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Abstract

Imaging data has become an essential tool to explore key biological questions at various

scales, for example the motile behaviour of bacteria or the transport of mRNA, and it has the

potential to transform our understanding of important transport mechanisms. Often these

imaging studies require us to compare biological species or mutants, and to do this we need

to quantitatively characterise their behaviour. Mathematical models offer a quantitative

description of a system that enables us to perform this comparison, but to relate mechanistic

mathematical models to imaging data, we need to estimate their parameters. In this work

we study how collecting data at different temporal resolutions impacts our ability to infer

parameters of biological transport models by performing exact inference for simple velocity

jump process models in a Bayesian framework. The question of how best to choose the fre-

quency with which data is collected is prominent in a host of studies because the majority of

imaging technologies place constraints on the frequency with which images can be taken,

and the discrete nature of observations can introduce errors into parameter estimates. In

this work, we mitigate such errors by formulating the velocity jump process model within a

hidden states framework. This allows us to obtain estimates of the reorientation rate and

noise amplitude for noisy observations of a simple velocity jump process. We demonstrate

the sensitivity of these estimates to temporal variations in the sampling resolution and extent

of measurement noise. We use our methodology to provide experimental guidelines for

researchers aiming to characterise motile behaviour that can be described by a velocity

jump process. In particular, we consider how experimental constraints resulting in a trade-

off between temporal sampling resolution and observation noise may affect parameter esti-

mates. Finally, we demonstrate the robustness of our methodology to model misspecifica-

tion, and then apply our inference framework to a dataset that was generated with the aim of

understanding the localization of RNA-protein complexes.
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Author summary

We consider how the temporal resolution of imaging studies affects our ability to carry

out accurate parameter estimation for a stochastic biological transport model. This model

provides a mechanistic description of motile behaviour and is often used to interrogate

transport processes, such as the motion of bacteria. Parameter inference is necessary to

characterise different types of transport and to make predictions about biological behav-

iour under different conditions. Typically, observations of the transport process, at the

level of individual trajectories, are made at discrete times. This can lead to errors in

parameter estimation because we do not have complete trajectory information. We pres-

ent a framework for Bayesian inference for these models of biological transport processes.

Using this framework, we study the effects of collecting data more or less frequently, and

with varying measurement noise, on what we can learn about the biological system via

parameter estimation.

Introduction

Biological transport processes occur on a wide range of spatial and temporal scales, and a com-

mon mechanism for transport involves two phases: fast active transport, and a quasi-stationary

reorientation phase. This pattern of movements has been observed at a range of scales from

the intracellular transport of cellular components such as mRNA particles moving on a micro-

tubule network [1], to the run-and-tumble motion of bacteria such as Escherichia coli [2–4],

and the flights of birds between nesting sites [5]. To capture appropriately these two phases of

motion, a class of models known as velocity jump process (VJP) models [2, 5–8] (also known

as correlated random walks [9–13] or Levy Walks [14–17]) have been developed.

Estimating the parameters of these models can give us mechanistic information relating to

the underlying biological process, such as the rate of reorientation. Being able to obtain accu-

rate estimates, with appropriate uncertainty, for these parameters allows us to compare differ-

ent biological species or mutants, and gain an understanding of the underlying mechanistic

behaviour. Importantly, parameterising models and quantifying the uncertainty in parameter

estimates, as can be achieved via Bayesian inference, enables us to use models to make quanti-

tive predictions of behaviour in new conditions with quantifiable uncertainty. By performing

experiments to test model predictions, we can evaluate the areas in which a given model fails

to describe experimental data, and so iteratively refine our understanding of a given system or

phenomenon.

In this work, we consider the effects that experimental design can have on the information

we can obtain from a data set, in terms of using that data to estimate parameters of a mechanis-

tic model. In particular, for time series data describing a biological transport process, we vary

the time between successive measurements. We demonstrate a framework for estimating the

parameters of a VJP model for data of this form in the presence of noise, and examine how the

posterior estimates of the model parameters change for more coarsely sampled and noisier

datasets. Our framework formulates the VJP model as a process with hidden states, as in a hid-

den Markov model (HMM), which allows us to use particle Markov Chain Monte Carlo

(pMCMC) methods to perform exact Bayesian inference. We use our framework to suggest

sensible experimental design choices in the context of microscopy studies, where there may be

a trade-off between how frequently it is possible to image, and the noise resulting from more

or less frequent observations of the process. We present a comparison between the pMCMC

framework described in this work and approximate Bayesian computation (ABC) for
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parameter inference in this context. We demonstrate robustness to model mispecification in a

situation where we attempt inference on synthetic data generated with a different model to the

assumed model. Finally, we apply our method to an imaging dataset of tracks of RNA-protein

complexes allowing us to estimate motility parameters for a mechanistic model.

Velocity jump process models

VJP models have been developed to describe biological transport processes where there is per-

sistent or biased random motion [2, 5, 18]. Correlated, persistent motion is observed experi-

mentally in a variety of contexts [19, 20]. VJP models are most appropriate for motion

consisting of multiple phases, such as a fast directed phase and a stationary or reorientation

phase, and these models describe how an object moves in one direction before reorienting and

moving in a new direction. This type of “run and reorientate” motion is exhibited, for example,

by Escherichia coli [3, 4], fibroblasts [20], and RNA-protein complexes [1].

We present here a mathematical description of a VJP model. Suppose we have a running

time distribution, with probability density function (pdf) fτ, and a waiting time distribution,

with pdf fμ. Random variables drawn from these distributions dictate the lengths of time spent

in the fast active transport, or running, phase of the VJP and the reorientation phase, respec-

tively. After the reorientation phase, a velocity for the new run is chosen according to a transi-

tion kernel, fv. This transition kernel could incorporate a distribution of speeds as well as

directions, or could rely on a fixed speed and specify only the directionality of the run. In the

fixed speed case,

fvðvÞ ¼
d0ðjvj � cÞ
jvj

fFð�Þ;

where fF is a reorientation kernel descibing the angle change, and c is the constant running

speed. For biological processes with a distinct separation of timescales between the running

and reorientation phases, it is often possible to assume that reorientations between successive

runs occur instantaneously and therefore neglect the reorientation phase in a model of the pro-

cess [2, 5]. Repeated simulation from this model can be used to generate trajectories of individ-

ual particles (see Fig 1, for example).

In the simplest case, where we assume that the running time distribution is memoryless,

that is, exponentially distributed, with fτ(t) = λ exp(−λt), the long time behaviour of the mean

squared displacement scales linearly with time, t [2]. Further moments of the motion of indi-

viduals displaying such VJP behaviour have been characterised by making certain closure

assumptions [7]. For the case of a more general running time distribution, with finite mean

and variance, in the large time limit the probability of the particle being at position x at time t
follows a diffusion equation [5].

In practice, VJP models are often parameterised by obtaining measurements of the effective

diffusion coefficient or the mean squared displacement, and using these data to estimate the

parameters of a specific running distribution [2, 5]. Rosser et al. [4] parameterised a HMM via

maximum likelihood estimation, whilst Nicosia et al. [21] fitted a hidden state random walk

model to animal movement data using an expectation-maximization algorithm. These fre-

quentist approaches can provide useful point estimates of the VJP parameters, and quantify

the error in these estimates. However, Bayesian approaches can propagate uncertainty from

both process noise and measurement noise, which can be crucial when dealing with noisy bio-

logical data (see Fig 1). In addition, they provide the added benefit that we can interpret the

results of a Bayesian analysis as probabilistic statements about the model parameters. This

quantification of uncertainty enables the generation of predictions of further biological
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behaviour using the model. In addition, we can consider the effects of noisy data measure-

ments upon the accuracy of the inferred parameters distributions, something which has previ-

ously been difficult to deal with in practice, or has been neglected.

