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Abstract: Sepsis, a systemic inflammatory response to infection, is the major cause of 

death in intensive care units (ICUs). The mortality rate of sepsis remains high even though 

the treatment and understanding of sepsis both continue to improve. Sinomenine (SIN)  

is a natural alkaloid extracted from Chinese medicinal plant Sinomenium acutum,  

and its hydrochloride salt (Sinomenine hydrochloride, SIN-HCl) is widely used to treat 

rheumatoid arthritis (RA). However, its role in sepsis remains unclear. In the present study, 

we investigated the role of SIN-HCl in sepsis induced by cecal ligation and puncture  

(CLP) in BALB/c mice and the corresponding mechanism. SIN-HCl treatment improved 

the survival of BALB/c mice that were subjected to CLP and reduced multiple organ 

dysfunction and the release of systemic inflammatory mediators. Autophagy activities were 

examined using Western blotting. The results showed that CLP-induced autophagy was 

elevated, and SIN-HCl treatment further strengthened the autophagy activity. Autophagy 

blocker 3-methyladenine (3-MA) was used to investigate the mechanism of SIN-HCl  
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in vitro. Autophagy activities were determined by examining the autophagosome 

formation, which was shown as microtubule-associated protein light chain 3 (LC3) puncta 

with green immunofluorescence. SIN-HCl reduced lipopolysaccharide (LPS)-induced 

inflammatory cytokine release and increased autophagy in peritoneal macrophages (PM). 

3-MA significantly decreased autophagosome formation induced by LPS and SIN-HCl. 

The decrease of inflammatory cytokines caused by SIN-HCl was partially aggravated  

by 3-MA treatment. Taken together, our results indicated that SIN-HCl could improve 

survival, reduce organ damage, and attenuate the release of inflammatory cytokines 

induced by CLP, at least in part through regulating autophagy activities. 

Keywords: sepsis; cecal ligation and puncture (CLP); sinomenine hydrochloride (SIN-HCl); 

autophagy; peritoneal macrophages (PM) 

 

1. Introduction 

Sepsis, a systemic inflammatory response to infection, is the major cause of death in ICUs.  

Sepsis-induced chaotic processes in the host immune system cause tissue injury, organ dysfunction, 

and subsequent organ failure [1]. The mortality rate of sepsis remains high even though the treatment 

and understanding of sepsis continue to improve [2]. Therefore, it is urgent to understand the 

mechanisms underlying the pathogenesis of sepsis and develop new therapeutic strategies. 

Autophagy is a bulk intracelluar degradation system that delivers cytoplasmic proteins and 

organelles to lysosomes for degradation and recycling [3]. Under normal conditions, autophagy plays 

important roles in development, cell survival and differentiation [4,5]. However, it may also participate 

in pathological processes. Many studies have reported that autophagy is induced in patients with sepsis 

or CLP animal model. For instance, autophagic vacuolization in hepatocytes, which can be identified 

by electron microscopy, was observed in patients with sepsis [6]. Autophagy was also induced  

in multiple organs, including the heart, lungs, liver, and kidneys, in the CLP model [7–12]. 

Nevertheless, whether the process of autophagy is generally beneficial or harmful to the immune 

defense and other cell functions during sepsis is still not well defined.  

SIN [(9α,13α,14α)-7,8-didehydro-4-hydroxy-3,7-dimethoxy-17-methyl-morphinane-6-one] is a natural 

alkaloid extracted from Chinese medicinal plant Sinomenium acutum, and its hydrochloride salt,  

SIN-HCl (Figure 1) is widely used as an immune regulatory drug in rheumatoid arthritis (RA) 

treatment [13,14]. Numerous pharmacological and clinical studies performed in China and Japan 

demonstrated that SIN possessed anti-inflammatory [15], immunoregulatory [16], and anti-angiogenic [17] 

properties. As systemic inflammatory response and immunosuppression exist simultaneously in sepsis, 

we hypothesized that SIN-HCl might be involved in anti-inflammation and immunoregulation  

in CLP-induced sepsis. However, the exact effects and mechanisms remain unclear. 

We explain here that SIN-HCl had a protective effect against CLP-induced sepsis. It increased the 

survival of mice, reduced organ damage, and attenuated the release of inflammatory cytokines from 
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systemic autophagy induction. Taken together, these data strongly suggested that SIN-HCl might 

present a new therapeutic option for sepsis through modulation of autophagy. 

