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Influenza infects an estimated 9-35 million individuals each year in
the United States and is a contributing cause for between 12,000
and 56,000 deaths annually. Seasonal outbreaks of influenza are
common in temperate regions of the world, with highest incidence
typically occurring in colder and drier months of the year. Real-
time forecasts of influenza transmission can inform public health
response to outbreaks. We present the results of a multiinstitution
collaborative effort to standardize the collection and evaluation
of forecasting models for influenza in the United States for the
2010/2011 through 2016/2017 influenza seasons. For these seven
seasons, we assembled weekly real-time forecasts of seven targets
of public health interest from 22 different models. We compared
forecast accuracy of each model relative to a historical baseline sea-
sonal average. Across all regions of the United States, over half of
the models showed consistently better performance than the his-
torical baseline when forecasting incidence of influenza-like iliness
1 wk, 2 wk, and 3 wk ahead of available data and when fore-
casting the timing and magnitude of the seasonal peak. In some
regions, delays in data reporting were strongly and negatively
associated with forecast accuracy. More timely reporting and an
improved overall accessibility to novel and traditional data sources
are needed to improve forecasting accuracy and its integration
with real-time public health decision making.
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Over the past 15 y, the number of published research arti-
cles on forecasting infectious diseases has tripled (Web
of Science, www.webofknowledge.com/). This increased interest
has been fueled in part by the promise of “big data,” that near
real-time data streams of information ranging from large-scale
population behavior (1) to microscopic changes in a pathogen
(2) could lead to measurable improvements in how disease trans-
mission is measured, forecasted, and controlled (3). With the
spectre of a global pandemic looming, improving infectious dis-
ease forecasting continues to be a central priority of global health
preparedness efforts (4-6).

Forecasts of infectious disease transmission can inform public
health response to outbreaks. Accurate forecasts of the timing
and spatial spread of infectious disease incidence can provide
valuable information about where public health interventions
can be targeted (7). Decisions about hospital staffing, resource
allocation, the timing of public health communication cam-
paigns, and the implementation of interventions designed to
disrupt disease transmission, such as vector control measures,
can be informed by forecasts. In part due to the growing recog-
nition of the importance of systematically integrating forecasting
into public health outbreak response, large-scale collaborations
have been used in forecasting applications to develop common
data standards and facilitate comparisons across multiple models
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(8-11). By enabling a standardized comparison in a single appli-
cation, these studies greatly improve our understanding of which
models perform best in certain settings, of how results can best
be disseminated and used by decision makers, and of what the
bottlenecks are in terms of improving forecasts.

While multimodel comparisons exist in the literature for
single-outbreak performance (8, 10, 11), here we compare a
consistent set of models over seven influenza seasons. This is a
documented comparison of multiple real-time infectious-disease
forecasting models from different teams across multiple seasons.
Since each season has a unique dynamical structure, multiseason
comparisons like this have great potential to improve our under-
standing of how models perform over the long term and which
models may be reliable in the future.

Influenza is a respiratory viral infection that can cause mild
or severe symptoms. In the United States each year, influenza
viruses infect an estimated 9-35 million individuals and cause
between 12,000 and 56,000 deaths (12). Influenza incidence typ-
ically exhibits a strong annual periodicity in the United States
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(and in other global regions with temperate climates), often cir-
culating widely during colder months (i.e., November through
April). The social, biological, environmental, and demographic
features that contribute to higher-than-usual incidence in a par-
ticular season are not fully understood, although contributing
factors may include severity of the dominant influenza subtype
(13), preexisting population immunity due to prior infections
or vaccination (14, 15), temperature and humidity (16), vaccine
effectiveness (12), or timing of school vacations (17).

Starting in the 2013/2014 influenza season, the US Cen-
ters for Disease Control and Prevention (CDC) has run the
“Forecast the Influenza Season Collaborative Challenge” (a.k.a.
FluSight) each influenza season, soliciting prospective, real-time
weekly forecasts of regional-level weighted influenza-like illness
(WILI) measures from teams across the world (Fig. 1) (8, 10).
The FluSight challenge focuses on forecasts of the weighted
percentage of doctor’s office visits where the patient showed
symptoms of an ILI in a particular US Health and Human
Services (HHS) region. Weighting is done by state population
as the data are aggregated to the regional and the national
level. This wILI metric is a standard measure of seasonal flu
activity, for which public data are available for the United
States back to the 1997/1998 influenza season (Fig. 14). The
FluSight challenge forecasts are displayed together on a web-
site in real time and are evaluated for accuracy at the end of
the season (18). This effort has galvanized a community of sci-
entists interested in forecasting, creating a testbed for improving
both the technical understanding of how different forecast mod-
els perform and the integration of these models into decision
making.

Building on the structure of the FluSight challenges [and those
of other collaborative forecasting efforts (9, 11)], a subset of

FluSight participants formed a consortium in early 2017 to facil-
itate direct comparison and fusion of modeling approaches. Our
work brings together 22 models from five different institutions:
Carnegie Mellon University, Columbia University, Los Alamos
National Laboratory, University of Massachusetts-Ambherst, and
University of Texas at Austin (Table 1). In this paper, we
provide a detailed analysis of the performance of these dif-
ferent models in forecasting the targets defined by the CDC
FluSight challenge organizers (Fig. 1B). Drawing on the differ-
ent expertise of the five teams allows us to make fine-grained and
standardized comparisons of distinct approaches to disease inci-
dence forecasting that use different data sources and modeling
frameworks.

