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Simple Summary: N°-methyladenosine (m®A) is the most abundant internal modification in eukary-
otic mRNA and plays a crucial role in the occurrence and development of diseases. YTHDF1 is the
most powerful and abundant m®A-encoded RNA reader. In this review, we summarize the evidence
of the involvement of YTHDF]I in gastrointestinal cancers, its molecular mechanisms of action, and
therapeutic implications.

Abstract: N®-methyladenosine (m®A) is the most abundant internal modification in eukaryotic cell
mRNA, and this modification plays a key role in regulating mRNA translation, splicing, and stability.
Emerging evidence implicates aberrant m°A as a crucial player in the occurrence and development
of diseases, especially GI cancers. Among m°A regulators, YTHDF1 is the most abundant m®A
reader that functionally connects m® A-modified mRNA to its eventual fate, mostly notably protein
translation. Here, we summarized the function, molecular mechanisms, and clinical implications of
YTHDF1 in GI cancers. YTHDF1 is largely upregulated in multiple GI cancer and its high expression
predicts poor patient survival. In vitro and in vivo experimental evidence largely supports the role of
YTDHF1 in promoting cancer initiation, progression, and metastasis, which suggests the oncogenic
function of YTHDFI in GI cancers. Besides, YTHDF1 overexpression is associated with changes in the
tumor microenvironment that are favorable to tumorigenesis. Mechanistically, YTHDF1 regulates the
expression of target genes by promoting translation, thereby participating in cancer-related signaling
pathways. Targeting YTHDF1 holds therapeutic potential, as the overexpression of YTHDF1 is
associated with tumor resistance to chemotherapy and immunotherapy. In summary, YTHDF1-
mediated regulation of m®A modified mRNA is an actionable target and a prognostic factor for
GI cancers.

Keywords: YTHDF1; N®-methyladenosine; gastrointestinal cancer; gastric cancer; colorectal cancer;

liver cancer; oncogenic signaling; drug resistance; immunotherapy

1. Introduction

Gastrointestinal (GI) cancers refer to malignancies of the GI tract and auxiliary diges-
tive organs. GI cancers remain the leading cause of cancer-related morbidity and mortality
worldwide [1]. The most common GI cancers include gastric cancer (GC), colorectal cancer
(CRCQ), and liver cancer. In addition, other digestive system cancers include esophageal
cancer, small bowel cancer, pancreatic cancer, etc. Esophageal, gastric, and liver cancers
are more prevalent in Asia than in the rest of the world, while Europe and North America
have the highest burden of colorectal and pancreatic cancers [2]. Most patients with GI
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cancers present with locally invasive or distantly metastatic advanced tumors that preclude
radical resection, and current treatments could not effectively control advanced disease.
Novel therapeutic targets must thus be sought for GI cancers. Genetic and epigenetic
alterations leading to the development of GI cancers have been well characterized through
large scale sequencing projects. On the contrary, the role of the epitranscriptome, involv-
ing the chemical modification of RNA, in the development of cancer is just beginning to
be explored.

N6—methy1adenosine (m®A) modification is a dynamic and reversible process and is
the most pervasive modification in human mRNA. M®A methylation plays an important
role in a wide variety of biological and pathological processes including cancer develop-
ment. m®A regulators can be divided into three types: writers, erasers, and readers. The
differential m®A profile is an emerging hallmark of cancer. Aberrant m®A deposition plays
a key role in tumorigenesis in GI cancers by broadly altering gene expression. METTL3, a
mPA methyltransferase, is up-regulated in gastric, colorectal, and liver cancers [3]. Besides,
m®A modifications frequently involve key components of oncogenic signaling pathways,
including WNT/ 3-catenin, phosphatidylinositol-3-kinase (PI3K)/Akt and mammalian
target of rapamycin (mTOR) signaling pathways [4], thereby contributing to their aberrant
activation in cancer. Understanding the function and molecular mechanism of the m®A-
mediated epitranscriptome may thus unravel novel therapeutic targets and biomarkers for
GI cancers.