 

Figure 1. The structure of sinomenine hydrochloride (SIN-HCl). 

2. Results 

2.1. SIN-HCl Protected against Polymicrobial Sepsis in Model Mice and Attenuated Multiple Organ 

Dysfunction and Systemic Inflammatory Response 

CLP appears to be a reliable and clinically relevant animal model of the human septic conditions 

because the procedure produces an endogenous polymicrobial infection, which could mimic peritonitis 

and sepsis in clinic [18]. We determined the effect of SIN-HCl on the survival rate of BALB/c mice 

that were subjected to a CLP procedure. Immediate administration and post-administration of SIN-HCl 

100 mg/kg, hypodermic injection (i.h.) both revealed significantly reduced mortality when compared 

with normal saline (NS)-treated controls (Figure 2A). Moreover, we determined the role of SIN-HCl  

in CLP-induced organ damages. As shown in Figure 2B, the organ damage induced by CLP was 

attenuated significantly in SIN-HCl-treated mice, as evidenced by less inflammatory cell infiltration, 

reduced exudate blockage of capillary, and lower levels of interstitial cellular degeneration and 

necrosis, in the lungs, liver, and kidneys. The HE staining was analyzed and showed in Figure 2C. The 

variation of serum biochemical parameters at least in part reflected the severity of organ damage. CLP 

operation caused the increased blood urine nitrogen (BUN), creatinine (Cr), alanine transaminase 

(ALT), and aspartate Transaminase (AST), which were antagonized by SIN-HCl treatment (Figure 2D). 

Increases in systemic inflammatory cytokines, such as IL-6 and TNF-α, are biomarkers for and causes 

of poor prognosis in sepsis [19]. We measured the serum inflammatory cytokines using ELISA. The 

data showed that serum IL-6 and TNF-α levels increased significantly in BALB/c mice after being 

subjected to CLP, and SIN-HCl treatment lowered their levels in serum (Figure 2D). These results 

indicated that CLP-induced polymicrobial sepsis could cause severe organ dysfunction and systemic 

inflammatory response; however, SIN-HCl treatment attenuated this damage and played a protective 

role in the CLP model. 
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Figure 2. Cont. 
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Figure 2. SIN-HCl protected a mouse model against polymicrobial sepsis and attenuated 

the multiple organ dysfunction and systemic inflammatory response. (A) SIN-HCl 

improved the survival rate of mice with CLP-induced sepsis. BALB/c mice were subjected 

to CLP surgery. SIN-HCl (100 mg/kg) was administered by hypodermic injection at 0 h 

(A1) or 4 h (A2) after CLP surgery. NS was used as the control. * p < 0.05 when compared 

with CLP + NS group. Data were pooled from three experiments, n = 10 per group in each 

experiment; (B) The lungs, liver, and kidneys were stained with HE. The organ damage 

induced by CLP was attenuated significantly in SIN-HCl-treated BALB/c mice, as 

evidenced by less inflammatory cell infiltration, reduced exudate blockage of capillary, and 

less substantial interstitial cellular degeneration and necrosis in the lungs, liver, and 

kidneys. Scale bar was equivalent to 50 μm. Images were the selected representatives of 

each group, which had six to eight mice; (C) Semi-quantitative analysis of lung, liver, and 

kidney injury. ** p < 0.01 when compared with sham BALB/c mice, n ≥ 6; # p < 0.05 when 

compared with the NS-treated BALB/c mice, n ≥ 6; and (D) Biochemical measurements of 

the serum (D1–D4) were performed on automatic biochemical analyzer, and concentrations 

of serum IL-6 and TNF-α (D5) were determined by ELISA. ** p < 0.01 when compared 

with sham BALB/c mice, n ≥ 6; # p < 0.05 and ## p < 0.01 when compared with the CLP 

and NS-treated BALB/c mice, n ≥ 6. 

2.2. CLP-Induced Autophagy in Multiple Organs Was Strengthened in SIN-HCl Treatment in Mice 

Autophagy was induced by various types of stresses. Previous studies had demonstrated that sepsis 

or LPS could induce autophagy. Our earlier study found that SIN-HCl could also induce autophagy in 

the RAW264.7 cell line (Figure S1); therefore, we hypothesized that autophagy might be involved  

in the protective effects of SIN-HCl in the CLP model. First, we confirmed that CLP operation could 
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induce transformation of autophagic protein LC3-I to LC3-II in various mouse tissues and the  

SIN-HCl treatment could activate autophagy in those mouse tissues in vivo (Figure 3). Next, we 

evaluated whether SIN-HCl could modulate autophagy in the context of the CLP model. We found that 

the ratio of LC3-II:LC3-I in the lungs and liver was further increased after SIN-HCl treatment  

in comparison with the mice that only underwent CLP (Figure 3). 

