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This review describes the research aimed at the development of universal antivenom
against elapid neurotoxic snake venoms. The antivenoms produced in Thailand in the
1980s were of low potency, especially against the elapid venoms. This was thought to be
due to the low immunogenicity of the a-neurotoxins, which are the most lethal toxins in
these venoms. Comparisons of various a-neurotoxin conjugates and polymers, and also
different immunological adjuvants, showed that the adjuvant used is the major
determinant in the antibody response in horses. The potent Freund’s adjuvant was not
used due to its severe local side-effect in horses. Therefore, a novel immunization protocol
termed ‘low dose, low volume multi-site’ was developed for use in horses. This
immunization protocol has led to the production of highly potent monospecific
antivenoms against several elapid and viperid venoms, and two potent polyspecific
antivenoms, one against 4 neurotoxic and another against 3 hematotoxic venoms. The
immunization protocol has also led to other improvements in antivenom production
including: several fold increases in antiserum potency, a reduction in the time required
to reach therapeutically useful antibody titers, a 90% reduction in the amount of venom
used, and 100% of the horses responding to the immunization program. This
development is partly responsible for significant decrease in the Thailand’s annual
snakebite death toll from a few dozens to mostly nil in recent years. Finally, a simple
and novel immunization strategy, using a ‘diverse toxin repertoire’ composed of numerous
elapid toxin fractions as immunogen, was proposed and tested. This immunization
procedure has resulted in the successful production of a widely paraspecific antiserum
against at least 36 neurotoxic venoms of 28 species encompassing 10 genera and from
20 countries on four continents, and possibly against all elapid venoms with a-neurotoxins
as the lethal toxins. These results indicate that, with optimizations of the composition of
the ‘diverse toxin repertoire’, the immunization scheme and antibody fractionation to
increase the antivenom neutralizing potency, an effective universal antivenom against the
neurotoxic elapid snakes of the world can be produced.
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INTRODUCTION

Snakebite envenomation is an important medical problem in
many tropical countries (1). It has been estimated that snake
bites are responsible for about 400 000 disabilities with 138,000
deaths annually (2).WHO has designated this problem as a
Category A most neglected tropical disease and it has
spearheaded efforts to reduce the deaths and disabilities
inflicted by snakebites by half in 2030 (3, 4).

The most effective treatment for snakebite envenomation is
the timely administration of safe and effective antivenom (AV).
Currently available AVs are plasma-derived preparations
(PDAVs) produced in large animals e.g. horses, sheep etc.
Despite their demonstrated efficacy, current antivenoms have a
number of drawbacks, including their low titer against relevant
toxins of low immunogenicity. Thus they must be administered
in large doses, which contribute to the high cost of treatment and
the risk of adverse reactions. Furthermore, AVs are specific in
that they are mostly effective against the venom(s) used in the
immunization. Thus, despite the existence of cross-reactivity of
antivenoms against some heterologous venoms, there are many
instances where such cross-neutralization does not occur (5–7).

The immunological specificity makes it often necessary to
identify the culprit snake before specific AV treatment. Also,
with geographical variation within a given snake species, AVmay
be effective only against the venoms of certain snakes in specific
countries or regions. Consequently, most AVs are produced in
small volumes for use in a limited geographical area and thus the
cost is high and often unaffordable to the snake bite victims
which mostly reside in low-income countries (8). Another often
cited drawback of PDAV is the heterologous source of plasma
which could contribute to adverse reactions, such as immediate
type hypersensitivity and serum sickness, in patients. However,
when antivenoms are manufactured following good
manufacturing practices (GMPs) and are composed by highly
purified immunoglobulins or immunoglobulin fragments, their
safety profile is adequate (1). Thus, there are several issues
regarding the use of PDAV in the treatment of snakebite
victims and attempts are being made to improve effectiveness,
reduce the number of adverse reactions and develop cheaper
alternatives (9).