2. YTHDF1 Is a Major m®A Reader Involved in mRNA Translation

m®A readers are involved in many RNA processes, such as mRNA splicing, nuclear
export, translation and decay in post-transcriptional regulation. YTH m®A RNA binding
protein (YTHDF)-1 is one of the major m®A readers, of which it interacts with initiation
factors to promote translation initiation in the cytoplasm [5]. Studies have shown that
YTHDF1 plays an important role in the process of post-transcriptional modification by
regulating the expression of genes involved in cancer, cell proliferation, cell migration and
invasion, inflammation, immunity, and autophagy.

m®A-modified mRNA interacts with YTHDF1 by placing its modified residues into
the hydrophobic pocket of the YTH domain. YTHDF1 can recognize G(m°®A) C and
A(mPA)C RNA as ligands without sequence selectivity, thereby mediating the protein
expression of m®A-modified target genes in health and disease conditions [6]. For example,
YTHDF1 can increase the translation of m® A-modified mRNA, and this interaction is
particularly pronounced in response to stress [5,7]. YTHDF1-mediated translation requires
eukaryotic translation initiation factors (elFs), including eIF3, eIF4E, and possibly eIlF4G-
dependent loop formation. Previous studies reported that YTHDF1 silencing leads to
significantly downregulated elF3A and elF3B expression, and the translational efficiency
of YTHDF1-targeted m®A transcripts decreased [8], indicating that YTHDF1 regulates
translation efficiency in a m®A-dependent manner. YTHDF1 also enhances translation of
the transcriptional regulator YAP by recruiting elF3B to the translation initiation complex [9].
Of note, the knockdown of YTHDF1 has no effect on the m®A /A ratio of total mRNA, thus
implicating that YTHDF1 regulates the association of its target mRNA with ribosomes
rather than altering m®A modification level of mRNA. The role of YTHDF1 in mRNA
stability cannot be completely ruled out, as an approximately 24% increase in the m®A /A
ratio of mRNA was observed in YTHDF1 overexpressing cells [5]. As mRNA translation
and degradation are closely correlated, YTHDF1 might preserve mRNA translation and
slow down the rate of decay as a secondary effect.

Growing evidence has demonstrated the critical roles of YTHDF1 and its molecular
mechanism in different cancers. For example, YTHDF1 interacts with the elongation factor
eEF-2 in tumor cells, leading to m®A-induced translational elongation of Snail mRNA, a
key transcription factor inducing epithelial-mesenchymal transition (EMT) [10]. Given that
the importance of YTHDF1 in tumorigenesis has been increasingly recognized, here we
review evidence supporting the roles and molecular mechanisms of YTHDF1 in different
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GI cancers. We also discuss the therapeutic potential of targeting YTHDF1 to improve
treatment efficacy against GI cancer.

3. YTHDF1 in Gastrointestinal Cancers

YTHDEF1 contributes to the tumorigenic behavior of cancer cells and facilitates a favor-
able tumor microenvironment. In this section, the functions and molecular mechanisms
of YTHDF1 in GC, CRC, and hepatocellular carcinoma (HCC), the three most common GI
cancers, are discussed (Figure 1 and Table 1).
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Figure 1. Multifaceted role of YTHDF1I in gastrointestinal cancers. YHTDF1-driven translation of
mP®A-modified gene targets has been shown to confer malignant phenotypes that are associated
with cancer cell intrinsic properties (proliferation, metastasis, stemness and cell death) as well as its
interaction with the tumor microenvironment (inflammation and immunity). Part of the figure is
created with BioRender.com.

3.1. YTHDF1 in Gastric Cancer

YTHDFT1 is the most frequently mutated (>6%) m°A regulator in GC patients [11] and
its overexpression is highly prevalent (>90%) among GC patients. From the GC cohort
in The Cancer Genome Atlas (TCGA), YTHDF1 expression is significantly increased in
early GC, and progressively rises further in advanced GC [12]. Moreover, high YTHDF1 ex-
pression is associated with more aggressive tumor progression and poor prognosis [11,13].
Notably, YTHDF1 overexpression is also subtype-dependent, as it was found to be more
abundantly expressed in intestinal-type GC as compared to diffuse-type GC [14]. Collec-
tively, these observations implicate the potential of YTHDF1 as an oncogenic factor in GC.