 

  

 

Figure 3. CLP-induced autophagy in multiple organs was strengthened in SIN-HCl-treated 

mice. (A) SIN-HCl treatment strengthened CLP-induced autophagy in multiple organs of 

the mice. The protein level of LC3 was measured using an anti-LC3 antibody. The ratios of 

LC3-II:LC3-I in the lungs, liver, and kidneys were higher at 12 h after CLP procedure or 

SIN-HCl treatment. SIN-HCl further increased the ratios of LC3-II:LC3-I in the lungs  

and livers of mice that had undergone the CLP; (B) Western blotting was quantitatively 

analyzed, * p < 0.05 when compared with sham BALB/c mice, n ≥ 5; # p < 0.05 when 

compared with the CLP + NS-treated BALB/c mice, n ≥ 5. 
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2.3. SIN-HCl Blocked Lps-Induced Inflammatory Cytokine Release Induced by LPS and Increased 

Autophagy in Peritoneal Macrophages (PM) 

Sepsis was the systemic inflammatory responses to infections, and the circulating macrophages 

played an important role during these responses through the release of inflammatory cytokines, such as 

IL-6 and TNF-α. Considering macrophages were the most typical cells in systemic inflammation, we 

isolated the macrophages from mice peritoneal cavity for the subsequent studies. LPS increased the 

levels of IL-6 and TNF-α in PM culture; whereas SIN-HCl decreased the release of IL-6 and TNF-α 

induced by LPS (Figure 4A). Meanwhile, autophagic activities were determined via autophagosome 

formation assay, and shown as LC3 puncta with green immunofluorescence. The autophagosome 

formation increased significantly in LPS or SIN-HCl treated PM, and the simultaneous treatment further 

increased the autophagosome formation, indicating that SIN-HCl could activate autophagy in vitro 

(Figure 4B). 

 

Figure 4. SIN-HCl blocked LPS-induced inflammatory cytokine release and increased 

autophagy in peritoneal macrophages (PM). (A) Primary PM were cultured for 12 h with 

LPS (100 ng/mL), SIN-HCl (100 mM), or a combination of these two reagents (as 

indicated). The levels of IL-6 and TNF-α in culture media were measured. ** p < 0.01 when 

compared with PBS group, n ≥ 6; # p < 0.05 when compared with the LPS group, n ≥ 6;  

(B) Primary PM were treated with LPS (100 ng/mL), SIN-HCl (100 mM), or a combination 

of these two reagents (as indicated) for 12 h before immunofluorescent detection of LC3 

protein using an anti-LC3 antibody, Scale bar = 10 μm and (C) Autophagosomes per cell in 

PM were counted in at least 30 cells. ** p < 0.01 when compared with PBS group, n ≥ 4;  
# p < 0.05 when compared with the LPS group, n ≥ 4. 
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2.4. The Effects of 3-MA on SIN-HCl-Induced Autophagy and Inflammatory Responses in PM 

To confirm whether the protective effects of SIN-HCl were involved in attenuating the release  

of inflammatory cytokines by regulating autophagic activities, we used autophagy inhibitor 3-MA  

to block autophagic activities and observed its effectiveness on SIN-HCl-induced autophagy and 

inflammatory responses. 3-MA treatment aggravated LPS-induced inflammatory responses and the 

protective effects of SIN-HCL were partially constrained (Figure 5A). Meanwhile, immunofluorescence 

results showed that SIN-HCl-induced autophagic activities could be inhibited by 3-MA (Figure 5B). 

 

Figure 5. The effects of 3-MA on SIN-HCl-induced autophagy and inflammatory 

responses in PM. (A) Primary PM were cultured for 12 h with 3-MA (5 mM), LPS  

(100 ng/mL), SIN-HCl (100 mM), or a combination of these two reagents (as indicated). 