In addition to analyzing comparative model performance over
multiple seasons, this work identifies key bottlenecks that limit
the accuracy and generalizability of current forecasting efforts.
Specifically, we present quantitative analyses of the impact that
incomplete or partial case reporting has on forecast accuracy.
Additionally, we assess whether purely statistical models show
similar performance to that of models that consider explicit
mechanistic models of disease transmission. Overall, this work
shows strong evidence that carefully crafted forecasting models
for region-level influenza in the United States consistently out-
performed a historical baseline model for targets of particular
public health interest.

Results

Performance in Forecasting Week-Ahead Incidence. Influenza fore-
casts have been evaluated by the CDC primarily using a variation
of the log score, a measure that evaluates both the precision
and accuracy of a forecast (30). Consistent with the primary
evaluation performed by the CDC, we used a modified form
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Fig. 1. (A) wiLl data downloaded from the CDC website from selected regions. The y axis shows the weighted percentage of doctor’s office visits in which a

patient presents with ILI for each week from September 2010 through July 2017, which is the time period for which the models presented in this paper made
seasonal forecasts. (B) A diagram showing the anatomy of a single forecast. The seven forecasting targets are illustrated with a point estimate (circle) and
an interval (uncertainty bars). The five targets on the wiLl scale are shown with uncertainty bars spanning the vertical wiLl axis, while the two targets for a
time-of-year outcome are illustrated with horizontal uncertainty bars along the temporal axis. The onset is defined relative to a region- and season-specific
baseline wiLl percentage defined by the CDC (19). Arrows illustrate the timeline for a typical forecast for the CDC FluSight challenge, assuming that forecasts
are generated or submitted to the CDC using the most recent reported data. These data include the first reported observations of wiLI% from 2 wk prior.
Therefore, 1- and 2-wk-ahead forecasts are referred to as nowcasts, i.e., at or before the current time. Similarly, 3- and 4-wk-ahead forecasts are forecasts
or estimates about events in the future.
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Table 1. List of models, with key characteristics

Ext. Mech. Ens.

Team Model abbreviation Model description Ref. data model model
cu EAKFC_SEIRS Ensemble adjustment Kalman filter SEIRS (20) X X

EAKFC_SIRS Ensemble adjustment Kalman filter SIRS (20) X X

EKF_SEIRS Ensemble Kalman filter SEIRS 1) X X

EKF_SIRS Ensemble Kalman filter SIRS 1) X X

RHF_SEIRS Rank histogram filter SEIRS 1) X X

RHF_SIRS Rank histogram filter SIRS 21) X X

BMA Bayesian model averaging (22)
Delphi BasisRegression* Basis regression, epiforecast defaults (23)

DeltaDensity1* Delta density, epiforecast defaults (24)

EmpiricalBayes1* Empirical Bayes, conditioning on past 4 wk (23, 25)

EmpiricalBayes2* Empirical Bayes, epiforecast defaults (23, 25)

EmpiricalFuture* Empirical futures, epiforecast defaults (23)

EmpiricalTraj* Empirical trajectories, epiforecast defaults (23)

DeltaDensity2* Markovian Delta density, epiforecast defaults (24)

Uniform* Uniform distribution

Stat Ensemble, combination of 8 Delphi models (24) X
LANL DBM Dynamic Bayesian SIR model with discrepancy (26) X
ReichLab KCDE Kernel conditional density estimation 27)

KDE Kernel density estimation and penalized splines (28)

SARIMA1 SARIMA model without seasonal differencing (28)

SARIMA2 SARIMA model with seasonal differencing (28)
UTAustin EDM Empirical dynamic model or method of analogues (29)

Team abbreviations: CU, Columbia University; Delphi, Carnegie Mellon; LANL, Los Alamos National Laboratories; ReichLab, University of Massachusetts-
Ambherst; SEIRS, Suceptible-Exposed-Infectious-Recovered-Susceptible, and SIRS, Suceptible-Infectious-Recovered-Susceptible, compartmental models of
infectious disease transmission; UTAustin, University of Texas at Austin. The “Ext. data” column notes models that use data external to the ILINet data
from CDC. The “Mech. model” column notes models that rely to some extent on a mechanistic or compartmental model formulation. The “Ens. model”

column notes models that are ensemble models.

*Note that some of these components were not designed as standalone models, so their performance may not reflect the full potential of the method’s

accuracy (Materials and Methods).

of the log score to evaluate forecasts (Materials and Methods).
The reported scores are aggregated into an average on the log
scale and then exponentiated so the reported scores can be inter-
preted as the (geometric) average probability assigned to the
eventually observed value of each target by a particular model.
Therefore, higher scores reflect more accurate forecasts. As a
common reference point, we compare all models to a historical
baseline model, ReichLab-KDE (Table 1), which forecasts the
same historical average every week within a season and does not
update based on recently observed data.

Average scores for all of the short-term forecasts (1- through
4-wk-ahead targets) varied substantially across models and re-
gions (Fig. 2). The model with the highest average score for
the week-ahead targets across all regions and seasons was CU-
EKF_SIRS (Table 1). This model achieved a region-specific
average forecast score for week-ahead targets between 0.32 and
0.55. As a comparison, the historical baseline model ReichLab-
KDE achieved between 0.12 and 0.37 average scores for all
week-ahead targets.