For simplicity, in this work we will assume that there is a separation of timescales between

the lengths of the running and reorientation phases, such that reorientations can be considered

instantaneous. In addition, we assume that the running time distribution, fτ, is exponentially

distributed, that particles run at a fixed speed, c, and the reorientation kernel is a uniform dis-

tribution on [−π, π). That is fτ(t) = λ exp(−λt) and fFð�Þ ¼ 1=2p1½� p;pÞð�Þ. We follow the tra-

jectory of a single, motile individual, and take, as experimental measurements, the change in

angle between successive observed positions (calculated relative to the previous observed posi-

tion, see Fig 2), subject to measurement noise drawn from a wrapped Normal distribution, N
(0, σ2), where σ is the magnitude of the noise. Our Bayesian inference approach will target esti-

mation of the reorientation rate, λ, and the magnitude of the noise, σ.

Inference for velocity jump process models via particle Markov Chain

Monte Carlo

Inference for partially observed Markov processes can be performed using particle Markov

Chain Monte Carlo (pMCMC), as developed by Andrieu and Roberts [22] and Andrieu et al.

[23]. pMCMC provides a Bayesian framework for parameter estimation by allowing samples

to be drawn from the posterior distribution of the model parameters, given observed data,

without needing to evaluate the likelihood function directly. For partially observed Markov

process models, the model structure makes directly evaluating the likelihood difficult or

Fig 1. Four example VJP trajectories, simulated with a uniform reorientation kernel, running speed c = 50μms−1,

exponential running time distribution, fτ(t) = λe−λt, with reorientation frequency λ = 0.2 s−1 and no waiting time

between runs, for a duration of Tfinal = 64s. These trajectories start from the origin, and are orientated initially

parallel to the positive x-axis.

https://doi.org/10.1371/journal.pcbi.1006235.g001

Impact of temporal sampling resolution on inference for biological transport models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006235 June 25, 2018 4 / 30

https://doi.org/10.1371/journal.pcbi.1006235.g001
https://doi.org/10.1371/journal.pcbi.1006235


expensive. (We note that VJP models can be viewed in this form by introducing hidden

states, as explained in Section ‘Methods’.) Instead of evaluating the likelihood directly, we

can use (unbiased) estimates of the likelihood within an MCMC algorithm. Estimating the

likelihood of the observed data given certain parameters can be achieved with a particle filter

(also known as a sequential Monte Carlo scheme) [24] for a fixed, finite, number of particles.

The results of Andrieu et al. [23] demonstrate that, even when a finite number of particles are

used in the filter to estimate the likelihood, the MCMC algorithm will still target the correct

posterior distribution. These methods have been applied in the context of modelling epidem-

ics [25] and biochemical reaction networks [26, 27]. However, pMCMC methods for parame-

ter inference have not previously been applied to spatial agent-based models, such as the VJP

model considered here. The details of the pMCMC algorithm used is this work are given in

Section ‘Methods’.

Methods

We will demonstrate how to exploit pMCMC methods to obtain posterior parameter estimates

for the VJP outlined in the Introduction by formulating the model within an appropriate

framework that incorporates hidden states. This formulation additionally allows us to incorpo-

rate a model for measurement noise in our observations, as well as explicitly accounting for

the temporal discretisation of the data. The hidden states (also known as latent variables) in

our model will describe whether or not a reorientation event occurred between observations of

the VJP. This is not a variable that we can observe directly, since we only measure the observed

angle change. For example, in Fig 2 there was a reorientation event between observations at t =

kΔt and t = (k + 1)Δt, and an observed angle change of θ1. On the other hand, there was no

reorientation event between observations at t = (k + 1)Δt and t = (k + 2)Δt but still a non-zero

observed angle change of θ2. Note that the true reorientation angle for the reorientation event

that takes place between observations at t = kΔt and t = (k + 1)Δt is ϕ.

We assume that we observe the system at times {kΔt: k 2 {0, 1, . . ., T}}, up until a final time

Tfinal = TΔt, by measuring the position of the individual of interest and recording the observed

Fig 2. The motile individual is observed at discrete times t = kΔt for k 2 {0, 1, . . ., T} (marked by crosses). In each

time interval between observations, we measure the angle change between the observed direction of travel between

successive observations. We assign a hidden state to each time interval according to whether a reorientation event

occurred in that time interval or not. In this example, which excludes measurement noise, there is a reorientation,

through angle ϕ, between observations at times t = kΔt and t = (k + 1)Δt; however, the measured angle change between

these observations is θ1. Conversely, there is no reorientation event between observations at t = (k + 1)Δt and t = (k + 2)

Δt and an observed angle change of θ2.

https://doi.org/10.1371/journal.pcbi.1006235.g002
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angle change. We define the hidden variable, Xk, as follows:

Xk ¼
1; if a reorientation event occurred during ½kDt; ðkþ 1ÞDtÞ;

0; otherwise:

(

ð1Þ

The observed state is the observed angle change, θk, obtained as the difference between the

observed direction of travel during [(k − 1)Δt, kΔt) and [kΔt, (k + 1)Δt), k� 1, as illustrated in

Fig 2. For example, if we directly observe as data the positions {(xk, yk): k 2 {0, 1, . . ., T}}, then

we can calculate the observed angle change as

yk ¼ arctan
ykþ1 � yk
xkþ1 � xk

� �

: k 2 f0; 1; . . . ;T � 1g

� �

:

We illustrate the sequence of hidden and observed states in Fig 3, with dependence between

these states given by the transition and emission probabilities, denoted βi and pij, respec-

tively. The hidden variable, Xk, evolves according to the VJP model. Here, since we have an

exponential distribution for the running time, P(reorientation event in [(k − 1)Δt, kΔt)) =

1 − exp(−λΔt).

We assume that reorientation events are rare relative to the sampling rate such that

λΔt� 1. This assumption allows us to neglect multiple reorientations in a single time interval,

enabling us to greatly simplify the problem, so that it is tractable via the binary hidden vari-

ables Xk. We highlight that the model structure as shown in Fig 3 is an approximation. In real-

ity, observed data will not be a function of only the current and previous hidden states, Xk and

Xk−1, but may depend on other previous states also. The assumption that λΔt� 1 enables us to

neglect dependence on earlier states.

Fig 3. Hidden and observed states in a partially observed Markov process model. We observe an angle change, θk,
which is dependent on a hidden state Xk defined in Eq (1). This dependency is shown by the arrows between states.

Here, we require dependencies on the previous hidden state, Xk−1, since observation times will not coincide with

reorientation events in general. Additionally, we introduce an extra layer of state dependencies to capture the

measurement noise in this noisy biological system. We suppose that θk is the true observed angle change and our noisy

observed version of this is zk, with dependencies shown by the arrows.

https://doi.org/10.1371/journal.pcbi.1006235.g003
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Model without measurement noise

We initially make progress by simplifying the problem and its exposition via the assumption of

zero measurement error. To relate the unobserved hidden state to the observed angle change,

which we can measure, we derive probability distributions for the angle change given the hid-

den state. Note that there is additional dependence not only on the current hidden state, but

also on the previous hidden states, as shown in Fig 3. We can obtain expressions for the emis-

sion probabilities by considering the path that is taken under different sequences of hidden

states (Fig 4); we will outline simplifying assumptions as they are made.

