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Aging transition by random errors
Zhongkui Sun†, Ning Ma† & Wei Xu

In this paper, the effects of random errors on the oscillating behaviors have been studied theoretically 
and numerically in a prototypical coupled nonlinear oscillator. Two kinds of noises have been employed 
respectively to represent the measurement errors accompanied with the parameter specifying the 
distance from a Hopf bifurcation in the Stuart-Landau model. It has been demonstrated that when the 
random errors are uniform random noise, the change of the noise intensity can effectively increase the 
robustness of the system. While the random errors are normal random noise, the increasing of variance 
can also enhance the robustness of the system under certain conditions that the probability of aging 
transition occurs reaches a certain threshold. The opposite conclusion is obtained when the probability 
is less than the threshold. These findings provide an alternative candidate to control the critical value 
of aging transition in coupled oscillator system, which is composed of the active oscillators and inactive 
oscillators in practice.

Oscillatory behavior is essential for proper functioning of natural and/or artificial system(s), hence is universal 
and inevitable in real-world. Consequently, modeling coupled oscillators provide one an alternative way to detect 
the oscillation pattern of physical and biological processes, and help to understand the dynamic complexity of the 
real nonlinear subjects in diverse fields ranging from physics, biology and chemistry to engineering1–4. Therefore, 
coupled nonlinear oscillators has attracted tremendous attention during the past decade, and several typical 
motions have been reported, as examples, chaos and synchronization5–10, amplitude death or restoration11–13, and 
aging transition14.

Aging transition is an oscillating behavior that coupled oscillator systems, composed of active and inactive 
oscillators, lose its macroscopic activity measured by a global order parameter of amplitude, Z, as the increase 
of the ratio of inactive oscillators, p, until it totally vanished at a certain critical value pc, which can be utilized 
to characterize the robustness of the dynamical system15–17. Aging transition is a common phenomenon in 
real-world, which is first proposed and investigated by Daido and Nakanishi14 in 2004 to study the robustness 
of the activity of the coupled oscillator system so as to oppose the dynamic aging caused by various damages or 
deterioration. Hereafter, the behavior of aging transition has received wide attention18–23. Daido et al. discussed 
the behavior of aging transition in systems of different topology, including globally and diffusively coupled oscil-
lators with the emphasis on the desynchronization of active oscillators18, coupled oscillators that parameter values 
are not uniform19, a large ring of coupled oscillators20, and coupled heterogeneous oscillators16, which make the 
application of aging transition spread more widely. In 2014, Huang and his co-authors21 promoted aging transi-
tion to networked oscillators, which is helpful to design effective strategies to enhance or destroy the dynamical 
robustness in real-world. Further, Thakur et al.22 discussed the effects of time delay on the aging transition in cou-
pled oscillators, and found that time delay might facilitate the aging transition by reducing the critical coupling 
strength of amplitude death in the system.

Commonly, it is difficult for researchers or engineers to determine accurately a parameter in natural or artifi-
cial systems, because of the limitation of measuring tools, calculating approaches and/or environmental factors. 
Consequently, the measurement error is unavoidable in a real system, and has been the subject of much research 
in mathematics, physics and engineering. Many efforts have been devoted to estimating or eliminating errors, 
and some wonderful results have been reported in the past several decades24,25. However, the effects of errors on 
the dynamical behaviors, e.g., vibration and stability, in real systems have received few attentions, consequently, 
which have remained elusive to date. Inspiredly, this paper focuses on measurement errors of parameters and 
aims at getting an insight into the effects of measurement errors on the oscillating behavior in coupled oscillators, 
which, to the authors’ best knowledge, has not been reported before.

Without loss of generality, the measurement error is represented by random noise (or random error equally) 
according to error theory in current study, and the oscillator in every single note is a Stuart-Landau model, in 
which random errors have been assumed to being with the parameter that specifies the distance from a Hopf 
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bifurcation. Two kinds of typical noises have been employed in current paper to describe the random errors 
accompanied with the bifurcation parameter. It is expected to find out how the random errors impact the oscillat-
ing motion of the nonlinear oscillator array.

