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Abstract
Ca  oscillations, a widespread mode of cell signaling, were reported in
non-excitable cells for the first time more than 25 years ago. Their fundamental
mechanism, based on the periodic Ca  exchange between the endoplasmic
reticulum and the cytoplasm, has been well characterized. However, how the
kinetics of cytosolic Ca  changes are related to the extent of a physiological
response remains poorly understood. Here, we review data suggesting that the
downstream targets of Ca  are controlled not only by the frequency of Ca
oscillations but also by the detailed characteristics of the oscillations, such as
their duration, shape, or baseline level. Involvement of non-endoplasmic
reticulum Ca  stores, mainly mitochondria and the extracellular medium,
participates in this fine tuning of Ca  oscillations. The main characteristics of
the Ca  exchange fluxes with these compartments are also reviewed.
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Introduction
Most of the time, the hormone-induced Ca2+ increases that activate 
a variety of essential intracellular processes take the form of Ca2+ 
oscillations. In non-excitable cells, these repetitive spikes mainly 
arise through the periodic exchange of Ca2+ between the endoplas-
mic reticulum (ER) and the cytosol, through the interplay between 
inositol 1,4,5-trisphosphate (InsP

3
)-sensitive Ca2+ channels and 

SERCA pumps1,2. This basic mechanism, summarized in Figure 1, 
has now been well characterized and accounts for the observed 
increase in the frequency of Ca2+ oscillations with increasing 
concentrations of InsP

3
 accompanying the rise in stimulation. 

Such a process is referred to as frequency encoding. It was 
often hypothesized that oscillations provide a digital signal to 
downstream effectors that are in turn stimulated in an ON or OFF 
manner. Indeed, if a process is activated above a threshold Ca2+ 
concentration, oscillations allow Ca2+ to reach this threshold repeti-
tively even if the average Ca2+ signal remains below the threshold3,4.

Based on the observed frequency encoding of the extracellular 
signal, it was also postulated that the physiological response in the 
form of secretion, gene expression, proliferation, etc., would in 
turn be sensitive to the frequency of Ca2+ oscillations5–8. Although 
intuitively attractive, such frequency sensitivity of the downstream 
targets of Ca2+ has not been well corroborated by data. Besides the 
beautiful example of Ca2+-dependent calmodulin kinase II regula-
tion by high-frequency Ca2+ spikes9 or of selective gene expression 
in T-lymphocytes4, there are few clear examples of physiological 
responses to Ca2+ increases that are quantitatively controlled by the 
frequency of the Ca2+ spikes. This statement does not mean that fre-
quency encoding does not occur or that the frequency of Ca2+ oscil-
lations does not affect the extent of the Ca2+-mediated physiological 
response. Indeed, a higher frequency of oscillations implies a larger 

average Ca2+ level, which may be per se the reason for the larger 
response. However, modulating the amplitude of the oscillations, 
their baseline level, or the duration of the spikes also modifies the 
average level and hence the response. As another example, spikes 
preceded by an important pacemaker-like Ca2+ increase could acti-
vate slower downstream targets characterized by a low threshold 
of activation. In such cases, frequency cannot be considered as the 
key characteristic of the oscillatory pattern and the response is not 
simply frequency sensitive. However, in the numerous studies about 
Ca2+ oscillations, frequency is the most studied parameter and the 
most commonly related to the extent of Ca2+-mediated physiological 
responses.

In fact, the relative scarcity of phenomena that are purely controlled 
by the frequency of Ca2+ oscillations is not so surprising given that 
the period of Ca2+ oscillations can be subject to a significant level 
of randomness (Figure 2 and 8,10). In some instances, it has even 
been explicitly observed that the frequency does not by itself regu-
late the extent of the second-messenger-mediated response. This is 
the case, for example, for carbachol-induced salivary secretion by 
acinar cells11. At mammalian fertilization, the total integrated Ca2+ 
signal input is the most relevant parameter ensuring completion of 
fertilization-associated events12. Interestingly, frequency encoding 
is also not a universal feature of Ca2+ oscillations, as it was shown 
in some cases, such as in acetylcholine-stimulated pancreatic acinar 
cells13, methacholine-stimulated lacrimal cells14, fish hepatocytes15, 
or in cell lines expressing the metabotropic glutamate receptor 516, 
that an increase in stimulation does not affect the frequency of 
the resulting Ca2+ oscillations. In these cases, of course, it cannot 
be expected that the frequency of Ca2+ oscillations would be the 
way by which cells encode the information related to the level of 
response that is precisely triggered by the stimulation.