Suppose we observe the system at times (k − 1)Δt, kΔt, and (k + 1)Δt for some k, as shown

in Fig 4. The sequence of hidden states i, j, corresponds to whether there were reorientation

events in the time intervals [(k − 1)Δt, kΔt) and [kΔt, (k + 1)Δt), respectively. Let pij(θ) be the

pdf of observing a reorientation angle of θ given the sequence of hidden states i, j. We assume

angle change θ was observed over the time interval [kΔt, (k + 1)Δt) corresponding to the hid-

den state j. In the case where no reorientation occurs in either of the time intervals (corre-

sponding to the situation in Fig 4a)), then, assuming no noise, we would observe zero angle

Fig 4. Example paths for each pattern of hidden states. The particle of interest moves from left to right, and is observed at times (k − 1)Δt, kΔt, and (k + 1)Δt. In a),

there are no reorientation events, so the particle continues along a straight trajectory. In b), there is a single reorientation in the time interval [kΔt, (k + 1)Δt), where the

particle turns through an angle ϕ, but the observed angle change is θ1 due to the discrete nature of the observations. In c), there is a single reorientation in the time

interval [(k − 1)Δt, kΔt). The particle turns through an angle ϕ and continues on its new trajectory. We observe an angle change θ1 for the time interval [(k − 1)Δt, kΔt),
and observe an angle change θ2 for the next time interval [kΔt, (k + 1)Δt) even though there was no reorientation during this time interval. Similarly, in d), there was a

reorientation of true angle change ϕ during [(k − 1)Δt, kΔt) followed by another reorientation of true angle change ϕ0 in the time interval [kΔt, (k + 1)Δt). In this case,

we observe angle change θ1 for the time interval [(k − 1)Δt, kΔt), and observe an angle change of y2 þ y
0

1
for the time interval [kΔt, (k + 1)Δt).

https://doi.org/10.1371/journal.pcbi.1006235.g004
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change. That is, we have p00(θ) = δ0(θ). If a reorientation occurs in the time interval [kΔt,
(k + 1)Δt), but not in the preceding time interval, [(k − 1)Δt, kΔt), (as shown in Fig 4b)), then

the observed reorientation angle is θ1, as labelled in Fig 4b). This gives p01ðyÞ ≔ pY1
ðyÞ. The

marginal distribution of Θ1 is derived in the Section ‘Derivation of emission probabilities’, and

depends on the running time distribution and the reorientation kernel.

If, immediately after a reorientation, we have no reorientation in the following time inter-

val, then we may still observe a nonzero angle change since our discrete observation times do

not in general coincide with the reorientation events. In this case, we have a reorientation

event during [(k − 1)Δt, kΔt), and no reorientation during [kΔt, (k + 1)Δt). Such a situation

with a pattern of hidden states 1,0 is shown in Fig 4c), and the observed angle change during

the time interval [kΔt, (k + 1)Δt) corresponds to θ2 in the diagram. We note that, by geometric

arguments, we have

y1 þ y2 ¼ �; ð2Þ

where ϕ is the true angle change. Therefore, given a pattern of hidden states 1, 0 the angles θ1

and θ2 are not independent, and we have p10ðy1; y2Þ ¼ pY2 jY1¼y1
ðy2Þ. Note that throughout we

will assume that we can observe the previous angle change directly, which is equivalent to

assuming that the pattern of hidden states is in fact 0, 1, 0.

The remaining cases involve reorientation events in successive time intervals. Suppose we

have the case where we have two successive reorientation events, giving a pattern of hidden

states 1, 1, which is shown graphically in Fig 4d). This case is similar to the case with hidden

states 1, 0 (see Fig 4c)), in that we observe a contribution to the reorientation angle, θ2, from

the correction for the previous reorientation event, and also a contribution from the new

reorientation event, y
0

1
. As can be seen in Fig 4d), these contributions sum to give an

observed angle change for the time interval [kΔt, (k + 1)Δt) of y ¼ y2 þ y
0

1
. The probability

density for sums of random variables can be expressed as a convolution [28]. Hence,

p11ðy1; yÞ ¼ ðpY1
� pY2jY1¼y1

ÞðyÞ, where � is the convolution operator. Any further cases

involve multiple reorientation events within a single time interval which occurs rarely, with

probability on the order of OððlDtÞ2Þ. We can safely neglect these provided λΔt� 1.

To summarise therefore, the emission probabilities (that is the probability of observing a

certain angle change given the sequence of hidden states) in the case without noise can be

given as follows:

p00ðyÞ ¼ d0ðyÞ;

p01ðyÞ ¼ pY1
ðyÞ;

p10ðyÞ ¼ pY2 jY1
ðyÞ;

p11ðyÞ ¼ ðpY2 jY1
� pY0 ÞðyÞ:

Model with measurement noise

To account for noise, we introduce another layer of states in our diagram of state dependen-

cies, as shown in Fig 3. Let zk be the noisy observed angle change at time kΔt, which is a noisy

observation of θk, such that for a noise model K we have zk * K(�, θk). Alternatively, we can

write the noisy observed angle as

zk ¼ yk þ �k; ð3Þ

where �k * K(�, 0). Under the assumption of a wrapped normal noise model, �k * N(0, σ2),
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where σ is the magnitude of the measurement noise. Since Eq (3) represents zk as a sum of ran-

dom variables, it becomes clear that we can obtain the noisy emission probabilities, qij, corre-

sponding to a pattern of hidden states i, j via the following convolution:

qijðyÞ ¼ ðpij � KÞðyÞ

¼

Z

Y

pijðy � xÞKðx; 0Þ dx:

To extend our previous results to the noisy case, we therefore need to compute these convolu-

tions, a task that must be carried out numerically.

Derivation of emission probabilities

In previous work [29], marginal distributions for the observed angle change, Θ1, were obtained

and we summarise the arguments here. Fig 5 shows the true angle change, F, and the observed

angle change, Θ1, based on discrete time observations of the VJP for the case of hidden states

0, 1.

By changing co-ordinates from the displacement, L, (which is given by the running time

distribution fτ) and true angle change, F, to Cartesian co-ordinates X and Y, and then to polar

co-ordinates, R and Θ1, we can obtain a joint distribution for R and Θ1 of

fR;Y1
ðr; y1Þ ¼

r
cDtðcDt � r cos y1Þ

fF arccos r2 sin2 y1 � ðcDt � r cos y1Þ
2

r2 sin2 y1 þ ðcDt � r cos y1Þ
2

" #� �

; if ðr; y1Þ 2 C;

0; otherwise;

8
><

>:

where C = {r� cΔt, θ 2 [−π, π)} is the set of permissible values for r and θ, Δt is the discretisa-

tion in time and c is the running speed. Integrating fR;Y1
ðr; y1Þ over r allows us to obtain the

marginal distribution for θ1 via

fY1
ðy1Þ ¼

Z 1

0

fR;Y1
ðr; y1Þ dr:

In the case where we assume a uniform reorientation kernel, fFð�Þ ¼ 1=2p1½� p;pÞð�Þ, then this

Fig 5. True and observed angle changes (F and Θ1, respectively) based on discrete time observations of a VJP

without measurement error. Cartesian co-ordinates X and Y are shown in addition to polar co-ordinates R and Θ1.

The particle is moving along the trajectory from left to right as shown by the arrows.

https://doi.org/10.1371/journal.pcbi.1006235.g005
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integral becomes

fY1
ðy1Þ ¼

Z cDt

0

r
2pcDtðcDt � r cos y1Þ

dr

¼
� 1

2pcDt cosðy1Þ

Z cDt

0

1þ

cDt
cos y1

r � cDt
cos y1

 !

dr

¼
� 1

2pcDt cosðy1Þ
r þ

cDt
cos y1

log
�
�
�
�r �

cDt
cos y1

�
�
�
�

� �cDt

0

¼
� 1

2pcos2 y1

ðcos y1 þ logð1 � cos y1ÞÞ:

We note that the marginal distribution for θ1 does not depend on the speed, c, or the time dis-

cretisation, Δt. This is intuitive because fY1
is the pdf of a certain observed angle change, θ1,

given there was a reorientation in that interval, irrespective of the length of that interval.