Results
Coupled Stuart-Landau oscillators.  The globally coupled Stuart-Landau equation is described as 
follows14,26–30:

∑ρ= + Ω − + −
=
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(1)j j j j
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for j = 1, …​, N, where the overdot means differentiation with respect to time t, zj is the complex amplitude of the 
jth oscillator, Ω is the natural frequency, K >​ 0 is the coupling strength, and ρj is the parameter specifying the dis-
tance from a Hopf bifurcation. According to ref. 14, oscillators are active if ρj =​ a >​ 0, and inactive if ρj =​ −​b <​ 0. 
Aging occurs when the active oscillators switch to the inactive ones. Therefore, one can divide all of the oscillators 
into two groups: one group contains all active elements: j ∈​ {1, …​, N(1 −​ p)} ≡​ Sa and another group includes the 
inactive ones: j ∈​ {N(1 −​ p) +​ {1, …​, N} ≡​ Si, where p is the ratio of inactive elements. Setting zj =​ A for all active 
elements and zj =​ I for all inactive elements, then the original model can be simplified14 into

= − + Ω − +A a Kp i A A KpI( ) , (2)2

= − − − + Ω − + − .I b K p i I I K p A( (1 ) ) (1 ) (3)2

The eigenvalues can be obtained from the simplified equations (2) and (3). So aging transition will emerge 
when all the real parts of the eigenvalues are not positive.

Setting Δ​ =​ (b −​ a +​ K2) +​ 4a(b +​ K) −​ 4K(a +​ b)p, then,
if Δ​ ≥​ 0, the real parts of the eigenvalues are
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.
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Letting Re(λ1,2) ≤​ 0, one can get
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If Δ​ <​ 0, one obtains
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Since p is the ratio of inactive elements, Equations (6) and (8) can be rearranged in the following form14,
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+
+
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( )
( )

,
(9)c

where K ≥​ a. This implies that if the ratio of inactive elements p is more than pc, the system will fall into the trivial 
fixed point z1 =​ L =​ zN =​ 0, which we call quiescent phase, otherwise the system will oscillate in perfect synchro-
nization, as shown in Fig. 1. Hence, pc indicates the critical value of aging transition.

An order parameter |Z| is introduced for characterizing the behavior of aging transition14, where 
≡ ∑− =Z N zj

N
j

1
1 . Its normalized format is defined as Q=​|Z(p)|/|Z(0)|, which is plotted in the left panel of Fig. 2. 

One reads clearly that the normalized order parameter Q decreases monotonously with the increase of p, until 
Q =​ 0 at pc, announcing the appearance of aging transition. Figure 2(b) shows the theoretical solution (9) and the 
numerical one, through which a good agreement can be found between the numerical solution and the theoretical 
one.

Uniform random errors.  The distance parameter of active oscillators.  In this section, we discuss the aging 
behaviors in the globally coupled Stuart-Landau oscillators when the distance parameter of the active oscillators 
has been affected by uniform random errors. Namely, the distance parameter of a changes from a to a +​ ξ, with 
ξ ~ U[0, r]. The simplified equations (2) and (3) are recast as
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Figure 1.  All the figures show trajectories of zj for K = 5. (a) and (c) are in the complex plane with the abscissa 
and ordinate meaning the real and imaginary part, where p =​ 0.4 in (a), p =​ 0.9 in (c). (b) and (d) are time 
history with the same p as (a) and (c), where A represent active elements, I represent inactive elements, all 
represent both active and inactive elements.

Figure 2.  Aging in the coupled Stuart-Landau equations, where N = 1000, a = 2, b = 1, Ω = 3. 
Q =​ |Z(p)|/|Z(0)|. (a) Variations of transition points in coupled Stuart-Landau systems under different coupling 
strength. (b) The ratio of inactive oscillators p is plotted against the coupling strength K, where BSN is the 
boundary of the numerical simulation, while BTS is the boundary of the theoretical solution which is obtained 
from Equation (9). The filled areas in the top right corner are the aging transition areas. Aging transition is 
considered to occur if the order parameter Q <​ 0.005. In the upper right area of Fig. 2(b), the system is in the 
quenching state losing global activity, while in the bottom left area, it’s oscillating to some extent.
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ξ= + − + Ω − +A a Kp i A A KpI(( ) ) , (10)2