Because of the shortcomings of the PDAV mentioned above,
there is a growing interest in the development of ‘new generation
antivenoms’ using new state-of-the-arts approaches (10, 11).
Examples of these novel alternatives are: human monoclonal
antibody with different types of antibody formats i.e. whole IgG,
single-chain variable fragments (scFvs), antigen binding fragments
(Fabs and F(ab’)2) (12), oligonucleotide aptamers (13), inhibitors
of enzymatic toxins (14), inhibitors of phospholipases A2 (15),
inhibitors of snake venom proteases (16, 17), inhibitors of
hyaluronidase (18), metal chelators (19–21) and neuronal
acetylcholine receptor (nAChR) mimetics (22). All of these
represent promising and interesting alternative therapeutic
modalities to improve or replace PDAV, increase effectiveness,
cause less adverse effects, and be cheaper to produce.

Whether the AV is plasma derived or synthetic, ideally it
should be effective against the venom(s) used as immunogens
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and have an adequate safety profile. Moreover, the production
cost, which includes the amount and cost of venom(s) and
immunological adjuvant, should be low. The preparation of
immunogen should be simple so that the production process
can be easily carried out by manufacturers in developing
countries. Importantly, the antivenom should be inexpensive
and affordable to the snake bite victims. Furthermore, the AV
should exhibit wide para-specific so as to be effective against
other snake venoms producing a similar syndrome, and
preferably against snakes in a wide geographic area or, even
better, worldwide. If ‘universal’ AV can be produced and used in
envenomations caused by numerous snakes, like the anti-rabies
or anti-tetanus antitoxins, it can then be produced in large
volumes, with the consequent reduction in production costs.

While the studies on these ‘new generation AVs’ are under
active research, the production of conventional PDAV continues,
and the products are currently being used to save countless lives
worldwide. Moreover, some of the ‘new generation AVs’ may
face hurdles due to the high cost and lack of information on
venom and AV pharmacology, and the need to develop clinical
trials to validate their use (23). Thus, the production of the ‘new
generation AVs’ could take some time since none has progressed
to clinical trials. Therefore, it is important that any feasible
improvements to conventional PDAV should be explored and
exploited. In the short term, it is relevant to point out that any
simple improvements, quantitatively and/or qualitatively, to
conventional PVAV production would be of immediate benefit
to snakebite victims. Hence, the improvement of currently
available antivenoms is a priority in the WHO strategy for
reducing the impact of snakebite envenomation (3).

In this regard, one potentially fruitful adaptation to PDAV at
present is to make possible the production of pan-specific or
universal PDAV against the neurotoxic snakes. This is a line of
research that we have carried out over the past several years and
it constitutes the main topic of discussion of this review.
PREVIOUS PROBLEMS ENCOUNTERED
IN THE PRODUCTION OF PDAV

AVs were first produced in Thailand by the Thai Red Cross
Society at Queen Saovabha Memorial Institute (QSMI) in 1916,
only 21 years after Albert Calmette’s groundbreaking report in
1894. The production process had changed little even until the
1980s. AVs available then were of low potency (24) and were in
short supply and sufficient for probably less than half of the
demand in the country. This was due to several problems. Firstly,
a low percentage of horses responded to the immunization,
especially so for the horses injected with neurotoxic elapid
venoms (less than 20% of them responded). Secondly, a long
immunization period was needed to reach acceptable antibody
titers (6-8 months). Finally, the immunization program usually
required a large amount of venom(s). In some cases up to 150 mg
venom per horse was required. These problems were encountered
not only in Thailand but likely in other antivenom producers in
Asia and elsewhere.
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Immunogenicity of the Elapid Postsynaptic
Neurotoxins and the Role of
Immunological Adjuvant
The low potency of the anti-elapid antivenoms was thought to be
due to the high toxicity and the low immunogenicity of the major
lethal toxins of elapid venoms. These toxins are mostly
a-neurotoxins, which are low molecular mass proteins of
about 6-7 kDa (25). They bind quasi-irreversibly to the alpha
subunits of the nicotinic acetylcholine receptor (nAChR) leading
to blockage of neuro-muscular transmission at the muscle motor
endplates (26). The high toxicity of the venoms limited the
immunization doses previously believed to be required for a
high antibody response (27). Thus, various attempts were made
to detoxify the venom toxins. This has been done by chemical
means such as treatment with formaldehyde (28), glutaraldehyde
(17, 29), by iodination (30), and by physical means using
X-irradiation (31), UV light (32) and gamma irradiation (33).
It is relevant to note that the detoxification reactions invariably
involve either modification of the ‘active site’ or otherwise alter
the conformation of the toxins, thereby rendering them inactive.
Consequently, owing to the modifications introduced in the
structure of these toxins, the antibodies generated against these
detoxified toxins usually failed to recognize and neutralize the
native toxins leading to low potency of the antivenom.
Furthermore, some of these detoxification reactions, e.g.
glutaraldehyde polymerization (29) and iodination (34), are
difficult to control and optimize especially when different
toxins are involved, as occurs in the preparation of polyspecific
antivenoms. Finally, immunization at high doses of (detoxified)
venom could lead to immune tolerance (35, 36).