Multiple studies have demonstrated the oncogenic role of YTHDF1 in GC, which could
be driven by overexpression or genetic mutation. Pi et al. [11] demonstrated that YTHDEF1
knockdown attenuates the proliferation of GC cells in vitro and gastric tumorigenesis
in vivo. Mechanistically, wildtype YTHDF1 promotes protein translation of a key WNT
receptor, frizzled 7 (FZD7), in a m® A-dependent manner. Mutant YTHDF1 also induces
FZD7 expression, causing the excessive activation of oncogenic WNT/ 3-catenin signaling
pathway, thereby accelerating GC development [11]. Another target of YTDFHI in GC is
ubiquitin specific peptidase (USP)-14 [13]. USP14 could accelerate cell proliferation and
migration in GC and induce resistance to cisplatin by promoting AKT/ERK signaling
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pathway [15]. Whereas the pharmacological inhibition of USP14 by IU1 abrogates the
pro-tumorigenic effect of YTHDF1 in GC cells, thus indicating that the correlation between
YTHDF1 and USP14 in contributing to gastric tumorigenesis.

YTHDF1 has been shown to promote GC through interplay with other m°®A regulators.
For example, YTHDF1 could function co-operatively with the m®A writer, methyltrans-
ferase 3 (METTL3), whereby METTL3 catalyzes m®A modification of sphingosine kinase
2 (SPHK2) mRNA, which in turn being recognized by YTHDF1. YTHDF1 stimulates SPHK2
translation in an eI[F3A-dependent manner to induce gastric tumorigenesis [16]. Recent
evidence indicates that YTHDF1 expression in cancer cells could modify the GC immune
microenvironment. Bai et al., demonstrated that the loss of YTHDF1 in GC tumors provokes
the complete disease remission in immunocompetent mice, but not in immunodeficient
mice [17]. In immunocompetent mice, the loss of YTHDF1 stimulates the recruitment of
mature dendritic cells (DCs) to GC with higher expression of major histocompatibility
complex II and interleukin-12 secretion, thereby promoting CD4* and CD8" T cells infil-
tration. Mechanistically, RNA-sequencing revealed that the of loss YTHDF1 mediates the
overexpression of interferon-y receptor 1 and JAK/STAT1 signaling pathway in tumor cells,
which may contribute to restoring sensitivity to antitumor immunity. Besides experimental
evidence, YTHDF1 is inversely correlated with the expression of immune checkpoints
including programmed cell death protein-1 (PD-1), PD-1-ligand-1 (PD-L1), and cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4) in TCGA GC dataset, implying that YTHDF1
might negatively impact the efficacy of immune checkpoint blockade (ICB) [18]. Hence,
these results suggest that YTHDF1 may be a potential target in gastric tumorigenesis and
early diagnosis of GC.

Epstein-Barr virus (EBV) is an oncovirus and its infection is associated with a subset of
GC patients [19-21]. Recent evidence reported that YTHDF1 could suppress EBV replication
by the recruitment of RNA degradation complexes including ZAP, DDX17, and DCP2 to
promote RNA decay of EBV-related genes and thus down-regulating their translation [22].
While YTHDF1 primarily promotes the translation efficiency of m® A-modified mRNAs, the
authors showed that YTHDF1 degrades m®A-modified viral transcripts in EBV-infected
cells by the recruitment of ZAP, DDX17, and DCP2, which induces RNA uncapping during
EBV infection of host cells. These findings thus offer novel insights into how YTDHF1 may
impact the occurrence of EBV-associated GC through antagonizing EBV infection. Taken
together, these results suggest that role of YTHDF1 might be subtype dependent in GC.