Models were more consistently able to forecast week-ahead
wILI in some regions than in others. Predictability for a tar-
get can be broken down into two components. First, What is
the baseline score that a model derived solely from histori-
cal averages can achieve? Second, by using alternate modeling
approaches, How much more accuracy can be achieved beyond
this historical baseline? Looking at results across all models,
HHS region 1 was the most predictable and HHS region 6 was
the least predictable (Fig. 2).

The models presented show substantial improvements in accu-
racy compared with forecasts from the historical baseline model
in all regions of the United States. Results that follow are based
on summaries from those models that on average showed higher
forecast score than the historical baseline model. HHS region 1
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showed the best overall week-ahead predictability of any region.
Here, the models showed an average forecast score of 0.54 for
week-ahead targets (Fig. 34). This means that in a typical sea-
son these models assigned an average of 0.54 probability to the
accurate WILI percentages. This resulted from having the high-
est score from the baseline model (0.37) and having the larg-
est improvement upon baseline predictions (0.17) from the
other models (Fig. 3B). In HHS region 6 the average week-
ahead score was 0.24. While HHS region 6 showed the lowest
baseline model score of any region (0.12), it also showed the
second-highest improvement (0.12) upon baseline predictions
(Fig. 3B).

Forecast score declined as the target moved farther into the
future relative to the most recent observation. Over half of the
models outperformed the historical baseline model in making
1-wk-ahead forecasts, as 15 of 22 models outperformed the his-
torical baseline in at least six of the seven seasons. However, only
7 of 22 models outperformed the historical baseline in at least
six seasons when making 4-wk-ahead forecasts. For the model
with highest forecast score across all 4-wk-ahead targets (CU-
EKF_SIRS), the average scores across regions and seasons for
1- through 4-wk-ahead forecasts were 0.55, 0.44, 0.36, and 0.31.
This mirrored an overall decline in score observed across most
models. Only in HHS region 1 were the forecast scores from the
CU-EKF_SIRS model for both the “nowcast” targets (1 and 2 wk
ahead) above 0.5.

Performance in Forecasting Seasonal Targets. Overall, forecast
score was lower for seasonal targets than for week-ahead targets,
although the models showed greater relative improvement com-
pared with the baseline model (Fig. 2). The historical baseline
model achieved an overall forecast score of 0.14. The best single
model across all seasonal targets was LANL-DBM (Table 1) with

Reich et al.
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Fig. 2. Average forecast score by model region and target type, averaged
over weeks and seasons. The text within the grid shows the score itself.
The white midpoint of the color scale is set to be the target- and region-
specific average of the historical baseline model, ReichLab-KDE, with darker
blue colors representing models that have better scores than the baseline
and darker red scores representing models that have worse scores than the
baseline. The models are sorted in descending order from most accurate
(top) to least accurate (bottom) and regions are sorted from high scores
(right) to low scores (left).

an overall forecast score of 0.36, more than a twofold increase in
score over the baseline.

Of the three seasonal targets, models showed the lowest aver-
age score in forecasting season onset, with an overall average
score of 0.15. Due to the variable timing of season onset, differ-
ent numbers of weeks were included in the final scoring for each
region-season (Materials and Methods). Of the 77 region—seasons
evaluated, 9 had no onset; i.e., the wILI did not remain above a
fixed region-specific threshold of influenza activity for 3 or more
weeks (see Materials and Methods for details). The best model
for onset was LANL-DBM, with an overall average score of 0.33
and region—season-specific scores for onset that ranged from 0.03
to 0.81. The historical baseline model showed an average score
of 0.11 in forecasting onset. Overall, 8 of 22 models (36%) had
better overall score for onset in at least six of the seven seasons
evaluated (Fig. 3E).

Accuracy in forecasting season onset was also impacted by
revisions to wlLI data. In some region—seasons current data led
models to be highly confident that onset had occurred in one
week, only to have revised data later in the season change the
week that was considered to be the onset. One good exam-
ple of this is HHS region 2 in 2015/2016. Here, data in early
2016 showed season onset to be epidemic week 2 (EW2) of
2016. Revisions to the data around EW12 led the models to
identify EW51 as the onset. A further revision, occurring in
EW?21 of 2016, showed the onset actually occurred on EW4 of
2016. Networked metapopulation models that take advantage
of observed activity in one location to inform forecasts of other
locations have shown promise for improving forecasts of season
onset (31).

Models showed an overall average score of 0.23 in forecasting
peak week. The best model for peak week was ReichLab-KCDE
(Table 1), with an overall average score of 0.35. Region- and

Reich et al.

season-specific forecast scores from this model for peak week
ranged from 0.01 to 0.67. The historical baseline model showed
0.17 score in forecasting peak week. Overall, 15 of 22 models
(68%) had better overall score for peak week in at least six of the
seven seasons evaluated (Fig. 3E).

Models showed an overall average score of 0.20 in fore-
casting peak intensity. The best model for peak intensity was
LANL-DBM, with overall average score of 0.38. Region- and
season-specific forecast scores from this model for peak intensity
ranged from 0.13 to 0.61. The historical baseline model showed
0.13 score in forecasting peak intensity. Overall, 12 of 22 models
(55%) had better overall score in at least six of the seven seasons
evaluated (Fig. 3E).