The low neutralizing potency of antivenoms was also thought
to be due to the low molecular mass of elapid a-neurotoxins
which might be associated with their low immunogenicity (37).
Thus, various studies were made to conjugate the toxins to
macromolecules or immunogenic carrier proteins e.g. bovine
serum albumin (BSA) or tetanus toxoid. An example is the
conjugation of toxins to cellulose particles that had been oxidized
with sodium metaperiodate (SOC). These conjugates were found
to increase anti-neurotoxin antibody titers 2.0-2.5 fold relative to
the native toxin (38). However, these types of reactions
(detoxification and conjugation/polymerization) on the venoms
have not yet been applied to commercial antivenom production.

To identify the key factor(s) involved in the production of
potent antivenoms, we carried out a study using nine
immunogens prepared from the a-neurotoxin of a cobra
venom (Naja kaouthia toxin 3, NK3). These immunogens
included the crude venom, the purified toxin, various
carbodiimide conjugates, and polymers obtained from
controlled polymerization by glutaraldehyde or formaldehyde.
These immunogens were tested in rats using Freund’s adjuvants
(29). It was shown that pure NK3 toxin elicited comparable
specific antitoxin antibody titers as that of the crude venom
which suggested that the toxin was immunogenic, and that
‘antigenic competition’ (39), if present, was not an important
factor in the antibody response against the elapid toxins. The
results also showed the absence of any immunosuppressive
Frontiers in Immunology | www.frontiersin.org 3
component in the crude venom (40) that could reduce the
antibody response against the toxin. Thus the experiment
clearly underscored that the elapid a-neurotoxins are capable
of inducing a good antibody response in spite of the fact that they
are of low molecular mass.

This conclusion is supported by our recent finding that the
amino acid sequences of the a-neurotoxins contain T cell epitopes
that are required for binding to major histocompatibility complex
(MHC) class II proteins. The T cell epitope–MHC complex then
interacts with a CD4+T cell receptor (TCR). The activated CD4+T
cell then initiates a sequence of events leading to the production of
toxin specific antibodies. The lack of T cell epitope abrogates
activation of CD4+T cells and T cell dependent antibody
responses (41, 42). In the case of the 71 residue a-neurotoxin
from the cobra Naja siamensis, we used an online program “IEDB
analysis resource” (43) to predict the T cell epitopes for human
HLA (no information on horseMHC II was available in IEDB). The
two T-cell epitopes are predicted to be in amino acids 1-9 (medium
score epitope) and 28-36 (high score epitope). The fact that a-
neurotoxins contain high score T cell epitopes and thus would be
expected to be immunogenic, raised the question as to why
antivenoms against the elapids are usually of low potency. There
should be some other parameters employed in the immunization,
i.e. dose, adjuvant, route of administration, volume, frequency (44),
that contributed to the observed low potency.

Experiments on the immunogenicity of various derivatives of
a-neurotoxins described above were carried out in rats using a
variety of adjuvants including Freund’s adjuvants. However,
these adjuvants have been shown to cause granuloma and
sterile abscesses at the site of immunogen injection (45–47).
Consequently, their use in horses was discouraged (48). Thus,
many antivenom producers use other adjuvants (bentonite,
squelene/Aracel A, aluminum salts, sodium alginate etc.) in
their antivenom production. The Thai Red Cross at Queen
Saovabha Memorial Institute (QSMI) used bentonite as the
adjuvant in horses.