3.2. YTHDF1 in Colorectal Cancer

CRC is the most common GI cancer worldwide [23]. YTHDF1 is closely correlated to
CRC of which the gain in DNA copy number of YTHDF1 is a frequent event in CRC patients
(>60%), leading to YTHDF1 overexpression [24]. Among m°A regulators, YTHDF1 has the
highest diagnostic value in distinguishing CRC from normal colon tissues in the TCGA
cohort with AUC of 0.974 [25]. YTHDF1 is found to be upregulated even at precancerous
adenoma stage [26]. Similar to GC, YTHDF1 expression rises progressively from the early
to advanced CRC [25,26], and such gradual increase is positively correlated with clinical
stage, lymph node metastasis and distant metastasis [27]. Liu et al., found that YTHDF1 is
an independent risk factor for poor survival in CRC patients [28], concordant with its role
as a pro-tumorigenic factor.

Several studies have explored the functions and molecular mechanisms of YTHDF1
in CRC. Wang et al. [29] demonstrated that YTHDF1 promotes cell growth in CRC cell
lines and primary organoids derived from CRC patients and is capable of promoting tumor
metastasis in vivo. On the contrary, knockout of YTHDF1 markedly blunted colorectal
tumorigenesis in carcinogen-induced CRC mouse model. Integrative m®A-seq, RIP-seq,
ribo-seq and proteomics analysis led to the identification of RhoA activator ARHGEEF?2 as
a key downstream target of YTHDF1 [29]. YTHDF1 binds to m®A-modified ARHGEF2
mRNA to promote its translation, and overexpression of ARHGEF2 could rescue the
phenotypic effects of YTHDF1 depletion, verifying the role of YTHDF1-ARHGEF2 axis
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in CRC. Having demonstrated that YTHDF1-m®A-ARHGEF?2 axis as a novel oncogenic
signaling cascade in CRC, the authors constructed lipid nanoparticles (LNP) encapsu-
lated with siRNA targeting ARHGEF2. LNP-siARHGEF2 was found to be effective in
suppressing YTHDF1-induced oncogenic functions and liver metastases in CRC cells and
animal models.

The upregulation of WNT/ 3-catenin pathway, a key oncogenic pathway in CRC, is
also closely correlated with YTHDF1 [24,29-32] (Figure 2). One study revealed that YTHDF1
exerts pro-tumorigenic effect by recognizing and promoting translation of m® A-modified
FZD9 and WNT6 mRNA, leading to the aberrant activation of WNT/ 3-catenin signaling
and ultimately promoting tumorigenicity and stem cell-like activity in CRC [24]. Similarly,
Han et al. [31] showed that TCF4, DVL3, and FZD7, the three main components in WNT
signaling, are direct targets of YTHDF1. YTHDF1-mediated the translation of these genes
to activate WNT/ 3-catenin pathway and promote colonic cell stemness [31]. Consistently,
colon-specific or colon stem cell-specific knockout of YTHDF1 impaired colorectal tumori-
genesis and improved the survival in transgenic ApcMi™/* mice, therefore highlighting the
importance of WNT as a target of YTHDF1 in CRC. Moreover, Jiang et el. identified that
YTHDF]1 boosts intestinal stemness by mediating translation of transcriptional enhancer fac-
tor TEAD1 [33]. Another study demonstrated the therapeutic potential of TEAD inhibitors
against colorectal cancer stem cells by targeting YTHDF1-TEAD]1 axis [34]. Additionally,
YTHDF1 was found to rewire tumor metabolism by promoting the protein translation of
glutaminase 1 (GLS1) by targeting the 3'UTR of GLS1 mRNA [35], which contributes to
chemoresistance to cisplatin. Collectively, multiple downstream signaling molecules are
involved in YTHDF1-mediated colorectal tumorigenesis.
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Figure 2. The function of YTHDF1 in promoting WNT/ 3-catenin signaling in gastrointestinal cancers.
YHTDF1-driven translation of m® A-modified gene targets includes Frizzled 5/7/9, TCF4, and c-Myc.
Increased Frizzled genes promoted the stability of (3-catenin by inhibition of GSK3, and elevated
TCF4 enhanced (3-catenin-mediated transcription. c-Myc, a key oncogenic target of WNT/ 3-catenin
signaling, is also induced by YTHDF]I. Part of the figure is created with BioRender.com.