While models for peak week and peak percentage converged
on the observed values after the peak occurred, before the peak
occurring all models showed substantial uncertainty (Fig. 4). For
peak percentage, only one model (LANL-DBM) assigned on
average more than 0.3 probability to within 0.5 wiLI units of
the eventual value (the criteria used by the CDC for evaluating
model accuracy) before the peak occurring. At the peak week of
the season, four models assigned on average 0.3 or more prob-
ability to the eventually observed values. In forecasting peak
week, the models were able to forecast the eventual observed
value with slightly more certainty earlier than for peak percent-
age. One week before the peak, 3 models assigned 0.3 or more
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Fig. 3. Absolute and relative forecast performance for week-ahead (A and
B) and seasonal (C and D) targets, summarized across all models that on
average performed better than the historical baseline. A and C show maps
of the United States that illustrate spatial patterns of average forecast accu-
racy for week-ahead (A) and seasonal (C) targets. Color shading indicates
average forecast score for this model subset. B and D compare historical
baseline model score (x axis) with the average score (y axis, horizontal
dashed line at average across regions) with one point for each region. For
example, a y value of 0.1 indicates that the models on average assigned
10% more probability to the eventually observed value than the historical
baseline model. The digits in the plot refer to the corresponding HHS region
number, with N indicating the US national region. E shows the number of
seasons each model had average performance above the historical baseline.
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Fig. 4. Average forecast score by model and week relative to peak. Scores
for each location-season were aligned to summarize average performance
relative to the peak week on the x axis, zero indicates the peak week and
positive values represent weeks after the peak week. In general, models that
were updating forecasts based on current data showed improved accuracy
for peak targets once the peak had passed. Only several of the models con-
sistently assigned probabilities greater than 0.2 to the eventually observed
values before the peak week.

probability to within 1 wk of the observed peak week while
at the peak week, 14 models assigned on average 0.3 or more
probability to the eventually observed peak week.

Comparing Models’ Forecasting Performance by Season. Averaging
across all targets and locations, forecast scores varied widely
by model and season (Fig. 5). The historical baseline model
(ReichLab-KDE) showed an average seasonal score of 0.20,
meaning that in a typical season, across all targets and loca-
tions, this model assigned on average 0.20 probability to the
eventually observed value. The models with the highest average
seasonal forecast score (Delphi-Stat) (Table 1) and the lowest
one (Delphi-EmpiricalBayes2) (Table 1) had scores of 0.37 and
0.07, respectively. Of the 22 models, 16 models (73%) showed
higher average seasonal forecast score than the historical aver-
age. Season-to-season variation was substantial, with 10 models
having at least one season with greater average forecast score
than the Delphi-Stat model did.

The six top-performing models used a range of method-
ologies, highlighting that very different approaches can result
in very similar overall performance. The overall best model
was an ensemble model (Delphi-Stat) that used a weighted
combination of other models from the Delphi group. Both
the ReichLab-KCDE and the Delphi-DeltaDensityl (Table 1)
models used kernel conditional density estimation, a non-
parametric statistical methodology that is a distribution-based
variation on nearest-neighbors regression. These models used
different implementations and different input variables, but
showed similarly strong performance across all seasons. The
UTAustin-EDM (Table 1) and Delphi-DeltaDensity2 models
also used variants of nearest-neighbors regression, although
overall scores for these models were not consistent, indicating
that implementation details and/or input variables can impact
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the performance of this approach. The LANL-DBM and CU-
EKF_SIRS models both rely on a compartmental model of
influenza transmission; however, the methodologies used to fit
and forecast were different for these approaches. The ReichLab-
SARIMAZ2 (Table 1) model used a classical statistical time-series
model, the seasonal autoregressive integrated moving average
(SARIMA), to fit and generate forecasts. Interestingly, several
pairs of models, although having strongly contrasting method-
ological approaches, showed similar overall performance; e.g.,
CU-EKF_SIRS and ReichLab-SARIMA2, LANL-DBM and
ReichLab-KCDE.

Comparison Between Statistical and Compartmental Models. On the
whole, statistical models achieved similar or slightly higher scores
to those of compartmental models when forecasting both week-
ahead and seasonal targets, although the differences were small
and of minimal practical significance. Using the best three overall
models from each category, we computed the average fore-
cast score for each combination of region, season, and target
(Table 2). For all targets, except 1-wk-ahead forecasts and peak
intensity, the difference in model score was slight and never
greater than 0.02. For 1-wk-ahead forecasts, the statistical mod-
els had slightly higher scores on average than mechanistic models
(0.06, on the probability scale). We note that the 1-wk-ahead
forecasts from the compartmental models from the CU team
are driven by a statistical nowcast model that uses data from
the Google Search application programing interface (API) (32).
Therefore, the CU models were not counted as mechanistic
models for 1-wk-ahead forecasts. For peak percentage forecasts,
the statistical models had slightly higher scores on average than
mechanistic models (0.05).