Derivation of the joint distribution of Θ1 and Θ2. By considering the displacement in

the X and Y directions during a time step, we have

r cosðy1Þ ¼ l þ ðcDt � lÞ cosð�Þ;

r sinðy1Þ ¼ ðcDt � lÞ sinð�Þ:

Dividing these expressions, we can relate θ1 to l and ϕ by

tanðy1Þ ¼
ðcDt � lÞ sinð�Þ

l þ ðcDt � lÞ cosð�Þ
; ð4Þ

and rearranging for l, we have

l ¼
cDtðtan� � tan y1Þ

tan�þ tan y1ðsec� � 1Þ
:

Differentiating with respect to θ1, we obtain

@l
@y1

¼
� cDt sec2 y1

tan�þ tan y1ðsec� � 1Þ
�
cDtðtan� � tan y1Þ sec2 y1ðsec� � 1Þ

ðtan�þ tan y1ðsec� � 1ÞÞ
2

;

which can be simplified to give

@l
@y1

¼
� cDt sin�

ðsin� cos y1 þ sin y1ð1 � cos�ÞÞ2
:

To transform from coordinates (L, F) to coordinates (Θ1, F), we can use the Jacobian JL, F,

where

det JL;F ¼
@l
@y1

¼
� cDt sin�

ðsin� cos y1 þ sin y1ð1 � cos�ÞÞ2
: ð5Þ

Therefore the joint distribution of θ1 and ϕ is

fY1 ;F
ðy1; �Þ ¼

jcDt sin�j
ðsin� cos y1 þ sin y1ð1 � cos�ÞÞ2

:f�ð�Þ:
1

cDt
; if y1; � 2 C;

0; otherwise;

8
><

>:

where C = {(θ1, ϕ):ϕ 2 [−π, π), θ 2 (min(0, ϕ), max(0, ϕ))}. Under the assumption that ϕ is
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uniform on [−π, π), as described in the Section ‘Velocity jump process models’, such that

fFð�Þ ¼ 1=2p1½� p;pÞð�Þ, we have

fY1 ;F
ðy1; �Þ ¼

jsin�j
2pðsin� cos y1 þ sin y1ð1 � cos�ÞÞ2

; if y1; � 2 C;

0; otherwise:

8
><

>:
ð6Þ

Changing variables again to (θ1, θ2), via ϕ = θ1 + θ2, we have

fY1 ;Y2
ðy1; y2Þ ¼

jsinðy1 þ y2Þj

2pðsinðy1 þ y2Þ cos y1 þ sin y1ð1 � cosðy1 þ y2ÞÞÞ
2
; if y1; y2 2 C;

0; otherwise;

8
><

>:
ð7Þ

where C = {(θ1, θ2): θ1 + θ2 2 [−π, π)}. From this joint distribution, we can then find the condi-

tional distribution of θ2 given θ1, which is required to give p10ðyÞ ¼ fY1 ;Y2
ðy1; yÞ=fY1

ðy1Þ.

Particle MCMC algorithm

The pMCMC algorithm used in this work is given in Algorithm 1 for an observed dataset y =

{yk | k = 1, 2, . . ., T}. We use a Metropolis-Hastings MCMC algorithm [30], proposing new

parameters using a proposal distribution q(�|θ). In step 6 of Algorithm 1, we need to evaluate

the likelihood, p(y|θ), in calculating the acceptance probability for the proposed move. We

replace the likelihood with an unbiased estimate of the likelihood, p̂ðyjyÞ, obtained from a par-

ticle filter.

Algorithm 1 Particle MCMC
1: Initialise parameters, y0.
2: Run a particle filter (see Algorithm 2) to compute an estimate of

the marginalised likelihood p̂ðyjy0Þ, where y is the observed data.
3: for j ¼ 1 : N do
4: Draw parameters y

� from a proposal distribution qð�jyj� 1Þ.
5: Run a particle filter to compute an estimate of the marginalised

likelihood p̂ðyjy�Þ.
6: Accept the proposed move with probability a where

a ¼ max 1;
pðy

�
Þqðyj� 1jy

�
Þp̂ðyjy�Þ

pðyj� 1Þqðy
�
jyj� 1Þp̂ðyjyj� 1Þ

 !

:

If the move is accepted, set yj ¼ y
�, otherwise set yj ¼ yj� 1.

7: end for
Algorithm 2 Bootstrap particle filter

1: Sample a collection of particles fx1
1
; . . . ; xM

1
g from an initial density

pðx1Þ.
2: for i ¼ 1 :M do
3: Compute the weights for each particle, i, via wi

1
¼ pðy1jxi1; yÞ:

4: Find the normalised weights

~wi
1
¼

wi
1PM

j¼1
wj

1

:

5: end for
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6: Resample N times with replacement from the collection of particles
fx1

1
; . . . ; xM

1
g with probabilities given by the normalised weights

fw1
1
; . . . ;wM

1
g.

7: for t ¼ 1 : ðT � 1Þ do
8: for i ¼ 1 :M do
9: Evolve the current collection of particles according to the

forward model, by drawing xitþ1
� pðxtþ1jxit; yÞ:

10: Compute the weights for each particle, i, via wi
tþ1
¼ pðytþ1jxitþ1

; yÞ:

11: Find the normalised weights

~wi
tþ1
¼

wi
tþ1

PM
j¼1

wj
tþ1

:

12: end for
13: Resample M times with replacement from the collection of

particles fx1
tþ1
; . . . ; xMtþ1

g with probabilities given by the normalised
weights f~w1

tþ1
; . . . ; ~wM

tþ1
g.

14: end for
15: Obtain an estimate of the marginal likelihood using the unnormalised

weights, via

p̂ðyjyÞ ¼
YT

t¼1

1

M

XM

i¼1

wi
t: ð16Þ

16: return p̂ðyjyÞ
Details of the bootstrap particle filter algorithm [24] used within the pMCMC algorithm are

given in Algorithm 2. A particle filter represents the state of the system via a population of

weighted particles [31]. We obtain an estimate of the likelihood by successively updating the

hidden state of the system (represented via the particles) and comparing this hidden state with

the observed data at each observed time point, to give new weights for the particles according

to how well they match the observed data. To prevent a degenerate situation where the state of

the system is represented solely by a single particle, it is necessary to resample from the popula-

tion of particles according to their weights.

Implementation of Markov Chain Monte Carlo methods

We use a Metropolis-Hastings algorithm to run the MCMC algorithm with a bootstrap particle

filter [24] using 400 particles to provide an estimate of the likelihood. As a proposal distribu-

tion, we use the kernel K(., θ) * N(θ, S), where

S ¼
0:5 0

0 0:05

" #

:

We run the Markov chain for N = 50,000 steps with thinning of m = 2 which gives a minimum

effective sample size of neff = 743 for the slowest chain to converge, corresponding to the small-

est value of Δt. We demonstrate the convergence of our Markov chains in S4 Fig. We choose

the number of particles in the filter by considering the variance in estimating the log likelihood

using the particle filter at the true values of the parameters used to generate the synthetic data,

and balancing this with the time needed to run the particle filter to obtain a single estimate.

The variance and computational cost are shown in S5 Fig. To further tune the number of parti-

cles for optimal efficiency of the pMCMC algorithm, the recommendations in Sherlock et al.
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[32] and Pitt et al. [33] could be employed. The prior is uniform on the log of the parameters

over the intervals [−1.70, 1.30] and [−5, 1] for λ and σ, respectively.