= − − − + Ω − + − .I b K p i I I K p A( (1 ) ) (1 ) (11)2

By the Lyapunov stability theory, one can derive the conditions of Reλ ≤​ 0,

ξ ≤ − +K a b, (12)

and

ξ ≤ + − +
+ −
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,
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where Δ​ =​ ξ2 +​ 2(a +​ b +​ K −​ 2Kp)ξ +​ [(a +​ b +​ K)2 −​ 4Kp(a +​ b)].
Since ξ is a uniform random noise instead of a constant, its value is not fixed or constant, and can not been 

determined in advance. As a result, one cannot estimate the critical value of aging transition from in equa-
tions (12) and (13) directly because of the dependence on ξ. Accordingly, we try to derive the conditions of aging 
transition in the coupled Stuart-Landau oscillators when the distance parameters are disturbed by random errors 
in the framework of probability theory.

Provided that the coupled oscillators access into the behavior of aging with the probability no less than α (α 
denotes the confidence level), then one can derive the conditions of aging transition based on probability skills,
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So the condition of aging transition is
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where K ≥​ ra +​ a, and = α
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 is the critical value of aging transition with the probability no less than 
α. It shows the dependence of pc on the confidence level α and other parameters.

It is important to note from Fig. 3 that the quiescent phase p >​ pc recedes as the confidence level α grows. 
When the confidence level increase to 1, namely α =​ 1, the behavior of aging transition will occur in this region 
with probability 1. One can read that the theoretical results will get closer to the numerical simulation with the 
bigger α. The dependence of the aging transition boundary p =​ pc(r, α) is plotted in Fig. 4 to verify the result 
obtained in Fig. 3. It shows that: (i) Above the boundary curve pc, the oscillators will be attracted to the trivial 
fixed point; and (ii) below the boundary, the oscillators will remain dynamic. The critical pc is a monotonically 
increasing function of r for each α as shown in Fig. 4, which reflects the fact that the uniform random error 
ξ ~ U[0, r] enlarges the distance to the Hopf bifurcation, hence leads to the increase of the amplitude of active 
oscillators, just as shown in Fig. 5. Therefore, it’s more difficult for the coupled oscillators to achieve globally 
synchronized oscillation. Namely, the uniform random errors enhance the robustness of the globally coupled 
Stuart-Landau oscillators when it disturbs the distance parameter of the active oscillators.

Distance parameter of all the oscillators.  In this section, we study the effects of the uniform random error ξ ~ U[0, r]  
on the distance parameters of both the active and the inactive oscillators.

In the presence of the uniform random errors, the simplified equations will be rewritten as

ξ= + − + Ω − +A a Kp i A A KpI(( ) ) , (18)2

ξ= − + − − + Ω − + − .I b K p i I I K p A(( ) (1 ) ) (1 ) (19)2

Analogizing to the previous section, the conditions of Reλ ≤​ 0 are

≥ −K a b, (20)

and
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Figure 3.  The dependence of the critical value of aging transition pc on the coupling strength K in the 
presence of uniform random error ξ. Therein, N =​ 1000, r =​ 1, a =​ 2, b =​ 1 and Ω =​ 3. In the panels, BNN (the 
black dotted line) is the boundary of pc when the coupled oscillators (1) contain no random errors, which is 
calculated numerically from Equations (2) and (3); BTSP (the blue solid line) is the boundary of the theoretical 
solution, which is determined and solved by Equation (17); BWN (the red dashed line) is the boundary of pc 
when containing random errors, which is solved numerically from Equations (10) and (11). The shadowing area 
in the panels denotes the field of aging transition. All the numerical boundaries are obtained by averaging over 
100 realizations of noise from equations (10) and (11) by means of the fourth order Rung-Kutta method, and 
the transition is confirmed when Q <​ 0.005, hereafter.