Delayed Case Reporting Impacts Forecast Score. In the seven sea-
sons examined in this study, wILI percentages were often revised
after first being reported. The frequency and magnitude of revi-
sions varied by region, and the majority of initial values (nearly
90%) are within £0.5% of the final observed value. For exam-
ple, in HHS region 9, over 51% of initially reported wlLI values
ended up being revised by over 0.5 percentage points while in
HHS region 5 less than 1% of values were revised that much.
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Fig. 5. Average forecast score, aggregated across targets, regions, and
weeks, plotted separately for each model and season. Models are sorted
from lowest scores (left) to highest scores (right). Higher scores indicate
better performance. Circles show average scores across all targets, regions,
and weeks within a given season. The “x” marks the geometric mean of
the seven seasons. The names of compartmental models are shown in bold-
face type. The ReichLab-KDE model (red italics) is considered the historical
baseline model.
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Table 2. Comparison of the top three statistical models
(Delphi-DeltaDensity1, ReichLab-KCDE, ReichLab-SARIMA2) and
the top three compartmental models, (LANL-DBM, CU-EKF_SIRS,
CU-RHF _SIRS) (Table 1) based on best average region-season
forecast score

Score
Statistical Compartmental
Target model model Difference
1 wk ahead 0.49 0.43 0.06
2 wk ahead 0.40 0.41 —0.01
3 wk ahead 0.35 0.34 0.00
4 wk ahead 0.32 0.30 0.02
Season onset 0.23 0.22 0.01
Season peak percentage 0.32 0.27 0.05
Season peak week 0.34 0.32 0.02

The difference column represents the difference in the average proba-
bility assigned to the eventual outcome for the target in each row. Positive
values indicate the top statistical models showed higher average score than
the top compartmental models.

Across all regions, 10% of observations were ultimately revised
by more than 0.5 percentage points.

When the first report of the wILI measurement for a given
region-week was revised in subsequent weeks, we observed
a corresponding strong negative impact on forecast accuracy.
Larger revisions to the initially reported data were strongly asso-
ciated with a decrease in the forecast score for the forecasts
made using the initial, unrevised data. Specifically, among the
four top-performing nonensemble models (ReichLab-KCDE,
LANL-DBM, Delphi-DeltaDensityl, and CU-EKF_SIRS), there
was an average change in forecast score of —0.29 (95% CI:
—0.39, —0.19) when the first observed wILI measurement was
between 2.5 and 3.5 percentage points lower than the final
observed value, adjusting for model, week of year, and tar-
get (Fig. 6; see Materials and Methods for details on regression
model). Additionally, we observed an expected change in fore-
cast score of —0.24 (95% CI: —0.29, —0.19) when the first
observed wlLI measurement was between 1.5 and 2.5 percentage
points higher than the final observed value. This pattern is similar
for under- and overreported values, although there were more
extreme underreported values than there were overreported
values. Some of the variation in region-specific performance
could be attributed to the frequency and magnitude of data
revisions.

Discussion

This work presents a large-scale comparison of real-time fore-
casting models from different modeling teams across multiple
years. With the rapid increase in infectious disease forecasting
efforts, it can be difficult to understand the relative importance of
different methodological advances in the absence of an agreed-
upon set of standard evaluations. We have built on the foun-
dational work of CDC efforts to establish and evaluate models
against a set of shared benchmarks which other models can use
for comparison. Our collaborative, team science approach high-
lights the ability of multiple research groups working together
to uncover patterns and trends of model performance that are
harder to observe in single-team studies.

Seasonal influenza in the United States, given the relative
accessibility of historical surveillance data and recent history of
coordinated forecasting “challenges,” is an important testbed
system for understanding the current state of the art of infectious
disease forecasting models. Using models from some of the most
experienced forecasting teams in the country, this work reveals
several key results about forecasting seasonal influenza in the
United States: A majority of models consistently showed higher
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accuracy than historical baseline forecasts, both in regions with
more predictable seasonal trends and in those with less consis-
tent seasonal patterns (Figs. 3 B, D, and E); a majority of the
presented models showed consistent improvement over the his-
torical baseline for 1- and 2-wk-ahead forecasts, although fewer
models consistently outperformed the baseline model for 3- and
4-wk-ahead forecasts (Fig. 3E); at the presented spatial and tem-
poral resolutions for influenza forecasts, we did not identify
substantial or consistent differences between high-performing
models that rely on an underlying mechanistic (i.e., compart-
mental) model of disease transmission and those that are more
statistical in nature (Table 2); and forecast accuracy is signifi-
cantly degraded in some regions due to initial partially reported
real-time data (Fig. 6).

As knowledge and data about a given infectious disease sys-
tem improve and become more granular, a common question
among domain-area experts is whether mechanistic models will
outperform more statistical approaches. However, the statistical
vs. mechanistic model dichotomy is not always a clean distinc-
tion in practice. In the case of influenza, mechanistic models
simulate a specific disease transmission process governed by the
assumed parameters and structure of the model. But observed
“influenza-like illness” data are driven by many factors that have
little to do with influenza transmission (e.g., clinical visitation
behaviors, the symptomatic diagnosis process, the case-reporting
process, a data-revision process, etc.). Since ILI data repre-
sent an impure measure of actual influenza transmission, purely
mechanistic models may be at a disadvantage in comparison with
more structurally flexible statistical approaches when attempting
to model and forecast ILI. To counteract this potential limita-
tion of mechanistic models in modeling noisy surveillance data,
many forecasting models that have a mechanistic core also use
statistical approaches that explicitly or implicitly account for
unexplained discrepancies from the underlying model (20, 26).