Approximate Bayesian computation

An alternative method commonly used for parameter estimation for models with intractable

likelihoods is approximate Bayesian computation, or ABC [34, 35]. Suppose we can simulate

data from a generative model, x * g(x|θ). An example would be simulating a path from our

VJP model. To generate samples from the posterior distribution, we repeatedly generate

parameters from the prior, θ * π(θ), and use these parameters in our model to simulate syn-

thetic data, x * g(x|θ). We compare the simulated data with the true observed data and, if it is

similar enough, we accept the sampled parameter as a sample from the posterior. In cases

where the data are discrete, we can consider whether simulated data, x, are equal to observed

data, y, and accept parameters correspondingly, which gives exact samples from the posterior.

Often, though, our models provide continuous data and the acceptance rate from an exact

comparison is prohibitively small. Instead we can take a distance function and consider when

the distance between x and y is within a chosen tolerance �, that is d(x, y)< �. This introduces

an approximation which becomes exact only in the limit �! 0.

In practice, datasets can be high dimensional, resulting in very low acceptance rates for sim-

ulated data. By using summary statistics of data instead of the full datasets, we can reduce the

dimensionality and obtain higher acceptance rates. Using (insufficient) summary statistics

introduces another approximation into the method, meaning we compare d(s(x), s(y))< �,

where s(x) gives the summary statistics for dataset x. We present the ABC method in Algo-

rithm 3, and will show a comparison between application of pMCMC and ABC for parameter

estimation of a VJP model based on time series data.

Algorithm 3 ABC rejection sampling
1: Sample parameter value y from the prior pðyÞ.
2: Generate synthetic dataset from the model x � gðxjyÞ.
3: Accept sample y if dðsðxÞ; sðyÞÞ < �, for a distance function, dð�; �Þ,

summary statistics, sð�Þ, and tolerance �.

In practice, the choice of summary statistics can have a strong effect on the efficiency of the

ABC algorithm. Here, we perform ABC with three different choices of summary statistic. First,

we consider using the full data, a vector of the noisy observed angle changes, zi, i = 1, . . ., T.

Second, we use a simple threshold-based summary statistic which produces a count of the

number of observed angle changes with magnitude above a certain threshold, h. That is

sðzÞ ¼
PT

i¼1
1jzi j>h. This provides an intuitive one-dimensional summary statistic. Finally, we

use a transition matrix as a summary statistic of the data, an approach described by Jones et al.

[13]. A transition matrix allows us to summarise time series data via a two-dimensional bin-

ning of the observed angle changes, based on the current observed angle change and the previ-

ous observed angle change. We bin the observed angle change time series data into an n by n
matrix, where n = 5. This summary statistic provides a much lower dimensional summary of

the data for small values of Δt, although for large values of Δt we may end up with higher

dimensional (sparse) data compared to the full time series data, as in this case there will be

fewer than n2 observations. The distance function, d(s(x), s(y)), used also plays a role in the

parameter estimation possible via ABC, and has been investigated in other work [13, 36–38].

In using Algorithm 3, we generate N = 1,000,000 synthetic datasets based on parameters

sampled from the prior, calculate the Euclidean distance between these synthetic datasets and

our observed data, and select the parameters corresponding to the 0.1% of the datasets closest

to the observed data. As for the pMCMC approach, we take a duration of time series Tfinal =
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64s, and a prior uniform on the log of the parameters on the intervals [−1.70, 1.30] and [−5, 1]

for λ and σ, respectively.

Results

We are able to investigate the effects of experimental design such as the discretisation, Δt, of a

time series on the estimated biophysical parameters, using the framework for inferring the

parameters of a VJP described in the Section ‘Methods’. We demonstrate the effects of restric-

tions imposed by experimental constraints on a trade-off between discretisation in time versus

measurement noise. Our results can be used to provide guidance for experimental design

choices. As we vary experimental design hyperparameters, such as Δt, we will produce a sepa-

rate posterior distribution for each of the model parameters, λ and σ, for each value of the

hyperparameter. This approach allows us to illustrate directly the effects of the experimental

design hyperparameter on the inferred posterior distributions.

Increasing Δt results in an abrupt breakdown in the posterior

We first assume that the magnitude of the noise on the observed angle, σ, is fixed. We vary the

sampling frequency used to collect the data (corresponding to using different values of Δt). We

generate observed (in silico) data by simulating one single trajectory directly from the VJP

model. We discretise this trajectory to generate observed angle changes with a temporal resolu-

tion of Δt, and add independent Gaussian noise with zero mean and variance σ2 to these obser-

vations, to represent measurement noise. Using datasets generated from the same simulated

path discretised at different temporal resolutions, Δt, as shown in Fig 6, we infer the posterior

distribution for the reorientation rate, λ, of the VJP model and the magnitude of the measure-

ment noise, σ, via pMCMC.

Fig 6. The data used in the pMCMC inference discretised at differing resolutions. The true trajectory is shown

without discretisation in a). The same path is shown in b) with circle markers to show the observed positions with

Δt = 4s and filled triangular markers to show observed positions with Δt = 8s. The corresponding observed angle

changes are shown in c) for different values of Δt. Observations corresponding to multiple reorientations in a single

time interval are highlighted in red. Parameters used in generating these data were a reorientation rate of λ = 0.2 s−1, a

run speed of c = 50μms−1 and a total duration of observation of Tfinal = 64 s. A circular uniform distribution was used

for the reorientation kernel. Observations are shown without measurement noise.

https://doi.org/10.1371/journal.pcbi.1006235.g006
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The results of using pMCMC to infer model parameters are shown in Fig 7 for Δt = 1/8,

1/4, 1/2, 1, 2, 4, 8 seconds, with noise of unknown magnitude σ, where σ = 0.04 rad. The esti-

mated posterior distributions are very similar for small Δt, but we observe an abrupt break-

down in the quality of the posterior distributions obtained as Δt is increased. This breakdown

Fig 7. Results of parameter estimation via pMCMC for the reorientation rate, λ, and measurement noise, σ. Data collected with

different values of Δt and fixed measurement noise, σ = 0.04 rad, were used in a) and b). Data generated with a fixed value of Δt = 1 s and

different values of the measurement noise, σ, were used in c) and d). The marginal posterior distributions for λ are given in a) and c), while

the marginal posterior distributions for σ are shown in b) and d). The red dashed lines indicate the true values of parameters used in

simulation of the datasets. A reorientation rate of λ = 0.2 s−1 was used throughout.

https://doi.org/10.1371/journal.pcbi.1006235.g007
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in posterior quality arises for values of Δt� 2s, as multiple reorientation events in a time inter-

val start to become more common (see also S2 Fig). Provided that Δt and λ are such that the

probability of multiple reorientations in a time interval is small, we obtain accurate estimates

of the joint posterior distribution for the model parameters.

Increasing σ increases the variance of the posterior for λ
To investigate sensitivity of the posterior to measurement noise, we now fix the discretisation,

Δt, and vary the measurement noise amplitude, σ, used to create each dataset. Applying the

same analysis as in the previous subsection, for a fixed value of Δt = 1s, we obtain posterior dis-

tributions for the reorientation rate, λ, and measurement noise, σ, as shown in Fig 7. We find

that increasing the noise amplitude, σ, increases the variance in the posterior distribution

obtained for the reorientation rate, λ. In addition, we are able to accurately estimate the value

of σ used to generate the datasets.

We note that the presence of noise in the datasets results in a bias towards smaller estimates

of the reorientation rate, λ. This can be explained intuitively by reasoning that some reorienta-

tions leading to very small observed angle changes are mistaken for noise as σ increases.