The levels of IL-6 and TNF-α in culture media were measured. ** p < 0.01 when compared 

with PBS group, n ≥ 6; # p < 0.05 when compared with the LPS group, n ≥ 6; (B) Primary 

PM were treated with 3-MA (5 mM), LPS (100 ng/mL), SIN-HCl (100 mM), or a 

combination of these reagents (as indicated) for 12 h before immunofluorescent detection 

of LC3 protein using an anti-LC3 antibody. Scale bar = 10 μm; (C) Autophagosomes in at 

least 30 PM cells were counted. Scale bar was equivalent to 10 μm. ** p < 0.01 when 

compared with PBS group, n ≥ 4; # p < 0.05 when compared with the LPS group, n ≥ 4. 
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3. Discussion 

In the present study, we demonstrated the protective effect of SIN-HCl against sepsis-induced 

mortality using a BALB/c mouse model of CLP and PM. Our findings focused on the potential of  

SIN-HCl as a new therapeutic option for sepsis. 

We proposed that SIN-HCl might play a protective role in sepsis according to its anti-inflammatory 

and immunoregulatory properties. In order to test this hypothesis, we used a CLP mouse model, which 

was reliable and clinically relevant to the sepsis. The CLP procedure was commonly applied because  

it produced an endogenous polymicrobial infection that was similar to peritonitis and sepsis in clinic. 

Studies showed that CLP-induced septic mortality was significantly reduced in mice if they were 

immediately treated with SIN-HCl, indicating that SIN-HCl played a protective role in CLP-induced 

sepsis. This finding was consistent with previous study that SIN could attenuate endotoxemia [20]. 

Additionally, post-administration of SIN-HCl significantly improved the survival rates of mice, further 

indicating the potential of SIN-HCl as a new therapeutic option for sepsis. The decrease in organ 

damage and inflammatory cytokine production by SIN-HCl treatment also supported our hypothesis. 

Clinical and laboratory-based studies have suggested that autophagy is activated during sepsis and 

involved in sepsis pathophysiology [6,21]. However, the role of autophagy in sepsis was not yet well 

defined. The majority of reports have shown that autophagy has a positive role in sepsis. For instance, 

macrophages deficient in the autophagy protein Atg16L1 could produce inflammatory cytokines after 

LPS stimulation [22], suggesting that autophagy plays an important role in regulation of endotoxemia. 

Polymorphism of autophagy-related genes (ATG16L1 and IRGM) was associated with severity and 

mortality of sepsis [23,24]. To clarify the relationship between SIN-HCl and autophagy in sepsis,  

we first determined the autophagy status in CLP-treated mice, and found that the ratios of LC3-II  

to LC3-I significantly increased in the liver, lungs, and kidneys of CLP-treated mice. SIN-HCl further 

increased the ratios of LC3-II to LC3-I in the liver and lungs, but had little effect on that in the 

kidneys. Then, we used LPS-treated PM in our in vitro study. Data showed that both SIN-HCl and LPS 

significantly increased the number of autophagosomes in individual cells when compared with the 

control group, and a combination of the two further increased the cellular autophagosome number, 

suggesting that SIN-HCl could activate autophagy in vivo and in vitro. Meanwhile, LPS-induced 

inflammatory cytokines were significantly reduced in the presence of SIN-HCl. Therefore, we 

speculated that SIN-HCl attenuated the release of inflammatory cytokines in CLP-treated mice and 

LPS-stimulated PM through regulating autophagy activities. 

We further treated PM with autophagy inhibitor 3-MA, which inhibited class I and class III PtdIns 

3-kinase and therefore would result in autophagy inhibition through suppression of class III PtdIns  

3-kinase [25]. We found that 3-MA significantly decreased the numbers of LPS- or SIN-HCl-induced 

cellular autophagosomes. Meanwhile, decreases in inflammatory cytokines IL-6 and TNF-α caused  

by SIN-HCl were aggravated with 3-MA treatment. However, the protective role of SIN-HCl could not 

be eliminated completely by 3-MA. We postulated that other signal pathways were involved in the process. 

In sepsis, autophagic processes were activated as protective responses to antagonize the injuries 

induced by sepsis even though they were less efficient. SIN-HCl further increased autophagy,  

to alleviate sepsis. However, there were some limitations to our study. On the one hand, we could not 

identify the direct relationship between autophagy and SIN-HCl in sepsis, due to the lack of effective 
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intervention in mice. Our plan for a future study is to generate autophagy-related gene knockout or 

gene silencing in mice through virus mediation, and explore how SIN-HCl activates autophagy in 

sepsis. On the other hand, the immune system should play an important role in the pathophysiological 

processes of sepsis, and immune responses and processes were regulated by autophagy as well [26,27]. 