Figure 4.  The critical value pc is plotted against the right boundary of the uniform random error for 
different α, where the coupling strength is K = 5. 
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ξ ξ ξ≤ ≤ , (21)a b

where ξa, ξb are the roots of

ξ ξ+ + + − + + − + =a b K Kp a b K Kp a b( 2 ) ( ) ( ) 0, (22)2

satisfying ξa <​ ξb. Assuming that the probability of aging transition is not less than α, that is,

ξ ξ α− ≥ .F F( ) ( ) (23)U b U a

Then, one can get the critical value of aging transition based on probability theory,

α α
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which means that aging transition occurs with the probability no less than α when p ≥​ pc. The dependence of 
the critical value pc on the coupling strength K is plotted in Fig. 6 for different α, from which one observes that 
the critical value decreases as the increase of the coupling strength. And the numerical result agrees well with 
the theoretical solution (24). Comparing with the critical value of aging transition without noise errors, the qui-
escent phase with the uniform random error is less than that without the uniform random error, which implies 
that the existence of the uniform errors enhances the robustness of the coupled oscillators. Figure 7 displays the 
dependence of the critical value pc on the noise intensity r. It is found that pc is an increasing function of r, which 
demonstrates that a stronger noise will help the coupled oscillators maintaining oscillating, hence enhance the 
robustness.

Normal random errors.  Distance parameter of active oscillators.  In this section, the behavior of aging 
transition is discussed in globally coupled Stuart-Landau equations when the bifurcation parameters are affected 
by normal random errors. At first, we consider the case where the active oscillators are affected by normal random 
errors. The simplified model is

ξ= + − + Ω − +A a Kp i A A KpI(( ) ) , (25)2

= − − − + Ω − + −İ b K p i I I K p A( (1 ) ) (1 ) , (26)2

with ξ ~ N(μ, σ2).
The real parts of the eigenvalues are

λ ξ
=
− − − + ± ∆b a KRe( ) ( )

2
, (27)1,2

where Δ​ =​ ξ2 +​ 2(a +​ b +​ 2Kp)ξ +​ [(a +​ b +​ K)2 −​ 4Kp(a +​ b)] ≥​ 0. Setting Reλ ≤​ 0, one can obtain.

ξ ≤ − +K a b, (28)

and

ξ ≤ + − +
+ −

.
K a b p a b K

b K Kp
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Figure 5.  Hopf bifurcation diagram. 
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Evidently, when
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Figure 6.  The dependence of the critical value of aging transition pc on the coupling strength K in the 
presence of uniform random error ξ. The parameters are fixed the same as those in Fig. 3. In the panels, BNN 
is calculated numerically from Equations (2) and (3), BTSP is solved by Equation (24), and BWN is determined 
numerically from Equations (18) and (19). Every numerical point is obtained by averaging over 100 realizations 
of noise from equations (18) and (19).

Figure 7.  The critical value pc is plotted against the right boundary of the uniform random error for 
different α, where the coupling strength is K = 5. 
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the behavior of aging transition will take place with the probability no less than α. Therein, Φ​(g) is the standard 
normal distribution function. By means of probability skills, we obtain the condition of aging transition with 
probability no less than α,

βσ µ≥ + − +K a b , (32)

and

σβ µ
σβ µ

≥
+ + +
+ + +

p b K a
K a b

( )( )
( )

,
(33)

where Φ​(β) =​ α, and β ≥ − µ
σ
+a  or β ≤ − µ

σ
+ +a b .

Figure 8 exhibits the critical value of aging transition for different a. It is found that the critical value pc 
decreases with the increase of coupling strength K, but it is an increasing function of the probability α. When 
the probability is not less than α =​ 30%, the theoretical quiescent phase is much bigger than the numerical one. 
Increasing the probability α, the theoretical result becomes indistinctive with the numerical value, as the example, 
one can check the last panel with α =​ 90%. On the other hand, one can read from Fig. 8 that the quiescent phase 
with noise is much smaller than that without noise, therefore, which verifies that the normal random errors can 
enhance evidently the robustness of the coupled oscillators.