YTHDF1 also exerts a pro-tumorigenic effect by altering the tumor microenviron-
ment. Inflammation is an etiological factor in the initiation and progression of CRC.
Zong et al., demonstrated that YTHDF1-mediated translation of TNF receptor-associated
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factor 6 (TRAF6) is required for the activation of NF-«kB and secretion of pro-inflammatory
cytokines tumor necrosis factor (TNF)-o and IL-6 in intestinal cells [36]. Inflammasome
NLRP3 is another target of YTHDF1, which provokes inflammatory injury stimulated
by bacterial lipopolysaccharides [37], suggesting that YTHDEF1 has pro-inflammatory ef-
fects in the colonic epithelium. Evaluation of the TCGA colon adenocarcinoma (COAD)
dataset revealed that YTDHF1 high expression is associated with dampened adaptive
immune response, cell killing, cytokine production and T cell activation [38]. Consistent
with this, YTDHF1 high expression is negatively correlated with antitumor immune cell
subtypes, including CD8* T cells, M1 subtype macrophages, CD4" T helper cells, DCs,
natural killer cells, and natural killer T cells [38]. Altogether, these findings imply that
YTHDF]1 confers an immunosuppressive tumor microenvironment in CRC patients. The
targeting of YTHDF]1 to reactivate antitumor immunity may thus yield therapeutic benefits
in combination with immunotherapeutics.

3.3. YTHDF1 in Hepatocellular Carcinoma

mPA has been implicated in various physiological and pathological processes in the
liver [39-43]. HCC is the most common type of liver cancer, and YTHDF1 expression was
found to be largely upregulated in HCC in multiple patient cohort studies with positive
correlation to pathological stage [44,45]. Hence, high YTHDF1 expression is a major risk
factor for predicting poor prognosis of HCC patients, including worse overall survival
and progression-free survival [46,47]. Besides, high YTHDF1 expression is correlated with
shorter recurrence-free survival after HCC resection [48,49]. YTHDF1 in conjunction with
other m®A regulators, such as METTL3 and YTHDF2, could also be used to stratify high-risk
HCC patients [50-53]. These studies underscore the potential role of YTHDF1 in metastatic
progression of HCC.

Functional investigations have demonstrated that YTHDF1 exerts oncogenic functions
by promoting proliferation of HCC cells in vitro and metastasis in mouse models [54].
Integrated analysis of RIP-seq/PARCLIP-seq and Ribo-seq in HCC cells identified that
YTHDF1 depletion reduces translation efficiency of 413 genes involved in oncogenic path-
ways such as WNT and Hippo signaling. In particular, YTHDF1 accelerates the translation
of FZD5 mRNA in a m®A-dependent manner, thereby promoting the WNT/3-catenin
pathway. Multiple lines of evidence have implicated the role of YTHDF1 in EMT, a critical
step in tumor metastasis. Two independent studies have shown that YTHDF1 promotes
cell migration and invasion of HCC cells by inducing EMT and activating AKT signaling
pathway [55,56]. In conjunction with METTL3-mediated m®A modification, YTHDF1 can
directly induce the translation of Snail, a key transcription factor of EMT, thereby promot-
ing liver cancer metastases [10]. Moreover, YTHDF1 has been shown to promote HCC
metastasis in the context of inadequate radiofrequency ablation [57]. Sublethal heat stress
was found to increase m® A modification and elevate YTHDF1 protein expression in HCC.
Concomitantly, m® A-seq unraveled that m® A-mediated modification of EGFR mRNA is
induced by sublethal heat stress, which in turn promotes its binding with YTHDF1, leading
to the upregulation of EGFR translation to promote tumor metastasis. The combination of
YTHDEFT1 silencing and EGFR inhibition dramatically inhibited HCC tumor metastasis after
inadequate radiofrequency ablation in vivo, suggesting YTHDF]I as a potential therapeutic
target for metastatic HCC.