We therefore carried out a comparative study on some of the N.
kaouthia toxin immunogens using three different adjuvants (IFA,
bentonite and squalene/Arlacel A). The results showed that only
IFA gave a good specific antitoxin antibody response (49). Thus, it
was concluded that the low antibody response normally observed
in PDAV production in horses was mainly due to the ineffective
adjuvant used and not necessarily to the low immunogenicity of the
toxins. Since co-administration of the immunogen with an effective
adjuvant is an essential requirement in antibody production (36,
41), it is critical that the most effective adjuvant is used in the horse.
Therefore, to improve the effectiveness of PDAV production, it was
necessary either to find new and better adjuvants, or to find a way
to use CFA/IFA safely in horses to avoid the adverse reactions
previously observed. The ineffectiveness of the therapeutic
antivenoms available combined with a severe shortage in
Thailand at the time created a critical situation that led us to
choose Freund’s adjuvants since they have an excellent record of
immunostimulatory effect as compared to other adjuvants (50–52).

Complete Freund Adjuvant (CFA) is a water-in-oil suspension
containing purified light paraffin oil and mannide monooleate, a
April 2021 | Volume 12 | Article 668328
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surfactant, as emulsifier. It also contains heat-killed
dried Mycobacterium tuberculosis. The Incomplete Freund
Adjuvant (IFA) contains the same ingredients but without the
Mycobacterium. With CFA, the hydrophilic and amphipathic
snake toxins reside in the aqueous phase, which keeps them in
their native conformation (53). The water-in-oil preparation serves
as a depot for slow and continuous release of the venom antigens
from the injection site for prolonged stimulation of antibody
producing cells. It also protects the immunogen from rapid
proteolytic degradation and elimination, resulting in the
production of high levels of antibody by the host. The mineral oil
component of the antigen adjuvant emulsion serves as a vehicle for
antigen transport throughout the lymphatic system to immune
effector cells and promotes interaction with antigen-presenting
cells like dendritic cells. In CFA, the mycobacterial cell wall
contains lipoprotein, lipomannans and lipoarabinomannans that
interactwithToll-like receptor-2 (TLR-2), aswell asTLR-4andTLR-
6 (54–57). This provides immunostimulation by recruiting,
activating, and enhancing differentiation of the cells of the immune
system (58). It has been shown that CFA and IFA have served with
unsurpassed record in the stimulation and production of high titers,
high affinity and high avidity antibodies (50, 51) and are useful for
low molecular weight antigens (59). Moreover, these adjuvants can
be produced in large volume with high consistency and
inexpensively. Thus, an immunization protocol that allows the safe
use of CFA/IFA must be found.

The Use of Freund’s Adjuvants in Horses
and the ‘Low Dose, Low Volume Multi-Site’
Immunization Protocol
After extensive inquiries and discussions with some PDAV
producers, it was concluded that the severe adverse reactions in
horses resulting from CFA injection were due to the injection of a
large volume of immunogen emulsified in CFA at one single
anatomical site (47, 60–62). The inflammation at the large
injection area inevitably caused skin rupture that, under non-
aseptic conditions, caused severe infection that in some cases could
result in death. It was hypothesized that the lesions produced by
CFA could be reduced or eliminated by minimizing both the total
injection volume and the volume injected at each site.

A simple and novel immunization protocol termed ‘low dose,
low volume, multisite’ immunization was therefore proposed
and tested in horses (63, 64). This immunization protocol
involves subcutaneous injection of the CFA emulsified
immunogen in small volumes (50-200 µl/site) carrying a very
low venom dose (about 1-2 mg of venom in total/horse) around
the neck at approximately 20 sites. Because of the low volume
injected at each site, the local reaction is mild, and when the
preparation of immunogen and the injection were performed
aseptically, no infection or skin rupture occurred (63, 64).The
injection is made subcutaneously (2-3 mm depth from the skin
surface) in the epidermis where the dendritic cells, the most
potent antigen presenting cells, are located (65). Furthermore,
the injections are made around the neck area of the horse where
the majority of the lymph nodes are situated. This ensures
maximum exposure of the immunogen to the lymphocyte
traffic. The low volume used at each of the 20 injection sites
Frontiers in Immunology | www.frontiersin.org 4
also increases the total exposed surface area of the droplets
containing the immunogen by 2.4 times when compared to
injection of the total volume at one single site, assuming the
droplets are spherical. This results in increased exposure of the
immunogen to the stellar shape dendritic cells. The simple
immunization procedure can be easily carried out (taking
about 2-3 minutes to inject 20 sites per horse) using slightly
modified tuberculin syringes (Figure 1). Using this procedure
the reaction at the injection sites was mild or absent (63, 64). This
protocol was included and recommended in the WHO
Guidelines for antivenom production and control (66).