More data provides better estimates

Let Tfinal be the total duration of our observations of the system. For a fixed value of the time

discretisation, Δt, varying Tfinal is equivalent to gathering a bigger dataset. We fix Δt = 1s and

allow Tfinal to vary so that we can consider the effects of collecting more data. In practice, col-

lecting more data experimentally may come at a cost. Quantifying the benefits of collecting

more data with an in silico model can aid decisions about whether it is worthwhile to collect a

larger dataset. Posteriors for the reorientation rate, λ, are shown in Fig 8.

Fig 8. Results of parameter estimation via pMCMC for the reorientation rate, λ, with Δt = 1s and σ = 0rad, whilst

varying Tfinal to give different sized datasets.

https://doi.org/10.1371/journal.pcbi.1006235.g008
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It is clear that larger datasets result in less bias and less variance for estimates of the reorien-

tation rate, λ. However, we note that running the particle filter within the pMCMC algorithm

becomes much more computationally intensive as the size of the dataset increases, scaling as

OðTÞ as the size of the dataset increases.

Experimental constraints

We investigate the implications of these results for experimental design by considering an

imaging experiment to observe the position of a particle of interest (for example, a bacterium)

at regular time points. The behaviour of our system of interest happens over a certain timescale

inherent to the biological process, so we fix the total duration for the imaging experiment,

Tfinal, based on this timescale. We consider how best to choose the time between successive

observations, Δt, given the restriction of a fixed photon budget. That is, we assume that the bio-

logical sample can only be exposed to a fixed number of photons before phototoxicity or

photobleaching significantly reduce the quality of, or destroy, any further potential data. We

assume that the sample is only exposed to photons during imaging. The results of Zhao et al.

[39] suggest that the signal to noise ratio (SNR) is proportional to the square root of the time

between successive frames, Δt, giving a relationship of the form

SNR ¼ k
ffiffiffiffiffi
Dt
p

; ð8Þ

where κ is a constant that depends on the imaging set up, but not other experimental design

choices. Assuming that for our model the noise is of magnitude σ, we find an inverse square

relationship between σ and Δt, such that

s ¼
K
ffiffiffiffiffi
Dt
p ; ð9Þ

for a new constant K which is κ times the average angle change.

To investigate how to choose Δt given a fixed photon budget, we set a value of the propor-

tionality constant and vary σ and Δt according to this relationship. We take proportionality

constants K = 0.08 and K = 0.8 in Fig 9. A larger value of the proportionality constant, K, corre-

sponds to worse imaging conditions, in that for a fixed value of Δt, the noise in the images

obtained will be greater. Therefore we expect our inference method to perform worse for a

larger value of K. We then ask the question, for a given value of K, how should we choose Δt to

improve the parameter estimation process? Our results in Fig 9 suggest that the value of Δt
should be taken as small as possible, even if this increases the noise present in the data.

Comparison to approximate Bayesian computation

A common approach for mathematical and computational models where the likelihood is

intractable is to apply ABC for parameter inference [34, 35]. Although ABC produces samples

from an approximate posterior, rather than the exact posterior distribution, it is intuitively

simple to understand and implement. ABC methods have been applied to parameter estima-

tion for biased, persistent random walk models very similar to our VJP model [12, 13, 40, 41].

For these methods, the choice of which summary statistics to use has notable effects on the

approximate posterior distributions obtained via ABC. We consider three different summary

statistic choices: the full time series of observed angle changes, a threshold-based summary sta-

tistic, and a transition matrix summary statistic.

We compare the quality of resulting posterior distributions obtainable with ABC to those

from pMCMC. Our results, shown in Fig 10, indicate that the choice of summary statistic has

a substantial effect on the inferred posterior distribution. When the dimensionality of the data
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observed is high, ABC performs poorly at approximating the posterior for the parameters of

our VJP, which we were able to sample exactly using pMCMC. For the full time series sum-

mary statistic, the dimensionality is high (up to 511 dimensions for Δt = 0.125s), meaning that

the approximation we obtain to the posterior is very poor (see Fig 10a) and 10b)). Since

Fig 9. Results of parameter estimation via pMCMC for the reorientation rate, λ, and measurement noise, σ, using data generated with

a fixed value of Δt and different values of the measurement noise, σ. We have varied both σ and Δt with an inverse square root

relationship between these, as in Eq (9). The posterior distributions for λ are given in a) and c), while the posterior distributions for σ are

shown in b) and d). The proportionality constant is K = 0.08 for a) and b), and K = 0.8 for c) and d).

https://doi.org/10.1371/journal.pcbi.1006235.g009
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Fig 10. Parameter estimation via ABC rejection sampling for the reorientation rate, λ, in a), c), and e) and for the

measurement noise, σ, in b), d), and f) using different summary statistics and data collected with noise of

magnitude σ = 0.04rad, for different values of Δt. N = 1,000,000 datasets were generated and parameter samples

corresponding to the closest 0.1% of the datasets were retained to give the approximate posterior. As summary

statistics, we take the full time series of observed angle changes in a) and b). In c) and d), we use a simple threshold
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reorientation events are rare, particularly for small Δt, a greater fraction of the distance

between simulated datasets and observed data is accounted for by the observation noise. ABC

excludes part of the parameter space considered in the prior, but does poorly at identifying the

reorientation rate, λ, since reorientations are rare events.

The threshold summary statistic is effective at identifying the number of reorientation

events and provides a reasonable approximation of the marginal posterior for λ. However, it

offers very little information about the observation noise, σ, except in relation to the threshold

chosen. As a result the approximate marginal posteriors for σ are poor (see Fig 10c) and 10d)).

Another summary statistic more informative about σ could be used in addition here to

improve results.

When using the transition matrix summary statistic, the approximate posteriors for small

Δt provide better estimates of the true reorientation rate and are much closer to the true poste-

rior, as shown in Fig 10e) and 10f). The transition matrix is able to capture the distribution of

the angle changes and dependence on recent history, whilst also reducing the dimensionality

of the data. However, the transition matrix is unable to distinguish angle changes smaller than

the resolution of the discretisation, 2π/n, and so offers limited information about the measure-

ment noise, σ. This issue could be mitigated by increasing the number of bins used, n, to give a

finer discretisation of the observed angle changes (which would require sufficient data), or by

targeting the noise with an additional summary statistic.

We still notice a deterioration in the quality of the approximate posterior distributions as

Δt increases when using ABC for each choice of summary statistic even though there are no

explicit assumptions made about multiple reorientations within a time interval, as was the case

when using pMCMC. This suggests that the lack of information content about the parameters

may be a property of the data, rather than the inference method. For large values of Δt, the

data contains limited information about the model parameters, particularly the reorientation

rate, λ.

To obtain potentially improved results for inference with ABC for this type of data (time

series observations of angle changes), we could consider a more systematic choice of summary

statistics [42–44] or a more efficient version of the ABC algorithm, such as ABC-SMC [45, 46],

which applies sequential Monte Carlo methods to generate a sequence of approximations to

the posterior distribution, using the previous posterior distribution to propose parameters for

the next approximation. Other improvements could be possible by applying a regression

adjustment, via linear regression [35] or using nonlinear regression techniques such as with a

neural network [47].

Model misspecification

In general, in applying a model to a real world dataset, any model that we choose will be an

approximation of the true data generating process. Before applying our inference methods to

real world data, where we will fit to a model that is but an approximation to the true biological

process, it is important to check the robustness of our method to fit a misspecified model. We

investigate this robustness computationally by considering a misspecified model which should

be no longer misspecified in an appropriate limit. It has previously been shown by Frazier

et al. [48] that inference with ABC on a misspecified model can concentrate posterior mass

around different pseudo-true parameter values depending on the version of ABC used.

summary statistic counting the number of observed angle changes with magnitude above a threshold, here taken as

h = 0.1 rad. In d) and e), we use a transition matrix summary statistic using n = 5 bins to discretise the observed angle

change.

https://doi.org/10.1371/journal.pcbi.1006235.g010
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Here, we demonstrate the robustness of our inference framework, using the pMCMC algo-

rithm within a hidden states framework, to give relevant estimates for a misspecified model.

