.05 20.97 434 392 0.51 3.59
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3.7. Surface Hydrophobicity and Water Resistance

The applicability of polymer coating materials can be predicted based on hydropho-
bicity and water resistance in different testing media. In this study, the hydrophobicity
and swelling behavior were investigated using D.W and S.W (5% NaCl). The surface
hydrophobicity of the PS-WPU films is investigated by measuring the WCA between
the water droplet D.W and S.W) and the surface of the film, as shown in Figure 8. The
surface energy (Table 6) was also calculated from the contact angle values using the Owens
equation [48]:

γSV = γd
SV + γ

p
SV

γLV(1 + cosθLV) = 2
(

γd
LVγd

SV

)1/2
+ 2

(
γ

p
LVγ

p
SV

)1/2

where γLV is the surface tension of liquid, θ is the contact angle of liquid on the surface,
γd

LV and γ
p
LV are the dispersive and polar components of the liquids, respectively, and γd

SV
and γ

p
SV are the dispersive and polar components of the solids, respectively. The dispersion

and polar components of water are 21.8 and 51.0 mN/m, respectively. The dispersion and
polar components of formamide are 39.0 and 19.0 mN/m, respectively.

The WCAs of the PS-WPU 1 film without PDMS for D.W and S.W are 80.3◦ and 82.0◦,
respectively. With increasing PDMS content from 0% to 20%, the WCA for D.W and S.W
increases from 80.3◦ to 101.8◦ and 82.0◦ to 99.5◦, respectively. In addition, the surface
energy of the PS-WPU films decreases with increasing PDMS content for D.W and S.W. For
D.W, the surface energy of the PS-WPU films decreases from 34.1 mN/m to 20.9 mN/m
with increasing PDMS content. For S.W, the surface energy of the PS-WPU films decreases
from 46.6 mN/m to 34.1 mN/m with increasing PDMS content. This result confirms that
the incorporation of PDMS can improve the surface hydrophobicity of the copolymers.
The presence of siloxane provides a thermodynamic driving force for siloxane segments to
migrate toward the air–polymer interface of the film during film formation. As a result,
a siloxane-enriched surface is formed, which has a low surface energy because of weak
intermolecular forces between the methyl groups (–CH3) and the strong (Si–O) and flexible
(Si–O–Si) siloxane chain [49,50].

Water resistance is an important factor in coating materials. The water resistance of
polymers is an attribute of their hydrophobicity, as well as the interaction between macro-
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molecules [51,52]. To evaluate the water resistance of the PS-WPU films, the samples were
immersed in water (D.W and S.W) for 168 h. The relationship between the water swelling
ratio and soaking time of the PS-WPU films is shown in Figure 9a,b. The swelling ratio
increases with increased soaking time up to 72 h and then levels off. The water swelling
ratio of the PS-WPU films decreases with increasing PDMS content. The improved water
resistance may be ascribed to the hydrophobicity of PDMS. When the films are immersed
in water, the water fills the microcavities and they swell due to the interaction between
the hydrophilic groups and water, resulting in the absorption of water. However, incorpo-
rating hydrophobic PDMS creates a hydrophobic barrier on the surface to prevent water
absorption and reduce the interaction between hydrophilic groups and water [31,41,53,54].
Thus, it can be concluded that by incorporating hydrophobic PDMS into the soft segment
of the PU chains, the water resistance of the PS-WPU films was enhanced. These results
suggest that PS-WPUs have potential as coating materials for S.W repellent applications.
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Table 6. Performance of the PS-WPU samples.

Samples
Water Contact Angle (◦) Surface Energy (γ)

(mN/m)
Maximum Water
Absorption (%)

D.W S.W D.W S.W D.W S.W

PS-WPU 1 80.3 82.0 34.1 46.6 29.2 16.1
PS-WPU 2 83.6 83.9 32.0 45.2 20.0 15.0
PS-WPU 3 85.1 85.6 31.1 44.0 18.5 12.5
PS-WPU 4 95.0 95.0 25.1 37.3 11.5 7.1
PS-WPU 5 101.8 99.5 20.9 34.1 6.9 5.0



Polymers 2021, 13, 4283 11 of 14

Polymers 2021, 13, x FOR PEER REVIEW 11 of 14 
 

 

Table 6. Performance of the PS-WPU samples. 

Samples 

Water Contact Angle 
(°) 

Surface Energy (γ) 
(mN/m) 

Maximum Water 
Absorption (%) 

D.W S.W D.W S.W D.W S.W 

PS-WPU 1 80.3 82.0 34.1 46.6 29.2 16.1 

PS-WPU 2 83.6 83.9 32.0 45.2 20.0 15.0 

PS-WPU 3 85.1 85.6 31.1 44.0 18.5 12.5 

PS-WPU 4 95.0 95.0 25.1 37.3 11.5 7.1 

PS-WPU 5 101.8 99.5 20.9 34.1 6.9 5.0 

 
Figure 9. Water swelling ratio of the PS-WPU samples in (a) D.W and (b) S.W Images of the PS-WPU samples (c) before 
and (d) after swelling in D.W. 

4. Conclusions 
In this study, a series of PDMS-modified WPUs were synthesized with various PDMS 

contents. FTIR and XPS analyses confirmed the successful incorporation of PDMS into the 
PU soft segment. The average particle size of the PS-WPU samples increased with increas-
ing PDMS content because of the large free volume and low chain packing density in the 
interior of the colloidal particles. XRD analysis showed that all the PS-WPU samples were 
amorphous, and the orientation of the PU chains was disturbed by the PDMS content. 
DMA results showed that the storage modulus and Tg of the samples decreased with in-
creasing PDMS content. According to the TGA and DTG results, the incorporation of 

Figure 9. Water swelling ratio of the PS-WPU samples in (a) D.W and (b) S.W Images of the PS-WPU samples (c) before and
(d) after swelling in D.W.

4. Conclusions

In this study, a series of PDMS-modified WPUs were synthesized with various PDMS
contents. FTIR and XPS analyses confirmed the successful incorporation of PDMS into
the PU soft segment. The average particle size of the PS-WPU samples increased with
increasing PDMS content because of the large free volume and low chain packing density
in the interior of the colloidal particles. XRD analysis showed that all the PS-WPU samples
were amorphous, and the orientation of the PU chains was disturbed by the PDMS content.
DMA results showed that the storage modulus and Tg of the samples decreased with
increasing PDMS content. According to the TGA and DTG results, the incorporation
of PDMS increased the thermal stability because of the higher energy of Si–O bonds
compared to the C–C and C–O bonds. The tensile strength decreased, but the elongation
at break increased with increasing PDMS content at 25 ◦C and −60 ◦C owing to the
flexibility, poor tensile strength, and excellent low temperature properties of PDMS. In
addition, the WCA and water resistance results confirmed that both D.W and S.W had
good surface hydrophobicity and water resistance. According to all the results, the PS-
WPU samples in this study represent excellent candidates for potential use as coatings in
marine applications.
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