There are several important limitations to this work as pre-
sented. While we have assembled and analyzed a range of models
from experienced influenza-forecasting teams, there are large
gaps in the types of data and models represented in our library of
models. For example, relatively few additional data sources have
been incorporated into these models, no models are included
that explicitly incorporate information about circulating strains
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Fig. 6. Model-estimated changes in forecast skill due to bias in initial
reports of wiLl %. Shown are estimated coefficient values (and 95% con-
fidence intervals) from a multivariable linear regression using model, week
of year, target, and a categorized version of the bias in the first reported
wliLl % to predict forecast score. The x-axis labels show the range of bias
[e.g., “(—0.5,0.5]" represents all observations whose first observations were
within £0.5 percentage points of the final reported value]. Values to the
left of the dashed gray line are observations whose first reported value was
lower than the final value. y-axis values of less than zero (the reference cat-
egory) represent decreases in expected forecast skill. The total number of
observations in each category is shown above each x-axis label.
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of influenza, and no model explicitly includes spatial relation-
ships between regions. Given that several of the models rely on
similar modeling frameworks, adding a more diverse set of mod-
eling approaches would be a valuable contribution. Additionally,
while seven seasons of forecasts from 22 models is the largest
study we know of that compares models from multiple teams, this
remains a less-than-ideal sample size to draw strong conclusions
about model performance. Since each season represents a set of
highly correlated dynamics across regions, few data are available
from which to draw strong conclusions about comparative model
performance. Finally, these results should not be used to extrap-
olate hypothetical accuracy in pandemic settings, as these models
were optimized specifically to forecast seasonal influenza.

What is the future of influenza forecasting in the United States
and globally? While long-run forecast accuracy for influenza will
vary based on a variety of factors [including, e.g., data quality,
the geographical scale of forecasts, population density of fore-
casted areas, and consistency of weather patterns over time (33)],
we expect to see continued forecast improvement through com-
petition, collaboration, and methodological and technological
innovation. Further analyses that help elucidate factors that drive
forecast accuracy in specific settings will be particularly instruc-
tive. We see particular promise in models that leverage different
data sources, such as pathogen-specific and highly localized
incidence data. Additionally, building ensemble models that cap-
italize on the strengths of a diverse set of individual component
models will be critical to improving accuracy and consistency
of models in all infectious disease forecasting settings. Ensem-
ble forecasting was the motivation behind the creation of the
FluSight Network, although it is out of the scope of this paper.

To advance infectious disease forecasting broadly, a complete
enumeration and understanding of the challenges facing the
field are critical. In this work, we have identified and quantified
some of these challenges, specifically focusing on timely report-
ing of surveillance data. However, other barriers may be of equal
or greater importance to continued improvement of forecasts.
Often, researchers either lack access to or do not know how best
to make use of novel data streams (e.g., Internet data, electronic
medical health record data). Increased methodological innova-
tion in models that merge together an understanding of biologi-
cal drivers of disease transmission (e.g., strain-specific dynamics
and vaccination effectiveness) with statistical approaches to com-
bine data hierarchically at different spatial and temporal scales
will be critical to moving this field forward. From a technologi-
cal perspective, additional efforts to standardize data collection,
format, storage, and access will increase interoperability between
groups with different modeling expertise, improve accessibility of
novel data streams, and continue to provide critical benchmarks
and standards for the field. Continuing to refine forecasting
targets to more closely align with public health activities will
improve integration of forecasts with decision making. Recent
work from the CDC has developed standardized algorithms to
classify the severity of influenza seasons (19), which could be
used to inform the development of new forecasting targets.

Public health officials are still learning how to best integrate
forecasts into real-time decision making. Close collaboration
between public health policymakers and quantitative modelers
is necessary to ensure that forecasts have maximum impact and
are appropriately communicated to the public and the broader
public health community. Real-time implementation and testing
of forecasting methods play a central role in planning and assess-
ing what targets should be forecasted for maximum public health
impact.

Materials and Methods

FluSight Challenge Overview. Detailed methodology and results from previ-
ous FluSight challenges have been published (8, 10), and we summarize the
key features of the challenge here.
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During each influenza season, the wiLl data are updated each week by
the CDC. When the most recent data are released, the prior weeks' reported
wiLl data may also be revised. The unrevised data, available at a particular
moment in time, are available via the DELPHI real-time epidemiological data
API beginning in the 2014/2015 season (34). This APl enables researchers
to “turn back the clock” to a particular moment in time and use the data
available at that time. This tool facilitates more accurate assessment of how
models would have performed in real time.

The FluSight challenges have defined seven forecasting targets of partic-
ular public health relevance. Three of these targets are fixed scalar values
for a particular season: onset week, peak week, and peak intensity (i.e., the
maximum observed wiLl percentage). The remaining four targets are the
observed wiLl percentages in each of the subsequent 4 wk (Fig. 1B). A season
has an onset week when at least 3 consecutive weeks are above a CDC-
defined regional baseline for wiLIl. The first of these weeks is considered to
be the onset week.

The FluSight challenges have also required that all forecast submissions
follow a particular format. A single submission file (a comma-separated text
file) contains the forecast made for a particular EW of a season. Standard
CDC definitions of EW are used (35-37). Each file contains binned predic-
tive distributions for seven specific targets across the 10 HHS regions of the
United States plus the national level. Each file contains over 8,000 rows and
typically is about 400 kB in size.

To be included in the model comparison presented here, previous partic-
ipants in the CDC FluSight challenge were invited to provide out-of-sample
forecasts for the 2010/2011 through 2016/2017 seasons. For each season,
files were submitted for EW40 of the first calendar year of the season
through EW20 of the following calendar year. (For seasons that contained
an EWS53, an additional file labeled EW53 was included.) For each model,
this involved creating 233 separate forecast submission files, one for each of
the weeks in the seven training seasons. In total, the forecasts represent
over 40 million rows and 2.5 GB of data. Each forecast file represented
a single submission file, as would be submitted to the CDC challenge.
Each team created submitted forecasts in a prospective, out-of-sample fash-
jon, i.e., fitting or training the model only on data available before the
time of the forecast (Fig. 1). All teams used the Delphi epidata APl to
retrieve ILINet data (34). Some data sources (e.g., wiLl data before the
2014/2015 season) were not archived in a way that made data reliably
retrievable in this “real-time” manner. In these situations, teams were still
allowed to use these data sources with best efforts made to ensure fore-
casts were made using only data available at the time forecasts would have
been made.