We generate synthetic datasets using a wrapped normal reorientation kernel with dispersion

parameter γ, but choose to estimate the model parameters with a model different to the data

generating process by assuming a uniform reorientation kernel. As previously, we attempt to

infer posterior distributions for the reorientation rate, λ, and the measurement noise, σ. The

effect of misspecifying the model will be that some of the transmission probabilities used in the

particle filter estimate of the likelihood of model parameters given the data will be wrong (see

S3 Fig). This will give rise to some bias in our estimates of the likelihood within the particle fil-

ter (as demonstrated by Fig 11), and hence to some bias in our final approximation of the pos-

terior. We will consider the effect of varying the dispersion parameter, γ, in the reorientation

kernel used to generate the synthetic dataset, on the resulting posterior distribution for the

model parameters. In the limit γ!1, the wrapped normal distribution converges to the uni-

form distribution on (−π, π], meaning that the model is no longer misspecified. The misspeci-

fication of the model is most pronounced for smaller values of γ.

We find, for a fixed value of the measurement noise, σ, that a reasonable approximation to

the true posterior can be obtained for values of the dispersion, γ, larger than the measurement

noise, σ. The approximate posterior distributions obtained are shown in Fig 12. When the dis-

persion, γ, is a similar magnitude to the measurement noise, which here is σ = 0.04rad, then

reorientation events are frequently missed resulting in low estimates of the reorientation rate.

For larger values of the dispersion parameter, we are able to robustly sample from the posterior

distribution for λ and σ, despite notable differences in the misspecified reorientation kernel

compared to the assumed uniform reorientation kernel. In this case, when a reorientation

occurs, the observed angle changes are sufficiently different to the background measurement

noise, that often it is interpreted as a reorientation event by the particle filter, despite error in

the emission probabilities due to the model misspecification.

Application to RNA transport dataset

To demonstrate the effectiveness of our inference framework, we apply it here to a dataset of

tracks obtained from imaging the transport of RNA-protein (RNP) complexes in a Drosophila
oocyte. These complexes move on microtubules via molecular motors [1]. Occasionally, the

complexes fall off a microtubule, and reattach on a different microtubule moving in a different

direction. We neglect the diffusive stationary phase between falling off and reattaching on

microtubules, meaning that we assume a running phase is followed immediately by another

running phase. We apply our modelling framework, assuming an exponentially distributed

running time distribution, fτ(t) = λ exp(−λt), with constant running speed, c, and a uniform

reorientation kernel, fFð�Þ ¼ 1=2p1ð� p;p�ð�Þ.

We take 10 tracks of separate complexes moving in Drosophila nurse cells obtained from

an in vivo imaging dataset of movements of staufen protein available in Zimyanin et al. [49].

Each track is short since the dataset is imaged in a single plane in the z direction, meaning

that complexes move out of the frame of view frequently. The tracks used are shown in Fig

13a). We infer a subposterior distribution for each individual track and combine these

together to produce a single posterior distribution combining data from different tracks. To

combine the subposteriors, we use the consensus Monte Carlo algorithm of Scott et al. [50]

developed for running MCMC on large datasets, via the implementation in the R [51] pack-

age parallelMCMCcombine [52]. This produces an approximate posterior distribution

for the turning rate, λ, and measurement noise, σ, as shown in Fig 13b). We find 95% credible

intervals for the turning rate λ of [1.06, 1.58] s−1 and for the measurement noise σ of [0.27,
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0.47] rad, respectively. Based on a VJP model corresponding to Brownian motion, the rela-

tion λ = c2/(2D) holds for a constant running speed c and diffusion constant D. The running

speed in active transport for staufen RNPs is of the order 0.5μms−1 [49], and based on the size

of the staufen protein, we can estimate its diffusion coefficient as 1μm2s−1 [53], which gives a

Fig 11. Estimates of the log likelihood via a particle filter for data generated with the true model and under a misspecified model. In a)

and b), we show estimates of the log likelihood for different values of λ and σ based on a dataset simulated with a uniform reorientation kernel,

and assuming this same reorientation kernel in estimating the log likelihood via the particle filter. The peak of the log likelihood coincides with

the true values of the parameters shown by the red dashed line. In c) and d), we show estimates of the log likelihood for different values of λ
and σ based on a dataset simulated with a wrapped normal reorientation kernel with dispersion γ = 0.1. However, we assume a uniform

reorientation kernel in the particle filter. This model misspecification results in a slight shift in the peak of the log likelihood compared to the

true parameter values used shown by the red dashed line. The log likelihood estimates will be biased in the case of the misspecified model.

https://doi.org/10.1371/journal.pcbi.1006235.g011
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Fig 12. The posterior distribution obtained under model misspecification converges to the distribution obtained

with the true model as the misspecified model approaches the true model. We assume a wrapped normal

reorientation kernel with dispersion parameter γ and vary this dispersion parameter. For large γ, this tends in

distribution towards a uniform reorientation kernel, as shown in a). The posterior distributions obtained from

performing inference with data generated for different values of γ are shown in b), with the corresponding marginal
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similar order of magnitude for λ as the estimate obtained here. Evidently the dataset used

here is very noisy, but nonetheless we are able to obtain estimates for the turning rate in a

model of RNA transport.

Discussion

In this work, we have considered parameter estimation of a VJP model for biological transport

and how insights from this parameter inference process can inform experimental design. We

generated estimates of the posterior distribution for parameters of a VJP model based on noisy

datasets collected at varying temporal resolutions. To perform this parameter inference, we

used pMCMC and derived the appropriate emission probabilities. We observed an abrupt

breakdown in the quality of the posteriors obtained when decreasing the temporal resolution.

This transition corresponds to a breakdown in modelling assumptions underlying the deriva-

tion of the emission probabilities. For example, as Δt increases we see multiple reorientations

in a time interval. These assumptions are necessary in the development of our inference frame-

work which relies on hidden states consisting of binary variables indicating whether or not a

reorientation occurred in a time interval.

Increasing the magnitude of the noise in the data slowly decreased the quality of the median

posterior estimates and increased the posterior variance. In general, better estimates were

obtained when more data was available, either by decreasing Δt, or by increasing the total

duration of the experimental observations, Tfinal. These results are intuitive, but the real benefit

here is in quantifying the effects of choices of these experimental hyperparameters to enable

researchers to make decisions about experimental design.

distributions shown in c) and d). In b), the true parameter values used are shown by the dark blue circle. In c) and d),

the true parameter values are given by the red dashed line. Parameters used to generate the synthetic datasets are λ = 0.2

s−1, σ = 0.04 rad, Δt = 0.25 s, c = 50μms−1, and the details of the pMCMC are as in Fig 7.

https://doi.org/10.1371/journal.pcbi.1006235.g012

Fig 13. Posterior distribution for model parameters λ and σ for RNA transport in a Drosophila oocyte. The results are based on 10 tracks labelled

manually and sampled at a resolution of Δt = 0.478 s, with subposteriors obtained for each track and combined to give a single posterior via Consensus

Monte Carlo. The tracks are shown drawn on the first frame in a), although not all tracks start from the same time point. The marginal posterior

distributions for the reorientation rate, λ, and the measurement noise, σ, are shown in b).

https://doi.org/10.1371/journal.pcbi.1006235.g013
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We also compared parameter estimation with pMCMC to that with ABC, and results sug-

gest that different methods are appropriate in different situations, dependent on the data avail-

able. In particular, pMCMC performs well provided the assumptions made in deriving the

emission probabilities hold, which is true for small Δt. For larger values of Δt, neither ABC nor

pMCMC provide accurate samples from the full posterior distribution. The information about

the model parameters present in the data for large Δt is limited. In terms of computational cost

comparisons between ABC and pMCMC, an ABC rejection sampler is highly parallelisable

over independent parameter samples [54] whereas pMCMC is less amenable to simple paralle-

lisation. Making use of this parallelisation, our implementation of ABC rejection sampling was

more computationally efficient than pMCMC. We show a quantitative comparison between

the methods in S6 Fig. We note that the computational cost is strongly problem and imple-

mentation dependent.