YTHDF1 can shape HCC tumor microenvironment [47,58] and potentiate the adap-
tation of HCC cells to promote their survival [59]. For example, Li et al., revealed that
YTHDEF]I plays a critical role in mediating protective autophagy in HCC cells, thereby
allowing tumor cells to survive under the hypoxic tumor microenvironment [59]. Utilizing
m®A-seq, proteomics and polysome profiling, the authors showed that YTHDF1 promotes
the translation of m® A-modified autophagy-related genes (ATG)-2A and ATG14, thus facil-
itating the induction of autophagy in HCC cells. Apart from tumor cells, hepatic stellate
cells (HSC) are an important component in HCC microenvironment as they can promote
fibrosis. Interestingly, YTHDF1 activates autophagy in HSC by stabilizing m®A-modified
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BECN1 mRNA (responsible for regulating autophagosome formation), leading to HSC
ferroptosis and the alleviation of fibrosis [60]. The differential roles of YTHDF1 between
HCC tumor cells and HSCs may thus confer disparate outcomes for HCC development.
Recent studies have reported the association of YTHDF1 with antitumor immunity;,
of which high YTHDF1 expression in HCC contributes to immune evasion. For instance,
high YTHDF]1 expression is correlated with reduced immune cell infiltration in HCC [61].
Antitumor immune cells, including CD4* T cells, v8-T cells, and B cells, are all depleted
in HCC with high YTDHF1 expression [62]. Tissue microarray validated that YTHDF1
overexpression in HCC is correlated with poor CD3* and CD8* T cell infiltration [61].
Xu et al., further showed that YTHDF]1 is positively correlated with PD-L1 expression in
HCC [47], implying that YTHDF1 may be a prognostic factor of HCC patients with poor
response to ICB. Taken together, YTHDF1 regulates multifaceted processes in HCC and has
great potential to be a therapeutic target and prognostic biomarker for HCC patients.

3.4. YTHDF1 in Other Gastrointestinal Cancers

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies
among GI cancers. Multiple studies have shown aberrant upregulation of m®A RNA
modification in PDAC tissues as compared to adjacent normal tissues [63,64]. In particular,
YTHDFI1 gene mutations are common in PDAC with frequent occurrence of in-frame
deletions [65,66]. Huang et al., demonstrated that high YTHDF1 expression implicates a
favorable prognosis in PDAC [67]. These observations infer that YTHDF1 might function
as a tumor suppressor in PDAC. On the other hand, a few studies have also evaluated the
prognostic significance of YTHDF1 in esophageal cancer, of which the high expression of
YTHDF1 is correlated with shorter overall and progression-free survival [68]. Nonetheless,
further research is needed to uncover and confirm the role and mechanistic functions of
YTHDFI in PDAC and esophageal cancer.

4. Clinical Implications of YTHDF1

GI cancer is among the most common malignancy worldwide with poor progno-
sis [69-72]. Therefore, there is an urgent need to improve diagnostic and prognostic
tools, as well as to devise novel therapeutic strategy to improve the treatment of GI can-
cer. Increasing evidence indicates that YTHDF1 could dynamically regulate gene-specific
translation in a m®A-dependent manner, leading to widespread deregulation of onco-
genic signaling [31,73,74]. Here, we explore the current evidence showing that targeting
YTHDF1 is a promising therapeutic approach to improve the efficacy of chemotherapy and
immunotherapy against GI cancer.