This immunization protocol has allowed the safe use of
Freund’s adjuvants. It has been repeatedly shown to induce
high specific antibody titers in horses (41, 67–69).

It should be noted that the very low venom/toxin dose used
for the immunization not only reduces the cost because of the
lower amount of venom used but, more importantly, also
stimulates the production of high affinity antitoxin antibody
thus increasing PDAV potency (67–69).

This novel immunization protocol has resulted in the
production of highly potent antiserum (2-4 fold increase in
potency) against N. kaouthia venom (63). It reduces the time
required for a horse to reach maximum antibody titers to about 6
to 8 weeks instead of several months. It reduced the amount of
venom immunogens to just 10% of what was previously used;
and it increased the percentage of responder horses from about
60% to 100% (70). These improvements have resulted in vast
increase in antivenoms production by QSMI (70) with enough
surpluses for export to neighboring countries. Furthermore, this
development is partly responsible for the decrease in the
country’s annual snakebite death from a few dozens to mostly
nil in recent years (Snakebite in Thailand, Annual Epidemiological
Surveillance Report, Ministry of Public Health).

The introduction of this novel immunization protocol has also
resulted in the successful production of two potent polyspecific
antivenoms. Based on a ‘Syndromic strategy’ (9), one polyspecific
antivenom is against three neurotoxic venoms: N. kaouthia “Thai
monocellate cobra”, Bungarus fasciatus “Banded krait” and
Ophiophagus hannah “The King cobra” (64) while another is
against three hematotoxic venoms: Cryptelytrops albolabris “White
lipped pit viper”, Calloselasma rhodostoma “Malayan pit viper”,
and Daboia siamensis “Russell’s viper” (69). These polyspecific
antivenoms are currently produced commercially by The Thai Red
Cross at QSMI using the ‘low dose, low volume multi-site’ CFA
immunization protocol. Recently, the polyspecific anti-neurotoxic
antivenom produced by QSMI also includes the venom of
Bungarus candidus “the Malayan krait”.

PARASPECIFICITY OF PDAV AND THE
PRODUCTION OF PAN-SPECIFIC
ANTIVENOM AGAINST
NEUROTOXIC VENOMS

The production of poly specific AVs using the “low dose,
low volume, multisite” immunization protocol has led to
improvements in treatment due to reduced production costs
April 2021 | Volume 12 | Article 668328
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and increased effectiveness of antivenoms. Interestingly,
these two polyspecific AVs have been shown to significantly
cross-neutralize various medically important hematotoxic
and neurotoxic venoms of snakes distributed in Southeast
Asian and South Asian countries (71–74). Moreover, it has
been observed that many other polyspecific AVs offer
immunochemical cross reactivity with heterologous venoms
from various species (6, 75–80).

It would be highly desirable if a PDAV can be produced to
cover dozens of related venoms which are medically important to
people in several countries or regions. Such a ‘pan-specific’ PDAV
should be very useful to a large number of snakebite victims.
However, the upper limit of venoms used as immunogens for
polyspecific antivenom production is only about 5-6 venoms.
When higher number of venoms are used in the immunization,
lower antibody titers against some or all the venoms are obtained.
A SIMPLE AND NOVEL IMMUNIZATION
STRATEGY USING A ‘DIVERSE TOXIN
REPERTOIRE’ AS IMMUNOGEN AND THE
PRODUCTION OF PAN-SPECIFIC
ANTIVENOM AGAINST ELAPID
SNAKE VENOMS

From the above discussion, it was noted that while some of the
monospecific antivenoms exhibited no or very narrow cross
Frontiers in Immunology | www.frontiersin.org 5
reactivity (5–7, 81), polyspecific antivenoms prepared from
various laboratories showed wide paraspecificity (71–80). It
seemed that the number of heterologous venoms neutralized
by a polyspecific antivenom is greater than the sum of
heterologous venoms neutralized by the antivenoms prepared
separately as monospecific antivenoms. These observations
suggested that the numerous antibodies in a polyspecific
antivenom somehow act cooperatively to cross neutralize
heterologous toxins, resulting in wider paraspecificity of the
antivenom. This can happen if two or more heterologous
antibodies bind, even weakly, to a target toxin and together
enable cross-linking to form lattice and neutralization which
otherwise could not occur. This would be a ‘positive cooperative’
effect of the heterologous antibodies against a heterologous toxin.
If this conjecture is true, it should be possible to prepare wider
paraspecific antivenoms by increasing the number of venoms
used in the immunization.