Through comparison between inference with pMCMC and ABC, our results highlight a

weakness of inference with ABC, in that it performs poorly for high dimensional data, and also

a weakness of our application of pMCMC, which is that it relies upon assumptions about the

number of reorientation events in a time step; when this fails our posterior estimates are no

longer accurate. We note, additionally, that pMCMC allows us to sample from the exact poste-

rior for parameters from a model (given that model is appropriate to describe the data),

whereas via ABC we obtain approximate posteriors for a fixed tolerance, �, which only become

exact in the limit as �! 0.

In Section ‘Methods’, we described a framework for inference using pMCMC, and made

certain assumptions about the VJP model, such as a separation in timescales between runs and

reorientations, and a memoryless exponential distribution for the running time. Although

many of these are standard assumptions, it would be possible to perform the same analysis in a

more general model. For instance, if a running time distribution was chosen that does not sat-

isfy the memoryless property, we could introduce an extra hidden variable, s, for the time since

the last reorientation. In addition, in this work we have described parameter estimation via a

hidden states formulation of the VJP model using dependence on hidden states from two time

intervals. This can be extended to hidden states from three time intervals, which can allow rare

consecutive reorientation events to be handled more accurately, albeit at greater computa-

tional cost.

Given a fixed photon budget and a trade-off between temporal sampling frequency and

measurement noise, our results in the Section ‘Experimental constraints’ indicate that a small

value of Δt should be used for the discretisation in time i.e. that motile individuals should be

imaged as frequently as possible. In practice, there may be disadvantages to this choice of Δt.
Computationally, conducting parameter inference via pMCMC will be significantly more

expensive, although the computational run time may still be small in comparison to the dura-

tion of an experimental protocol. Datasets with higher noise present may also be much harder

to interpret. Here, we have assumed that the noise present in the data is applied to the observed

angle change. In reality there is noise on each pixel, which may contribute to an uncertainty in

identifying the observed position of the object of interest.

Additionally, we considered using our particle MCMC inference framework to fit data

from a misspecified model; our results indicate that the framework is robust to moderate

amounts of model misspecification. This allowed us to be confident in applying our frame-

work to a real dataset of RNA tracks to consider the motility of RNA-protein complexes mov-

ing on the cytoskeleton, demonstrating the ability of our framework to obtain parameter

estimates in challenging conditions with very noisy data.
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Supporting information

S1 Appendix. Comparison with simulations. Description of simulations to verify the analytic

form for the emission probabilities.

(PDF)

S1 Fig. Comparison with simulations. Comparison between simulated results and theoretical

predictions of the observed angle change for hidden states of the form 0, 1 in a), 1, 0 in b), and

1, 1 in c). The simulated results are shown by the histogram and the theoretical prediction for

the observed angle change distribution is shown as the red dashed line. For both b) and c), we

have conditioned on an observed angle change in the previous time interval of 0.1 rad, and for

c) we also conditioned on an observed angle change prior to that of −1.0 rad. To generate

these results, we used N = 107 simulated trajectories with running speed c = 50μms−1, uniform

reorientation kernel, reorientation rate λ = 0.2 s−1 and time discretization Δt = 1 s.

(TIF)

S2 Fig. Probability of hidden state sequences. The probability of sequences of hidden states

as Δt varies with reorientation rate λ = 0.2 s−1. For large values of Δt, the assumptions of the

model start to break down as multiple reorientations appear within a single time interval.

(TIF)

S3 Fig. Emission probabilities for misspecified model. Comparison between assumed distri-

bution of observed angle changes and simulated distributions when using a misspecified

model for the reorientation kernel. We simulate N = 107 angle changes using a wrapped nor-

mal reorientation kernel with dispersion parameter γ given a certain sequence of hidden states

(0, 1 in a), d), g); 1, 0 in b), e), h); 1, 1 in c), f), i)) and show a grey histogram of the simulated

observed angle changes. To demonstrate the misspecification in the emission probabilities, we

plot the assumed theoretical distribution of the observed angle changes as a red dashed line,

based on assuming that the reorientation kernel is a uniform distribution. The model is more

misspecified for a smaller value of the dispersion parameter γ. As in S1 Fig, we have condi-

tioned on an observed angle change in the previous time interval of 0.1 rad for b), c), e), f), h),

and i). For c), f), and i), we also conditioned on an observed angle change prior to that of −1.0

rad. We used a dispersion parameter, γ, in the reorientation kernel of γ = 0.4 for a), b), and c),

γ = 1 for d), e), and f), and γ = 6.4 for g), h), and i).

(TIF)

S4 Fig. Traceplots and autocorrelation functions for MCMC chains. Traceplots and auto-

correlation functions for MCMC chains to analyse convergence are shown for data generated

with parameters λ = 0.2 s−1, Δt = 0.25 s, σ = 0.04 rad, as for the first posterior shown in Fig 7a).

Similar results are seen in sampling for other posterior distributions shown.

(TIF)

S5 Fig. Analysis of number of particles in the particle filter. The number of particles used in

the particle filter affects the variance of estimates of the log-likelihood. However, a higher

computational cost is required to use more particles. In a), we show how the distribution of

the log-likelihood estimates varies (provided the filter does not become degenerate) as we

change the number of particles. We use 1000 runs of the particle filter with the specified num-

ber of particles and estimate the log-likelihood at the true value of the parameters (λ = 0.2 s

and σ = 0.08 rad) used to generate a synthetic dataset. In b), we illustrate the variance in the

(nondegenerate) log-likelihood estimates, and the mean time to obtain a single estimate. A

moderate increase in the compute time to run the particle filter offers substantial decrease in
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the variance of the log-likelihood estimates. To strike a reasonable balance, we use 400 particles

to generate the results presented in this work.

(TIF)

S6 Fig. The computational cost of pMCMC and ABC per effective sample size. The

computational cost of parameter estimation with pMCMC and ABC per effective sample

size depends on Δt. We quantify here a comparison between the computational cost of the

pMCMC and ABC methods for parameter estimation when varying Δt. Datasets were gener-

ated with σ = 0.04 rad as in Fig 7a). The cost to produce a sample via pMCMC increases as

Δt decreases, as shown by the grey squares. The cost for ABC remains approximately con-

stant with Δt as we simulate data from the model a fixed number of times, N. The acceptance

rate, α, in ABC affects the sample size we produce for a fixed number of simulations, N. For

the results in Fig 10, an acceptance rate of α = 0.1% was used. This gives a cost per sample

lower than for pMCMC, shown by the blue circles and triangles. For a smaller acceptance

rate, α = 0.01% (shown by red circles and triangles), the cost per sample is much higher and

the plots of the posterior are unchanged compared to those for α = 0.1%. The results for

pMCMC are given by squares, ABC with transition matrix summary statistics are shown as

circles and ABC with time series summary statistics are shown as triangles. We note that the

computational cost depends strongly on the problem considered and the implementation

used.

(TIF)

S1 Code. Code implementing Bayesian inference via pMCMC for a VJP model. Example

code to implement pMCMC for a VJP model, as described in Section “Methods”, is available

in a .zip folder or at https://github.com/shug3502/pmmc_inference_for_vjps.

(ZIP)
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