Next, we plan to do some studies to explore whether SIN-HCl and autophagy regulate the immune 

response in sepsis. 

4. Experimental Section 

4.1. Materials 

Injectable SIN-HCl (Zhengqing Fengtongning injection) was purchased from Zhengqing Pharmacy 

Co., Ltd. (Changsha, China). Endotoxin was not detected in this SIN-HCl solution using ToxinSensor™ 

Chromogenic LAL Endotoxin Assay (GenScript, Nanjing, China) (date not shown). SIN-HCl was 

dissolved and diluted using sterile normal saline in all in vitro and in vivo experiments. 

4.2. Animals 

Male BALB/c mice (6–8 weeks old) were provided by SJA Laboratory Animal Co., Ltd. 

(Changsha, China). The mice were allowed to acclimate to specific pathogen-free conditions with food 

and water supply on 12:12 h day/night cycle for at least 7 days before experiments. All procedures 

performed were approved by the Institutional Animal Ethics Committee and conformed to the 

Guidelines of Laboratory Animal Care and Use Committee at the Xiangya School of Medicine, Central 

South University (Changsha, China). 

4.3. CLP Model and SIN-HCl Treatment 

CLP was performed as described previously [28]. First, experimental mice (6–8 weeks old) were 

anesthetized with 5% chloral hydrate (300 mg/kg of body weight) and laid on the operating table.  

A 20 mm midline incision was made to expose the cecum. The cecum was ligated below the ileocecal 

valve without causing intestinal obstruction, and then the ligated cecum was punctured twice with  

a 21-gauge needle. Finally, cecum was replaced in its normal intra-abdominal position and the wound 

was closed with a running suture. In the sham-operated mice, the cecum was exposed as described 

above; however, they were not ligated or punctured. After surgery, the mice were injected 

subcutaneously with 1 mL SIN-HCl or sterile NS solution for fluid resuscitation. Morphine were 

injected 0.1 mg/kg subcutaneous injection (s.c.) for postoperative analgesia. Repeat every 6 h for 48 h. 

At the indicated time, mice were anesthetized and tissue and blood samples were taken for further 

analysis. Then the mice were euthanized. Survival was evaluated for 7 consecutive days after CLP.  

4.4. Serum Biochemical Parameters and Cytokine Determination 

At 24 h after the surgery, mice were anesthetized and blood was drawn from the heart; then mice 

were euthanized and blood was centrifuged at 3000× g for 15 min at 4 °C. Fresh serum samples were 

analyzed to assess the biochemical parameters [blood urine nitrogen (BUN), creatinine (Cr), alanine 
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transaminase (ALT), and aspartate Transaminase (AST)] using commercially available clinical assay 

kits on an Olympus AU5400 Automatic Biochemical Analyzer (Olympus, Tokyo, Japan). The serum 

leftovers were stored at −80 °C prior to enzyme-linked immunosorbent assay (ELISA) analysis.  

The results were expressed as mean ± SD of six to eight separate samples. Interleukin 6 (IL-6) and 

Tumor necrosis factor α (TNF-α) in the serum and culture medium were measured using ELISA (the 

kits were purchased from Boster Biological Technology, Wuhan, China) following the manufacturer’s 

recommendations. The results were expressed as mean ± SD of six to eight separate samples. 

4.5. Morphological Analysis 

Morphological analyses were performed as previously described [29]. The lung, liver, and kidney 

tissues were fixed in 4% paraformaldehyde for 24 h. The samples were dehydrated through increasing 

concentrations of ethanol (50%–100%), and then placed in xylene for 3 h, followed by overnight 

paraffin embedding. Sections (4 μm in thickness) were prepared and mounted on slides. The slides 

were placed in xylene, followed by deparaffinization through decreasing concentrations of ethanol 

(100%–50%). The slides were stained with hematoxylin and eosin (HE) and examined under a light 

microscope. Histopathological injuries of lungs were evaluated semi-quantitatively using Smith’s 

method [30]. Briefly, infiltration of inflammatory cells, interstitial edema, congestion, hemorrhage, 

hyaline membrane formation, and necrosis were each scored on a scale of 0–4: 0, normal; 1, minimal 

(<25%); 2, mild (25%–50%); 3, moderate (50%–75%); and 4, severe (>75%). Hepatic injury scores 

were obtained by measuring hepatocellular necrosis, hemorrhage, hepatic parenchymal inflammatory 

infiltrate, and sinusoidal inflammatory infiltrate according to the morphologic criteria previously 

described by Coimbra et al. [31]. All scores also ranged between 0 (normal) and 4 (severe). Structural 

changes in kidney tissue sections were evaluated as previously described by Yasuda et al. [32]. 