With the aim of producing a pan-specific PDAV against
elapid venoms of Asia, we therefore proposed and tested a
simple and novel immunization protocol using a ‘diverse toxin
repertoire’ consisting of several neurotoxic venoms as
immunogen (82). The ‘diverse toxin repertoire’ was obtained
from toxin fractions of 12 neurotoxic venoms of Asian origin.
These toxin fractions were prepared by ultrafiltration of the
venoms to remove toxicologically-irrelevant high molecular
mass and highly immunogenic venom proteins. The fractions
were individually shown to contain the lethal toxins (a-
neurotoxins and b-neurotoxins) and total lethal activity of
FIGURE 1 | The modified tuberculin syringes used to deliver 0.1 ml of Freund’s adjuvant emulsified immunogen into the horse subcutaneous site at the depth of
2-3 mm from the skin surface according to the ‘low dose, low volume multi-site’ immunization. Please see details in (66).
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the venoms. The mixture of these toxin fractions was used to
immunize horses at very low doses (about 12 mg of each toxin
fraction) using the ‘low dose, low volume multisite’ protocols
(63). It was found that the horse antiserum could neutralize 11
homologous and 16 heterologous neurotoxic venoms from
elapids of Asian and some African countries (82). Thus the
pan-specific PDAV could offer broad cross neutralization of
venoms from different and geographically separated snakes
and could benefit a large number of snakebite victims. The
rationale of the novel immunization strategy was discussed
previously (83). The result of this study is a proof of concept of
the ‘diverse toxin repertoire’ immunization strategy in the
production of pan-specific antivenom against neurotoxic
venoms. It also indicates that it should be possible to
produce a universal PDAV against the elapid snakes of
the world.
A QUEST FOR UNIVERSAL PDAV
AGAINST ALL THE NEUROTOXIC
ELAPID SNAKES

To further test the concept of the ‘diverse toxin repertoire’
immunization strategy, we assayed the ability of the pan-
specific PDAV to inhibit the venoms of a variety of elapids
from different continents. It was shown that the pan-specific
PDAV could effectively neutralize at least 36 neurotoxic venoms
of 10 genera and from 4 continents including sea snakes from
both Australia and the Arabian Sea (83).

These results suggest that universal antivenom against all
elapid snakes is possible if the ‘diverse toxin repertoire’ is
modified to include a few more neurotoxic venoms. The bases
for our idea are as follows.

a). Most of the elapid venoms contain a–neurotoxins and some
also contain the highly lethal b-neurotoxins. For simplicity,
the discussion will be confined only to the a–neurotoxins. All
of the elapid a–neurotoxins are highly lethal and are
responsible for most of the deaths caused by a large
number of elapid species. They have high amino acid
sequence homology with one another and all share the
same mechanism of toxicity in that they bind specifically to
the a–subunits of nAchR at the motor endplate in the
neuromuscular junction (26, 84, 85). Thus all these toxins
are structural and functional homologs. These toxins,
although previously believed to be poorly immunogenic, are
in fact able to induce high affinity neutralizing antibody
(41, 67). This is supported by the fact that they all contain
high score T helper epitopes in their molecular sequences as
discussed above.

b). The horse antibody repertoire is vast and far exceeds the
epitope repertoire of all the world’s elapid a-neurotoxins.
Thus the horse is capable of producing specific antibodies
against any elapid a-neurotoxin. This conclusion is based on
the following information and calculation.
Frontiers in Immunology | www.frontiersin.org 6
The Repertoire of the Elapid
a–Neurotoxin Epitopes
Given their small molecular size and constraints imposed with
the formation of a biologically active conformation, it is likely
that each a–neurotoxin contains a relatively small number of
dominant epitopes on its surface, with each epitope made up of
about 12 amino acid residues (86, 87). The average accessible
surface area of an epitope is about 846.59 ± 278.87 sq Å (88). The
total accessible surface area of the 71 amino acid residue
a-neurotoxin of N. siamensis, venom (PDB 1CTX; alpha-
cobratoxin from Naja siamensis) is calculated to be about
5,206 sq. Å using a program described by Ribeiro et al. (89).
The number of non-overlapping epitopes on the a-neurotoxin
surface is therefore about 6 epitopes per toxin.