In Fig. 9, we show the dependence of critical value pc on the probability α for different variance σ of random 
errors ξ, from which one can read immediately that pc increases with the probability α, and there exists a critical point 
(α = 50%, pc =​ 0.8 ). Evidently, pc decreases with the increase of σ when α<50%,, and increases with the increase  

Figure 8.  The dependence of the critical value of aging transition pc on the coupling strength K in the 
presence of normal random error ξ. The values of parameters are chosen as N =​ 1000, μ =​ 0, σ =​ 1, a =​ 2, 
b =​ 1 and Ω =​ 3. In the panels, BNN is calculated numerically from Equations (2) and (3), BTSP is solved by 
Equation (33), and BWN is determined numerically from Equations (25) and (26). The numerical boundaries 
are obtained by averaging over 100 realizations of noise from equations (25) and (26).
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of σ when α > 50%, which implies that the variance of the random error plays an important role in maintaining oscil-
lation of the coupled Stuart-Landau models, particularly, when the confidence level is higher than 50%.

It is worth mentioning that it can happen that a +​ ξ is negative when the distance parameter is affected by 
the normal random noise, in which case all oscillators of the network are intrinsically “inactive”. One can derive 
that P(a +​ ξ <​ 0) =​ 0.0228 by means of the probability density function of normal distribution. Namely, there is a 
2.28% chance of a+​ξ<​0. While it happens, all the oscillators will turn into the inactive ones, which is too trivial 
to further discuss.

Figure 9.  The critical value p of aging transition changes with the probability α and the variance σ of 
random errors ξ. Therein, μ =​ 0 and K =​ 5.

Figure 10.  The dependence of the critical value of aging transition pc on the coupling strength K in the 
presence of normal random error ξ, for μ = 1, σ = 1, N = 1000, a = 2, b = 1, and Ω = 3. In the panels, BNN is 
calculated numerically from Equations (2) and (3), BTSP is solved by Equation (38), and BWN is determined 
numerically from Equations (34) and (35). The numerical boundaries are obtained by averaging over 100 
realizations of noise from equations (34) and (35).
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Distance parameter of all the oscillators.  Here we study, as before, such a case that all the oscillators are affected 
by the same type of random errors. The simplified model is

ξ= + − + Ω − +A a Kp i A A KpI(( ) ) , (34)2

ξ= − + − − + Ω − + − .I b K p i I I K p A(( ) (1 ) ) (1 ) (35)2

with ξ ~ N(μ, σ2). The conditions of Reλ ≤​ 0 are

≥ −K a b, (36)

and

ξ ξ ξ≤ ≤ , (37)a b

where ξa and ξb are the roots of characteristic equation ξ2 +​ (a +​ b +​ K −​ 2Kp)ξ +​ a(b +​ K) −​ Kp(a +​ b) ≤​ 0. Thus 
the condition that aging transition occurs with the probability no less than α can be derived as

ξ ξ αΦ − Φ ≥ .( ) ( ) (38)b a

Figure 10 shows the critical value changed with the coupling strength and the probability of aging transition 
when the distance parameters of both the active and the inactive oscillators are impacted by the standard normal 
random errors. Analogous phenomena and concludes can be summarized as the ones of Fig. 8.

Discussion
To summarize, the effects of the random errors on the aging transition have been investigated in this paper. 
Two typical noises, say uniform random noise and normal random noise, are employed to affect the bifurcation 
parameters ρ, respectively. Due to the uncertainty of the random errors, the critical value of aging transition pc 
is not fixed or constant anymore, who dependents on the random errors and therefore possesses randomicity. 
Hence, we studied the aging oscillations in the coupled Stuart-Landau oscillators and built the representations of 
the critical value of aging transition pc in the framework of probability theory, based on which different param-
eters of the random errors have been discussed to analyze the influences on the aging behaviors. It has been 
found that: (i) In the case of uniform random noise, the existence of random errors enhance the robustness of the 
system with the increase of the errors’ level; (ii) In the case of normal random noise, the random errors enhance 
the robustness of the oscillator like the uniform random noise, but the variance of the normal random error 
may affect the robustness in different ways: if α >​ 50%, the critical value of aging transition pc increases with the 
increase of the variance if α >​ 50%, but decreases with the variance if α <​ 50%. Evidently, the random errors play 
the important roles in inducing or suppressing aging oscillations in coupled oscillator systems, which, in some 
level, states the crucial influents of measurement errors of parameters on oscillating dynamics in a network of 
coupled oscillators.
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