Figure 1. Basic mechanism of cytosolic Ca2+ oscillations in non-excitable cells. These oscillations are initiated by the stimulus-induced 
rise in inositol 1,4,5-trisphosphate (InsP3) concentration and occur through a repetitive exchange of Ca2+ between the cytoplasm and the 
endoplasmic reticulum (ER).
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activities and influences the progression of hepatocellular car-
cinoma by enhancing both the amplitude and the frequency of 
ER-dependent Ca2+ oscillations17. In intestinal stem cells, dietary 
and stress stimuli are integrated in such a way that frequent and 
robust Ca2+ oscillations are associated with a poised proliferative 
state, while smoother oscillations on a more elevated level accom-
pany active proliferation18. Fine tuning of Ca2+ signals also plays 
a role in the differentiation of neuronal and muscle cells (see 19 
for review). In astrocytes, knocking-down the Na+–Ca2+ exchanger 
(NCLX) that mediates Ca2+ release from mitochondria slightly 
affects cytosolic Ca2+ changes and, by doing so, significantly 
reduces Ca2+-dependent processes, such as glutamate release, wound 
closure, and proliferation20. Cell survival, death, and adaptation 
are sensitive to changes in Ca2+ patterns due to the interplay between 
ER/cytoplasmic Ca2+ exchanges and mitochondria and lysosomes21. 
Shigella bacteria also fine tune the Ca2+ responses when they invade 
epithelial cells. While the wild-type strain induces rather smooth 
and low-amplitude Ca2+ variations in the cytoplasm of the host cell, 
a less-invasive mutant strain induces more robust Ca2+ responses 
which, paradoxically, are associated with a higher survival of the 
host cells during the first hours following invasion22.

On another level, the precise isoforms of InsP
3
 receptors expressed 

by a given cell – which have been shown to substantially affect the 
shape of the Ca2+ oscillations23–25 – are critical for cell death and 
survival decisions26. Finally, bioinformatics analyses highlighted 
that in cancer cells and tissues, the main processes associated with 
Ca2+ dynamics that are perturbed are the mechanisms of store- 
operated calcium entry (SOCE) and of calcium reuptake into 
mitochondria27. Both of these processes are related to the fine 
tuning of Ca2+ oscillations, as discussed below. Altogether, these 
observations call for a more detailed understanding of oscillation-
associated Ca2+ dynamics. Understanding why Ca2+ oscillates and 
what regulates the frequency of oscillations is not sufficient to 
understand their physiological impact, but the duration and shape 
of the peaks, their sustainability, and the baseline Ca2+ level must 
be carefully taken into account. In the following sections, we elabo-
rate on two key controllers of the InsP

3
R-based Ca2+ oscillations, 

both related to Ca2+ stores other than the ER, namely the mitochon-
dria and the extracellular medium. We briefly review and discuss 
some of the main recent observations about their interplay with the  
InsP

3
-induced Ca2+ spikes.

Mitochondrial Ca2+ uptake and release
By stimulating the activity of key enzymes involved in mito-
chondrial ATP synthesis, Ca2+ entry into mitochondria stimulates 
metabolism, thereby coupling ATP synthesis with energy demand28. 
That Ca2+ exchange between the cytosol and the mitochondria in 
turn affects InsP

3
-induced cytosolic Ca2+ signals was put forward 

quite early29,30, but this concept was somewhat put aside for 
a decade. The molecular identification of the mitochondrial 
Ca2+ uniporter (MCU), a voltage, cytosolic, and mitochondrial 
Ca2+-sensitive transporter31–34, awakened interest in this question. 
Ca2+ entry into mitochondria through the MCU is a highly non- 
linear function of cytosolic Ca2+33. The MCU is in fact the Ca2+ 

Figure 2. Various characteristics of Ca2+ oscillations that 
participate in fine tuning. Traces show typical curves of Fluo4 
loaded HeLa cells challenged with either 2 µM histamine (upper 
trace) or 3 µM (lower trace). Calcium imaging was performed as 
described previously10. Fluorescence images were collected 
every 3 seconds by an EM-CCD camera (Hamamatsu), digitized, 
and integrated in real time by an image processor (Metafluor). 
Letters indicate characteristics of Ca2+ oscillations that, besides 
their frequency, can affect the cellular response to these repetitive 
Ca2+ increases (a: latency of the Ca2+ response to the stimulation, 
b: minimal Ca2+ level between the spikes or baseline Ca2+, c: duration, 
or half-width, of the spikes, and d: rate of decrease of the response 
or degree of sustainability).