The family Elapidae comprises 382 species (www.
reptiledatabase.org). Assuming that each of these shows three
geographic variations regarding their a-neurotoxins structure, this
will give 1,146 (382x3) a-neurotoxins amino acid sequences. If
each elapid produces an average of three different a-neurotoxin
isoforms (83), this will give a total of 3,438 elapid neurotoxin
isoforms. If each isoform has six non-overlapping epitopes, a total
of about 2.06 x104 elapid a-neurotoxin epitopes would exist in
nature. This number is probably overestimated since some of the
epitopes from homologous toxins are conserved and similar for
structural and functional reasons. However, suffice is to say that
the total number of different epitopes of the world elapid a-
neurotoxins is finite and in the range of tens of thousands.

The Horse Antibody Repertoire
On the opposite end of the antigen-antibody interaction is the
antibody paratope. The diversity of the antibody paratopes
generated spontaneously in a large animal, e.g., human and horse,
is enormous. Due to the random immunoglobulin genes
rearrangement, it has been estimated that 1015-1018 of naïve
antibody specificities could be generated (90, 91). In another study,
it was estimated that the total potential repertoire in human is
immense at 1026 different antibody specificities (92). However, with
new immature B cells being produced at the rate of about 109 per day
and the number of circulating peripheral naïve mature B-cells at any
one time is about 109 (93), a repertoire size of naïve antibodies in
human is thought to be about 1012 specificities (94). Moreover, this
repertoire of naïve antibodies is expanded exponentially by somatic
hypermutation after antigen encounter (95). This number is thought
to be adequate to handle about 1400 potential pathogenic species
thought to be infectious to humans (96).

From the above calculation, the total number of elapid a-
neurotoxin epitopes is about 2.06 x104. Therefore, the naive
antibody sequences present each day in the horse should be
enough to recognize and bind to all the epitopes of elapid a-
neurotoxins of the world.

c) It is likely, therefore, that when a horse is immunized with the
‘diverse toxin repertoire’ from venoms of numerous snakes, there
will be enough B-cells with antibody paratopes/specificity generated
against this repertoire. Furthermore, these antibodies should include
a large number of those capable of cross reacting with other
heterologous toxins. That this is most likely the case is supported
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by our previous results (83). When the horse was immunized with
the toxin fractions of 12 Asian elapids of only 6 species and 2 genera
(Naja and Bungarus), the antiserum was shown to neutralize 36
venoms of 28 species and 10 genera from 4 continents.

It should be mentioned that among the 37 elapid venoms tested,
only the heterologous venom of Dendroaspis angusticeps was not
neutralized by the pan-specific antivenom (83). The lethal toxins of
this venom have not been identified but are thought to act
synergistically (97, 98). Thus, if the toxin fractions of this mamba
together with other selected WHO Category 1 elapid venoms (66)
from various continents are included in the immunization mix, it is
most likely that a PDAV with paraspecificity against all elapid
neurotoxic venoms can be produced.

A universal PDAV against neurotoxic snake venoms would
be analogous to the equine anti-rabies and anti-tetanus sera, in
the sense that it could be used in a wide geographical range.
Using the facilities already available in most antivenom
producers, the production could be implemented within a
relatively short time and without additional investment. It
could be produced in large volume and, with the economy of
scale, it could be produced at relatively low cost and be affordable
to low income snake bite victims of the world. Last but not least,
the availability of a universal PDAV eliminates the need for
species identification of the culprit elapids.
ADVANTAGE AND CHALLENGES OF THE
‘DIVERSE TOXIN REPERTOIRE’
IMMUNIZATION STRATEGY