Proximal tubule damages, inflammatory cells’ infiltration, hemorrhage, interstitial structural changes, 

renal corpuscle morphology, and necrotic cells were scored semi-quantitatively on a scale of 0–4:  

0, none; 1, <25%; 2, 25%–50%; 3, 50%–75%; and 4, 75%–100%. Tissue sections were examined by 

an experienced pathologist who was kept blind about the study designs. 

4.6. Western Blotting Analyses  

Western blotting was performed as previously described [33]. The lungs, liver, and kidneys were 

rinsed twice with ice-cold PBS and incubated with RIPA lysis buffer (50 mM Tris, 150 mM NaCl,  

1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, pH 7.4, Beyotime (Nantong, China)) 

containing a protease inhibitor phenylmethanesulfonyl fluoride (PMSF, 1 mM). Protein extracts were 

centrifuged at 13,000× g for 5 min, and the supernatants were quantified by BCA protein assay 

(Beyotime). Total proteins (20–30 mg per lane) were separated on a 15% SDS/polyacrylamide gel 

(SDS-PAGE) and transferred to polyvinylidene fluoride membranes (PVDF, Millipore, MA, USA). 

The membranes were blocked with 5% bovine serum albumin in TBS-T (20 mM Tris, 150 mM NaCl, 

pH 7.5 containing 0.1% Tween-20) for 2 h at room temperature, followed by incubation with a rabbit 

polyclonal antibody against LC3 (1:1000; MBL, Nagoya, Japan) or a mouse monoclonal antibody 

against β-actin (1:1000; Sigma-Aldrich, St. Louis, MO, USA) at 4 °C overnight. The membranes were 

rinsed three times (15 min each) with TBS-T and then incubated with an appropriate horseradish 
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peroxidase-conjugated IgG secondary antibody (diluted 1:2000 in TBS-T buffer) for 1 h at room 

temperature. Finally, the membranes were rinsed three times (15 min each) with TBS-T and incubated 

with DAB reagent according to the manufacturer’s instructions (Boster Biological Technology, 

Wuhan, China). The protein expression levels were quantitatively analyzed using ImageJ software 

(NIH, Bethesda, MD, USA) and normalized against β-actin loading control.  

4.7. Isolation of Peritoneal Macrophages and Cell Treatments 

The murine PMs were isolated and purified as described previously [34]. Mice were injected 

intraperitoneal injection (i.p.) with 3 mL thioglycolate broth (Sigma-Aldrich); and three days later, 

PMs were recovered by peritoneal lavage with Dulbecco phosphate-buffered saline. Macrophages 

were further purified by adherence to culture dishes for 7 days. The purified macrophages were  

treated with 100 ng/mL LPS (Sigma-Aldrich), 5 mM 3-MA (Sigma-Aldrich), and 100 μM SIN-HCl, 

respectively, for 12 h. 

4.8. Immunofluorescence Staining 

PMs on cover glass were washed with PBS three times and fixed in 4% paraformaldehyde. After 

blocking in PBS with 10% fetal bovine serum for 30 min, the fixed cells were incubated with primary 

antibody LC3 (1:1000, MBL), followed by incubation with secondary Alexa-Fluor 488-conjugated 

donkey antibody to rabbit IgG (1:1000, Invitrogen, Waltham, MA, USA). Cells were then washed with 

PBS three times and imaged using a confocal microscope (Leica Camera AG, Solms, Germany).  

At least 30 cells were examined. 

4.9. Statistical Analyses 

The quantitative data were presented as means ± SD, and one-way ANOVA combined with 

Student-Newman-Keuls or Dunnett’s tests were used to compare the differences between groups. 

Mortality comparisons were performed by Kaplan-Meier survival curve analysis. The logrank test was 

used to assess survival differences. A value of p < 0.05 was considered statistically significant. 

5. Conclusions 

Taken together, our results indicated that SIN-HCl could improve survival, reduce organ damage, 

and attenuate the release of inflammatory cytokines induced by CLP, at least partially through 

regulating autophagy activity. Our data suggested that SIN-HCl might present a new therapeutic option 

for sepsis through modulation of autophagy. 
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