4.1. The Impact of YTHDF1 on Chemotherapy

Chemoresistance, either primary or acquired, is the main cause for treatment failure
and poor prognosis for cancer patients. Numerous mechanisms are involved in resistance
to chemotherapy, including changes in drug disposition, adaptive responses, deregulation
of cell death mechanisms, tumor microenvironment and epigenetic alterations. Recent work
revealed that m®A-mediated epitranscriptome regulation contributes to cancer chemore-
sistance. For instance, m®A demethylases, such as FTO and ALKBH5, was shown to be
essential for glioblastoma cancer stem cells and they mediate resistance to conventional
chemotherapy and cancer recurrence in, respectively [75,76]. METTL3, a m®A methyltrans-
ferase, has been correlated with drug resistance of CD133" GC stem cells [77]. Given that
YTHDF] is critical for determining the fate of aberrant m®A-modified mRNA, it is thus
not surprising that YTHDF1 is closely associated with drug responsiveness. Nishizawa
et al., showed that c-Myc induces YTHDF1 expression in CRC cells, and knockdown
of YTHDF1 could sensitize CRC cells to chemotherapeutic drugs fluorouracil and oxali-
platin [27]. YTHDF1-mediated glutamine metabolism via GLS1 has been shown to promote
cisplatin chemoresistance in CRC cells, while the combination of YTHDF1 silencing and
cisplatin leads to synergistic effect in suppressing tumor growth [35]. YTHDF]I is also
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associated with the induction of cancer stemness in conjunction with m®A modification to
contribute chemoresistance. The m® A-YTHDF1 axis has been implicated in the increased
translation of tripartite motif-containing protein (TRIM)-29 to enhance the cancer stemness
characteristics in cisplatin-resistant tumor cells [74]. Hence, targeting YTHDF1 may combat
chemoresistance and alleviate the potential side effects of high-dose cisplatin [35].

Paradoxically, YTHDF1 was found to promote drug responsiveness towards a tar-
geted therapeutic drug sorafenib, in HCC. Lin et al., showed that METTL3 promotes the
transcription factor FOXO3 mRNA m®A methylation at the 3'UTR region and enhances
its mRNA stability in a YTHDF1-dependent manner. FOXO3 negatively regulates the
expression of autophagy-related genes (ATG3, ATG5, ATG7, ATG12, ATG16L1), thus in-
hibiting autophagy signaling and promoting sensitivity of HCC cells to sorafenib. Hence,
the downregulation of the METTL3-YTHDF1-FOXO3 axis crucially contributes to sorafenib
resistance, and targeting of YTHDF1 represents a novel therapeutic approach to enhance
sorafenib response in HCC [41]. Given the highly diverse roles of YTHDF1 in promoting
mRNA translation, the therapeutic effects of targeting YTHDF1 may vary in different
cancers. In-depth research is therefore necessary to completely harness the m®A epitran-
scriptome for improving responses to cancer treatment.

4.2. The Impact of YTHDF1 on Immunotherapy

Emerging work has shown that immune checkpoint blockade (ICB) therapy is effective
against advanced GI cancer, however; only a small subset of GI cancer patients could benefit
from anti-PD-1/PD-L1 immunotherapy [78-80]. For example, in CRC, only patients with
mismatch repair deficiency or microsatellite instability, comprising of ~5% of metastatic
CRC, could be benefited from ICB therapy. Similarly low response rates were reported
in GC or HCC patients receiving ICB therapy. Hence, there is an urgent need to identify
factors that can modulate ICB responses. Various m°A regulators, such as METTL3 and
ALKBHS5, have emerged as key modifiers of the antitumor response by suppressing the
function of antitumor CD8* T-cells. On the other hand, YTDHF1 appears to be closely
correlated with DCs in the tumor micro-environment. Genetic ablation of YTHDF1 in mice
leads to reduced tumor growth associated with increased tumor infiltration by cytotoxic
T cells, whilst simultaneously reducing infiltration of myeloid-derived suppressor cells
(MDSC) [81]. Mechanistically, the deletion of YTHDF1 could promote cross-presentation of
tumor-associated antigens by DCs, which activate CD8* T cell-mediated adaptive immune
response. As a consequence, ICB therapeutic response is significantly enhanced in YTHDF1-
knockout mice as compared to wildtype mice. Consistently, our recent study implied the
role of YTHDF1 in repressing DCs function in GC [17]. Loss of YTHDEF1 in tumor cells
leads to the recruitment of mature DCs in the tumor, which in turn promotes the infiltration
of T helper cells and cytotoxic T cells, as well as the increased production of cytotoxic
cytokines. These findings collectively imply that the targeting of YTHDF1 in GI cancer
could reactivate antitumor immunity and potentiate the therapeutic effect of ICB therapy.
Consistently, the low expression of YTHDF1 may serve as a marker of robust response
towards ICB therapy in GI cancers. In summary, YTHDF1 might be an actionable target for
improving the efficacy of ICB therapy in GI cancers.