Also, recent investigations tend to suggest that rather than the 
frequency alone, the detailed dynamic characteristics of the Ca2+ 
increase pattern play an important role in determining the extent 
of the cell response. As illustrated in Figure 2, in addition to fre-
quency, Ca2+ oscillations can vary in the amplitude and the width 
of the spikes, the baseline Ca2+ level, and the degree of sustainabil-
ity. We refer to modifications of one of these characteristics as fine 
tuning of Ca2+ oscillations to emphasize that they imply fine 
regulation of cytosolic Ca2+ that goes behind the mechanism sche-
matized in Figure 1 accounting for the existence and the frequency 
of oscillations. Various observations corroborate that these prop-
erties are important determinants for the physiological response 
of the cell. For example, the CD147 factor promotes oncogenic 
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pore-forming component of the uniporter and is part of a large 
complex of proteins that are required for Ca2+ channel activity or 
to regulate it under various conditions. For example, MICU1 (mito-
chondrial Ca2+ uptake 1) limits mitochondrial Ca2+ influx at low 
cytosolic Ca2+ concentration and the interaction between the MCU 
and MICU1 requires the expression of another component, called 
EMRE for essential MCU regulator34,35. Ca2+ efflux back into the 
cytoplasm occurs through a NCLX. As expected, modifying any 
of these pathways affects the frequency of the oscillations; inter-
estingly, increasing the activity of the MCU can both increase and 
decrease the frequency of oscillations36. In addition to its effect on 
the frequency of the oscillations, the MCU controls the width of 
the spikes and the sustainability of the oscillations, as knocking- 
down the MCU broadens Ca2+ oscillations and accelerates the 
rundown of the oscillations in rat basophilic leukemia (RBL)-1 
cells (Figure 3). Such rundown suppresses gene expression in 
response to leukotriene receptor activation37. Mitochondria also 
affect the rate of rise and fall of cytosolic Ca2+ and thus the half-
width and duration of the spike. More specifically, mitochondria 
smooth out cytosolic Ca2+ changes mainly because they have a 
~30 times larger Ca2+ buffering capacity than the cytoplasm38. 
Also, because of their slow dynamics, mitochondria continue 
releasing Ca2+ between subsequent releases of Ca2+ from the ER, 
thus playing a key role in determining the baseline cytosolic Ca2+ 
level. Thus, mitochondrial Ca2+ handling through the MCU and the 
NCLX clearly fine tunes cytosolic Ca2+ oscillations.

The kinetics of the MCU and the NCLX have been fairly well 
characterized, but much remains to be done to fully identify other 
fluxes. The permeability transition pore (PTP) in its low con-
duction mode participates in the Ca2+ exchange process in HeLa 
cells, as its inhibition by cyclosporine A affects Ca2+ oscillations36,39. 
The functional role of LETM1-mediated Ca2+ transport also 

remains poorly understood. This EF-containing transmembrane 
protein has been functionally identified as a Ca2+/H+ exchanger 
of the inner mitochondrial membrane40,41, although this remains 
controversial42. In electrically excitable cells such as cardio-
myocytes and neurons, ryanodine receptors have been shown to 
transport Ca2+ into mitochondria43,44. A rapid Ca2+ uptake mode 
(RaM) of poorly identified molecular nature has been reported in 
studies on isolated mitochondria from cardiac and liver cells45,46. 
However, the implication of RyR and RaM in mitochondrial Ca2+ 
influx remains to be firmly established47,48. Finally, in a more 
indirect manner, mitochondrial metabolism also affects cytosolic 
Ca2+ signals, mainly by modifying the mitochondrial voltage 
across the internal mitochondrial membrane, which greatly affects 
the activities of all of the above-mentioned fluxes29. All of the 
above-cited phenomena are thus potentially implicated in the 
control of the detailed characteristics of Ca2+ oscillations. Their 
interplay with the activities of the MCU and the NCLX is regulated 
by an intricate and complex network of interactions implicating 
cytosolic and mitochondrial Ca2+ as well as mitochondrial voltage 
and numerous accessory proteins.