Summary of Models. Five teams each submitted between one and nine sep-
arate models for evaluation (Table 1). A wide range of methodological
approaches and modeling paradigms are included in the set of forecast
models. For example, seven of the models use a compartmental structure
(e.g., susceptible-infectious-recovered), a model framework that explicitly
encodes both the transmission and the susceptible-limiting dynamics of
infectious disease outbreaks. Other less directly mechanistic models use sta-
tistical approaches to model the outbreak phenomenon by incorporating
recent incidence and seasonal trends. One model, Delphi-Stat, is an ensem-
ble model, a combination of other models from the Delphi team. No team
had early access to CDC surveillance data or any other data from sentinel
surveillance sites. Every team accessed the data using the same APl and
baseline datasets. The Columbia University team used data from Google
Extended Health Trends APl to nowcast for the 1-wk-ahead target in all
of its models. In their six mechanistic models, the nowcast was also used
as an observation, i.e., as if it were CDC surveillance data. An analysis
of results from the 2016/2017 season showed that the forecast quality of
these models improved by about 7% (38). Additionally, the Columbia Uni-
versity team used daily specific humidity averaged over 24 y (1979-2002)
in their six mechanistic models. These climatological estimates were calcu-
lated from the National Land Data Assimilation System (NLDAS) project-2
dataset.

Three models stand out as being reference models. One shared feature
of these models is that their forecasts do not depend on observed data
from the season being forecasted. The Delphi-Uniform model always pro-
vides a forecast that assigns equal probability to all possible outcomes.
The ReichLab-KDE model yields predictive distributions based entirely on
data from other seasons using kernel density estimation (KDE) for seasonal
targets and a generalized additive model with cyclic penalized splines for
weekly incidence. The Delphi-EmpiricalTraj model uses KDE for all targets.
The "historical baseline” model named throughout this paper refers to
the ReichLab-KDE model. Because this model represents a prediction that
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essentially summarizes historical data, we consider this model an appropri-
ate baseline model to reflect historical trends.

We note that some of the models presented here were developed as
standalone forecasting models whereas others were developed as com-
ponents of a larger ensemble system. We define a standalone model as
one that is rigorously validated to show optimal performance on its own.
Component models could also be optimized, although they could also be
developed solely to provide a specific or supplemental signal as part of
a larger system. All of the Delphi group’s models except for Delphi-Stat
were developed as components rather than standalone models. Despite
this, some of the Delphi models, in particular, Delphi-DeltaDensity1, per-
formed quite well relative to other standalone models. Component models
can also provide useful baselines for comparison, e.g., the Delphi-Uniform
model, which assigns uniform probability to all possible outcomes, and the
Delphi-EmpiricalTraj model, which creates a seasonal average model that is
not updated based on current data.

Once submitted to the central repository, the models were not updated
or modified except in four cases to fix explicit bugs in the code that yielded
numerical problems with the forecasts. (In all cases, the updates did not
substantially change the performance of the updated models.) Refitting of
models or tuning of model parameters was explicitly discouraged to avoid
unintentional overfitting of models.

Metric Used for Evaluation and Comparison. The log score for a model m is
defined as log fm(z*|x), where f,(z|x) is the predicted density function from
model m for target Z conditional on some data x, z* is the observed value
of the target Z, and log is the natural logarithm. The log score is a “proper”
scoring rule, which has the practical implication that linear combinations
(i.e., arithmetic means) of log scores will also be proper (30).

Following CDC FluSight evaluation procedures, we computed modified
log scores for the targets on the wiLl percentage scale such that predic-
tions within +0.5 percentage points are considered accurate; i.e., modified
log score = log fzz:j': fm(z|X)dz. For the targets on the scale of EWs, pre-
dictions within +1 wk are considered accurate; i.e., modified log score =
log fzz::r11 fm(z|x)dz. While this modification means that the resulting score

is not formally a proper scoring rule, some have suggested that improper
scores derived from proper scoring rules may, with large enough sample size,
have negligible differences in practice (30). Additionally, this modified log
score has the advantage of having a clear interpretation and was motivated
and designed by public health officials to reflect an accuracy of practical
significance. Hereafter, we refer to these modified log scores as simply log
scores.

Average log scores can be used to compare models’ performance in
forecasting for different locations, seasons, targets, or times of season. In
practice, each model m has a set of log scores associated with it that are
region, target, season, and week specific. We represent one specific scalar
log-score value as log fr,rt,5,w(2*|X). These values can be averaged across any
of the indexes to create a summary measure of performance. For example,

1
LSm, e = > " 10g fmrtsw(z*1%) [

rsw

represents a log score for model m and target t averaged across all regions,
seasons, and weeks.

While log scores are not on a particularly interpretable scale, a simple
transformation enhances interpretability substantially. Exponentiating an
average log score yields a forecast score equivalent to the geometric mean
of the probabilities assigned to the eventually observed outcome (or, more
specifically for the modified log score, to regions of the distribution even-
tually considered accurate). The geometric mean is an alternative measure
of central tendency to an arithmetic mean, representing the Nth root of a
product of N numbers. Using the example from Eq. 1 above, we then have
that

Sm,-t,.,- =€xp (LSm, t,-,.)