5. Conclusions and Perspectives

In summary, most of the studies reported thus far indicate that YTHDF1 is highly
expressed in GI cancers and correlates with poor prognosis, implying that YTHDF1 func-
tions as an oncogenic factor. Indeed, multiple studies have shown that YTHDF1 promotes
the progression of GI cancers by the activation of WNT/3-catenin and PI3K/AKT/mTOR
signaling pathways [11,24,55,82]. Mechanistically, YTHDF1 targets m®A-modified mRNA
of key components of these pathways to promote their translation. Although many regu-
latory mechanisms have been discovered, there are still many unclear and controversial
mechanisms due to the complexity of YTHDF1 regulation. Given the dynamic nature of
m®A modifications, it is likely that the overall effect of YTHDF1 can vary in a context- and
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cell type-specific manner [17,83]. The exact role of YTHDF1 in GI cancers would be better
elucidated using conditional, transgenic mice models that manipulate YTHDF]1 in specific
cell types, such as tumor cells or immune cells, in order to reveal the exact role of YTHDF1
in GI cancer development. Taken together, more research is needed to understand the role
of YTHDF1-mediated epitranscriptome in the promotion of GI cancers.

In terms of clinical application, YTHDF1 is reported to be an independent marker
for the diagnosis and prognosis of GI cancer [17,29]. Interestingly, several studies have
suggested that YTHDF1 and its downstream signaling pathways might serve as novel
therapeutic targets against GI cancers, given the accumulating evidence showing its role in
mediating drug resistance. Genetic depletion of YTHDF1 sensitizes GI tumors to chemother-
apy and immunotherapy, suggesting that YTHDF1 antagonists can be potential adjuvants
in GI cancer therapy. In particular, the targeting of YTHDF1 has been shown mediate
a switch from immunological “cold” tumors to “hot” tumors, and thus presents great
potential in combination with ICB therapy. Nevertheless, there is no pharmacological agent
that could directly target YTHDF1. Hence, strategies must be sought to target YTHDF1
directly or to suppress its downstream targets. Given its close association with other m®A
regulators, modulation of the m®A landscape might represent an alternative approach
to targeting the oncogenic activities of YTHDF1. Altogether, the targeting of YTHDF1
represents a promising approach for the future management of GI cancers.

Table 1. Characteristics of YTHDF1 in Gastrointestinal Cancers.

Cancer Expression Function Molecular Targets Reference
Esophageal Cancer Increased Oncogenic NA [68,84,85]
PD-1, PD-L1, CTLA-4 [13,18]
. FZD7/ B-cateni 11
Gastric Cancer Increased Oncogenic S{’%I(?Z enn {1 6}
JAK/STAT1 [17]
FZD9/WNT6/ 3-catenin [24]
c-MYC [27]
. ARHGEF2 [29]
Colorectal Cancer Increased Oncogenic TCF4/DVL3/FZD7/ B-catenin [31,32]
TEAD1 [33]
TRAF6, DDX60, NLRP3 [36-38]
SNAI1 [10]
PI3K/AKT/mTOR [55]
EGFR [57]
Hepatocellular . AKT/GSK-3p / 3-catenin [56]
Carcinoma Increased Oncogenic FZD5/ B-catenin [54]
PD-L1, mTOR, WNT [47]
HIF-1x, ATG2A, ATG14 [59]
TGF-B, WNT [61]
Pancreatic Cancer Decreased Tumor Suppressive NA [63-66]
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