Store-operated Ca2+ entry
Cytosolic Ca2+ oscillations are sustained by SOCE from the 
extracellular medium49. This mechanism involves the stromal 
interaction molecule (STIM) and the Orai protein50. The trans-
membrane ER protein STIM is sensitive to Ca2+ changes in the 
ER through an EF-hand facing the lumen of the store. Decrease 
in luminal Ca2+ below ~200 μM (for the STIM1 isoform) leads to 
STIM aggregation, followed by migration to ER–plasma membrane 
junctions. Here, STIM oligomers can bind and activate Orai, a 
four-transmembrane-domain plasma-membrane-spanning protein, 
thus forming a channel (known as CRAC for Ca2+-release-activated 
Ca2+ channel) allowing Ca2+ to enter down the chemical gradient. 
Another STIM isoform, STIM2, has a lower affinity for ER Ca2+, 
which allows for activation of Ca2+ entry at moderate ER deple-
tion, although at a reduced rate51. Mammalian cells have genes for 
the three homologs Orai1, Orai2, and Orai3, and it is thought that 
Orai2 and/or Orai3 act as compensative types for the lack of Orai1. 
Orai channels are made of multiple subunits, and CRAC channel 
gating by STIM is best described by a Monod-Wyman-Changeux 
scheme in which tetramers of Orai have four STIM binding sites50,52.

Although the mechanism just described has most of the time been 
investigated in conditions when the Ca2+ pools are emptied artifi-
cially, studies performed in a variety of cell types demonstrate that 
STIM expression is essential for an ensemble of physiological 
processes53. To quote here just one recent example, in airway 
smooth muscle, altered expression and function of STIM/Orai 
proteins have been linked to pathologies including restenosis, 
hypertension, and atopic asthma54.

The STIM-Orai pathway for Ca2+ entry displays a hysteretic 
behavior: STIM-Orai association and dissociation do not occur at  
similar ER Ca2+ concentrations55. Although the origin and the  
physiological significance of this unusual behavior remains 

Figure 3. The mitochondrial Ca2+ uniporter (MCU) participates 
in the fine tuning of Ca2+ oscillations. A. Control recording of 
Ca2+ responses in rat basophilic leukemia (RBL)-1 cells stimulated 
by LTC4 in 2 mM external Ca2+. B. Same recording after MCU 
knockdown. Ca2+ entry in mitochondria via the MCU broadens 
cytosolic Ca2+ spikes and decreases their sustainability. From 
Samanta et al.37. Shown are the ratios of fluorescence of Fura-2 
loaded cells excited at 356 and 380 nm.
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unknown, it might be related to the inactivation of SOCE- 
mediated Ca2+ entry by cytosolic Ca2+ itself, a process that has 
long been thought to be mediated by calmodulin56 but was recently 
suggested to be due to a calmodulin-independent conformational 
change within the pore allowed by two specific Orai residues, Y80 
and W7657,58. This Ca2+-induced inactivation (CDI) of SOCE allows 
for a modulation of Ca2+ entry depending on the level of cytosolic 
Ca2+, thus shaping the oscillations.

The key effect of STIM and Orai on the oscillatory Ca2+ pattern 
and its downstream targets are also much documented. Through 
the specific ER Ca2+ sensor STIM2 that has a high K

M
 for Ca2+, 

SOCE determines the basal level of Ca2+ in HeLa cells51. More gen-
erally, SOCE-mediated Ca2+ entry has a significant effect on Ca2+ 
oscillations, as it can in turn affect all Ca2+ exchanges between the 
cytoplasm and the internal stores. A less straightforward but highly 
interesting effect was uncovered in RBL-2H3 cells. Because the 
activity of the plasma membrane phosphatidylinositol 4-phosphate 
5 kinase that replenishes the PIP

2
 pool is Ca2+ sensitive, SOCE 

is necessary to avoid the rundown of the oscillations. Indeed, in 
the absence of SOCE, cysteinyl leukotriene type I receptor acti-
vation leads to the exhaustion of the PIP

2
 pool and hence to the 

disappearance of InsP
3
-induced Ca2+ release from internal stores59.