1
=exp <N > log fm,,,t,s,w(z*\x)>

rs,w

= (1‘[ fm,,,t,s,w(z*\x)> VN 21

rs,w

In this setting, this score S has the intuitive interpretation of being the aver-
age probability assigned to the true outcome (where average is considered
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to be a geometric average). Throughout this paper, we refer to an expo-
nentiated average log score as an average score. In all cases, we compute
the averages arithmetically on the log scale and exponentiate only before
reporting and interpreting a final number. Therefore, all reported average
scores can be interpreted as the corresponding geometric means or as the
corresponding average probabilities assigned to the true outcome.

Following the convention of the CDC challenges, we included only cer-
tain weeks in the calculation of the average log scores for each target. This
focuses model evaluation on periods of time that are more relevant for pub-
lic health decision making. Forecasts of season onset are evaluated based
on the forecasts that are received up to 6 wk after the observed onset week
within a given region. Peak week and peak intensity forecasts were scored
for all weeks in a specific region-season up until the wiLI measure drops
below the regional baseline level for the final time. Week-ahead forecasts
are evaluated using forecasts received 4 wk before the onset week through
forecasts received 3 wk after the wiLl goes below the regional baseline for
the final time. In a region-season without an onset, all weeks are scored. To
ensure all calculated summary measures would be finite, all log scores with
values of less than —10 were assigned the value —10, following CDC scor-
ing conventions. This rule was invoked for 2,648 scores or 0.8% of all scores
that fell within the scoring period. All scores were based on “ground truth”
values of wiLI data obtained as of September 27, 2017.

Specific Model Comparisons.
Analysis of data revisions. The CDC publicly releases data on doctor’s office
visits due to ILI each week. These data, especially for the most recent weeks,
are occasionally revised, due to new or updated data being reported to the
CDC since their last publication. While often these revisions are fairly minor
or nonexistent, at other times these revisions can be substantial, changing
the reported wilLl value by over 50% of the originally reported value. Since
the unrevised data are used by forecasters to generate current forecasts,
real-time forecasts can be biased by the initially reported, preliminary data.
We used a regression model to analyze the impact of these unrevised
reports on forecasting. Specifically, for each region and EW we calculated
the difference between the first and the last reported wiLl values for
each EW for which forecasts were generated in the seven seasons under
consideration. We then created a categorical variable (X) with a binned rep-
resentation of these differences using the following six categories covering
the entire range of observed values: (—3.5,—2.5], (—2.5,—1.5], ..., (1.5,2.5].
Using the forecasting results from the four most accurate individual
nonensemble models (ReichLab-KCDE, LANL-DBM, Delphi-DeltaDensity1,
CU-EKF_SIRS), we then fitted the linear regression model

Si =B+ amip + i) + Awiy + 0 - Xi + €, [3]

where S; is the score; the index i indexes a specific set of subscripts
{m, r,t,s,w}; and the an, V), and A, are model-, target-, and week-
specific fixed effects, respectively. [The notation m(i) refers to the model
contained in the ith observation of the dataset.] The error term is assumed
to follow a Gaussian distribution with mean zero and an estimated variance
parameter. The parameter of interest in the model is the vector 8, which
represents the average change in score based on the magnitude of the bias
in the latest available wiLl value, adjusted for differences based on model,
target, and week of season. The [—0.5, +0.5] change category was taken as
a baseline category and the corresponding 6 entry constrained to be 0, so
that other 0 entries represent deviations from this baseline.

Mechanistic vs. statistical models. There is not a consensus on a single
best modeling approach or method for forecasting the dynamic patterns
of infectious disease outbreaks in both endemic and emergent settings.
Semantically, modelers and forecasters often use a dichotomy of mechanis-
tic vs. statistical (or “phenomenological”) models to represent two different
philosophical approaches to modeling. Mechanistic models for infectious
disease consider the biological underpinnings of disease transmission and
in practice are implemented as variations on the susceptible-infectious-
recovered (SIR) model. Statistical models largely ignore the biological under-
pinnings and theory of disease transmission and focus instead on using
data-driven, empirical, and statistical approaches to make the best forecasts
possible of a given dataset or phenomenon.

However, in practice, this dichotomy is less clear than it is in theory. For
example, statistical models for infectious disease counts may have an autore-
gressive term for incidence (e.g., as done by the ReichLab-SARIMA1 model).
This could be interpreted as representing a transmission process from one
time period to another. In another example, the LANL-DBM model has an
explicit SIR compartmental model component but also uses a purely statis-
tical model for the discrepancy of the compartmental model with observed
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trends. The models from Columbia University used a statistical nowcasting
approach for their 1-wk-ahead forecasts, but after that relied on different
variations of a SIR model.

We categorized models according to whether or not they had any
explicit compartmental framework (Table 1). We then took the top-three-
performing compartmental models (i.e.,, models with some kind of an
underlying compartmental structure) and compared their performance with
that of the top three individual component models without compartmental
structure. We excluded multimodel ensemble models (i.e., Delphi-Stat) from
this comparison and also excluded the 1-wk-ahead forecasts of the CU mod-
els from the compartmental model category, since they were generated by
a statistical nowcast. Separately for each target, we compared the average
score of the top three compartmental models to the average score of the
top three noncompartmental models.
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