One advantage of the ‘diverse toxin repertoire’ immunization
strategy is that it generates unprecedented wide paraspecificity
against at least three dozen elapid venoms and possibly against all
elapid venoms having a-neurotoxins as lethal components.
Moreover, the procedures involved are very simple. For example,
the preparation of the toxin fractions, the immunization and the
antibody fractionation can be readily carried out using the existing
facilities of most current antivenom producers. Ultrafiltration can
be used to purify the neurotoxic fractions because the requirement
is to obtain a mixture of lethal toxins with all its isoforms, rather
than any single purified toxin. The fractionation process of
antibody IgG or F(ab’)2 can be carried out using the equipment
for routine PDAV production in antivenom manufacturing
laboratories. Furthermore, the production time should be shorter
than that required to produce several monospecific or polyspecific
PDAVs. The cost of producing one universal antivenom might be
lower than that for several polyspecific antivenoms. However,
detailed analysis on the cost of all the production steps is
necessary to make a valid comparison.

It should be mentioned that although a polyspecific PDAV
can neutralize many venoms, its potency (ED50 or Effective
Dose50) against different neurotoxic venoms may vary and thus
different dosages of the PDAV may be required for treatment of
envenomation by different elapids. However, this is quite normal
in the treatment of snakebite envenomation because the
antivenom dose administered to the patient depends on the
Frontiers in Immunology | www.frontiersin.org 7
severity of the case, which largely depends on the amount of
venom delivered by the snake. This in turn depends on many
parameters; for example, the sizes of the snake and of the victim,
the toxicity of the venom, the site of the bite, the time lapse
between the bite and the treatment, etc. Thus protocols are
developed to establish the dose that needs to be administered.

However, it is likely that the paraspecific potency of the
PDAV against some heterologous venom(s) may be low and
may pose a clinical problem. In these cases, the neutralizing
potency against these venoms can be improved by modifying the
immunization schemes and/or by antibody fractionation in the
following ways. First, during the immunization, the heterologous
venoms that are poorly neutralized could be included in the
‘diverse toxin repertoire’ immunogen and thus serve as
homologous venom antigens so as to increase the antibody
titers against them. The neutralizing potency against some
venom can also be enhanced by booster injections with the
toxin fractions of only these poorly neutralized venoms. These
immunization schemes have been shown to work well in the
production of the polyspecific antivenoms in Thailand. Second,
during antibody fractionation, the neat horse serum can be
fractionated by salt precipitation to obtain about 2 fold
increases in neutralizing potency (99). Subjecting this refined
globulin fraction to a-neurotoxin affinity chromatography could
result in a further 10 to 12 fold increase in potency (100). Thus, a
20 fold increase in neutralizing potency could be achieved by
antibody fractionation. The combination of optimized
immunization and antibody fractionation will result in
substantial increases in the neutralizing potency of the
antivenom over that of the antiserum.

With these modifications and optimization, it is likely that
universal PDAV against elapid neurotoxic venoms can be produced
and used for the treatment of envenomation by elapid snakes.
CONCLUSION

Plasma-derived antivenom (PDAV) is still the mainstay of the
current therapies for snakebite victims. There are some drawbacks
to PDAV and this has led to attempts to produce ‘new generation’
antivenoms. However, this is likely to take some time until these
new therapies reach the clinical trial stage. Consequently,
improvements to PDAVs that lead to the production of
universal PDAV against the world elapid venoms would be of
immediate benefit. The production of a pan-specific PDAV
against at least three dozen neurotoxic venoms from four
continents has been achieved through a simple and novel
immunization strategy using a ‘diverse toxin repertoire’ as
immunogens. The ‘diverse toxin repertoire’ was made up of
toxin fractions of numerous elapid venoms. The strategy has
resulted in unparalleled wide paraspecificity. With careful
selection of toxin fractions of elapid venoms to serve as
immunogens together with an optimized immunization scheme
and antibody fractionation, it is most likely that a universal PDAV
with high neutralizing potencies against elapid venoms can be
produced. Such a PDAV is analogous to the anti-rabies and
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anti-tetanus antitoxins that are produced for use worldwide.
Universal PDAVs can be produced in large volume which, with
the economy of scale, should be more affordable to poor snakebite
victims in many parts of the developing world and save numerous
lives before ‘new generation’ antivenoms become available.
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