In RBL cells displaying Ca2+ oscillating, gene expression is 
entirely driven by SOCE and proceeds as an all-or-nothing proc-
ess in individual cells60. During maturation of mouse oocytes, 
STIM1 and Orai1 control the basal Ca2+ level and the whole Ca2+ 
homeostasis, thus controlling meiosis resumption61. At fertiliza-
tion of pig eggs, overexpression of STIM1 and Orai1 substantially 
decreases the number of Ca2+ spikes induced by sperm binding  
(Figure 4). Moreover, these spikes are broader and their fre-
quency is reduced as compared to control eggs62. This observation 
contrasts with the observed decreased frequency of fertiliza-
tion-induced Ca2+ oscillations in hamster eggs when decreasing 
external Ca2+ concentration63. It shows that the control of Ca2+ 
signaling by SOCE cannot be directly assimilated to the control 
of Ca2+ signals by the extracellular Ca2+ concentration. Interest-
ingly, if SOCE is inhibited, fertilization is also impaired, as 
oscillations last for about 1 hour instead of at least 2 hours. In 
mice, cytoplasmic Ca2+ levels are elevated for ~50% of the time 
in STIM1+Orai1-overexpressing oocytes in the first 2 hours after 
fertilization, as compared to only less than 20% of the time in 
control oocytes. Despite this larger Ca2+ signal, most of the 
STIM1/Orai1-overexpressing oocytes do not reach the two-cell 
stage64. However, female mice lacking Orai1 are fertile65, while 
male mice are sterile due to severe defects in spermatogenesis66.

Figure 4. Effect of store-operated calcium entry (SOCE) activity on fertilization-induced Ca2+ oscillations in pig eggs. 
A. Co-overexpression of Orai1 and stromal interaction molecule 1 (Stim1) leads to broader spikes with reduced frequency and that stop 
prematurely. B. Control situation. Reproduced with permission from Chunmin Wang, Lu Zhang, Laurie A. Jaeger, and Zoltan Machaty. Store-
Operated Ca2+ Entry Sustains the Fertilization Ca2+ Signal in Pig Eggs. Biol Reprod 2015; 93(1):25. DOI:10.1095/ biolreprod.114.12615162.
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Conclusion
It is by now clear that in many cases the existence of Ca2+ oscil-
lations does not provide an ON/OFF signal for the Ca2+-mediated 
response to the stimulus nor is the extent of the response only 
determined by the frequency of the oscillations. How the exact 
shape of this Ca2+ signal is controlled, i.e. what we refer to here 
as its fine tuning, can alter the response qualitatively and quanti-
tatively. Ca2+ exchanges with mitochondria and SOCE play an 
important role in fine tuning cytosolic Ca2+ oscillations. Interest-
ingly, there is some dynamic interplay between these two Ca2+ 
sources as, in mesothelial cells in the absence of external Ca2+, 
mitochondrial Ca2+ takes over to provide a Ca2+ influx pathway 
during oscillations67. Moreover, other organelles such as the 
Golgi68,69 or the acidic organelles21,70,71 are also involved. Genetic 
regulations further complicate the intricate network of Ca2+ 
fluxes: in lymphocytes, Ca2+-dependent activation of CREB con-
trols the level of expression of the MCU, which explains why the 
expression of this uniporter is modified in the absence of InsP

3
 

receptors or of the STIM/Orai machinery72. Much remains to 
be done to understand how diverse factors interact to control 
the detailed pattern of Ca2+ oscillations and how this pattern can 
in some cases significantly affect the physiological response. 

Integration of the Ca2+ signal over long periods of time may 
explain why small changes in the pattern of the Ca2+ spikes become 
significant in some cases. By such integration, the extent of acti-
vation of the downstream targets of Ca2+ is modified by appar-
ently minor changes in the Ca2+ oscillatory pattern, which are less 
visible than its frequency. Spatial aspects most certainly also play 
an important role in this respect, as the Ca2+-sensitive targets are 
far from being homogeneously distributed within the cell73. Finally, 
the kinetics and thresholds for Ca2+ activation of these targets are 
expected to be at least as important, as in other signaling cascades 
playing a key role in the storage of information74.
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