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T follicular helper (Tfh) cells play key role in providing help to B cells during germinal 
center (GC) reactions. Generation of protective antibodies against various infections is 
an important aspect of Tfh-mediated immune responses and the dysregulation of Tfh 
cell responses has been implicated in various autoimmune disorders, inflammation, and 
malignancy. Thus, their differentiation and maintenance must be closely regulated to 
ensure appropriate help to B cells. The generation and function of Tfh cells is regulated 
by multiple checkpoints including their early priming stage in T zones and throughout 
the effector stage of differentiation in GCs. Signaling pathways activated downstream of 
cytokine and costimulatory receptors as well as consequent activation of subset-specific 
transcriptional factors are essential steps for Tfh cell generation. Thus, understanding 
the mechanisms underlying Tfh cell-mediated immunity and pathology will bring into 
spotlight potential targets for novel therapies. In this review, we discuss the recent 
findings related to the molecular mechanisms of Tfh cell differentiation and their role in 
normal immune responses and antibody-mediated diseases.
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iNTRODUCTiON

Germinal centers (GCs) are secondary lymphoid structures within B cell follicles where B cells go 
through affinity maturation and class-switch recombination to generate high-affinity antibodies  
(1, 2). GC reactions play a critical role in the invasion of pathogens, while abnormal GC reactions 
are implicated in systemic autoimmune diseases, chronic inflammation, allergic responses, and B cell 
malignancies. The GC reaction is initiated and amplified by GC B cell and CD4+ T cell interactions 
followed by T follicular helper (Tfh) cell help to B cells which leads to the generation of long-lived 
serological memory (2, 3). Exaggerated expansion of Tfh cells results in excessive GC reactions, 
self-reactive B cell proliferation, and increased long-lived plasma cell differentiation, as well as an 
overproduction of high-affinity pathogenic autoantibodies (4). Understanding the development and 
function of Tfh cells is important for generating new vaccine strategies against pathogens as well 
as targeted approaches to abrogate the inappropriate activity of these cells in patients with various 
autoimmune diseases.
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FigURe 1 | Regulatory signaling for T follicular helper (Tfh) cell development: naïve CD4+ T cell priming by MHC/antigen interaction on DCs (step 1) leads to the 
generation of CXCR5+Bcl6lo pre-Tfh cells with increased activity of transcriptional factors such as Achaete-scute homolog 2 (Ascl2), signal transducers and 
activators of transcription (STAT)1, STAT3, IFN-regulatory factor 4 (IRF4), and Batf (step 2). Ascl2 expression in activated T cells orchestrates them to migrate toward 
B cell follicles by upregulation of CXC chemokine receptor 5 (CXCR5) expression and repressing IL-2R-Blimp1 pathway as well as Th1, Th2, and Th17 cell 
differentiation. Upon interaction with cognate B cells at T-B border (step 3), CXCR5+ T cells begin to upregulate B-cell lymphoma 6 protein (Bcl6) expression, which 
in cooperation with other transcription factors determines the final differentiation state of Tfh cells within germinal centers (step 4).
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T follicular helper cell development occurs in a stepwise 
process (1, 2). Contact of naïve CD4+ T  cells with antigen-
presenting dendritic cells (DCs) within T cell follicles is the first 
step of commitment toward Tfh cell differentiation (Figure 1). 
This step of Th cell development, named as pre-Tfh is reflected by 
upregulation of CXC chemokine receptor 5 (CXCR5) expression 
as well as key genes in the Tfh pathway such as B-cell lymphoma 
6 protein (Bcl6), Achaete-scute homolog 2 (Ascl2), ICOS, pro-
grammed cell death-1 (PD-1), and Batf, and the downregulation 
of CC chemokine receptor 7 (CCR7) expression. These changes 
guide the pre-Tfh cells to the T/B  cell border where proper 
signals received from B  cells trigger a further increase in the 
Tfh-associated gene expression pattern (Bcl6, PD-1, ICOS, and 
CXCR5), commitment to the functional GC Tfh cell program 
and subsequent GC formation. While in mice, IL-6, IL-21, and 
Bcl6 are essential for Tfh formation, in humans, Tfh generation 
relies on TGF-β, IL-12, IL-23, and Activin A signaling (5–9). 
In addition, Tfh cell differentiation is negatively controlled by 
cytokines (IL-2 and IL-7) costimulatory molecules [cytotoxic 
T  lymphocyte antigen 4 (CTLA4) and PD-1], and transcrip-
tional factors [signal transducers and activators of transcription 
(STAT)5, Blimp-1, FOXO1, Foxp1, and Krüppel-like factor 2 
(Klf2)] (10–16).

In this review, we have discussed positive and negative 
regulation mechanisms of mouse and human Tfh dif-
ferentiation including costimulation and cytokine driven 
signaling pathways and subsequent activation of downstream 
transcriptional factors. We also elaborate on the cellular 

requirement of other follicular T cells within GCs for Tfh cell 
development and GC formation. Moreover, we will review 
the current advances in Tfh cell biology in various disease 
settings.

Tfh CeLLS iN MiCe AND HUMANS

Several seminal discoveries made in humans and mice in the 
early 2000s led to identification of B follicular helper T cells that 
are indispensable for GC formation and B cell function (17, 18). 
These cells express high levels of CXCR5 and low CCR7 in both 
humans and mice (17–20). CXCR5 expression is indispensable 
for T  cell migration from T zones toward CXCL13-rich B-cell 
follicles, where they interact with B cells for further maturation 
and then provide help for the generation of high-affinity anti-
bodies and long-lived plasma cells (21–24). Thus, based on their 
localization and function, CXCR5+ CD4+ T cells were designated 
as Tfh cells.

Profiling of cytokine and gene expression patterns provided 
the evidence that mouse and human Tfh cells are distinct from 
Th1 and Th2 subsets and help B cells by delivering activating sig-
nals with CD40L and the cytokine IL-21 (3, 6, 18, 25). Moreover, 
these mouse and human gene-profiling experiments helped to 
identify key molecules including Bcl6, Ascl2, IL-21, PD-1, and 
ICOS which play a substantial role in Tfh cell development, 
migration, homeostasis, and function in both species. In 2009, 
three independent groups identified the essential function of 
the transcription factor (TF) Bcl6 for Tfh cell development and 
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function (7, 26, 27). Since then Tfh cells have been recognized as 
a distinct lineage of T helper cells.

Studies in mice and humans show that Tfh cells are localized 
in lymphoid organs and are composed of subsets that differ 
in their localization, phenotype, and function (28). In mice, 
after priming with DCs in the T zones of secondary lymphoid 
organs, a fraction of naive CD4+ T cells acquire CXCR5, PD-1, 
and Bcl6 expression, downregulate CCR7, and migrate toward 
B cell follicles (Figure 1) (21, 29–32). These CXCR5+Bcl6+CD4+ 
T cells, called Tfh precursors (pre-Tfh), interact with antigen-
presenting B cells and further differentiate to fully programmed 
GC Tfh cells, which provide help to B cells within GCs. GC Tfh 
cells can be distinguished from Tfh precursors by high expres-
sion levels of CXCR5 and PD-1 (28). Sustained expression of 
Bcl-6 in GC Tfh cells is essential for GC formation (7, 26, 27). 
The origin of Tfh cells is not restricted to naive cells, and there 
is some evidence suggesting that other Th subsets including 
Th1, Th2, Th17, and regulatory T  cells (Tregs) may become 
Tfh cells in GCs (3). This is consistent with the heterogeneity 
in cytokine expression patterns among GC Tfh cells developed 
under different immunization protocols and by different types 
of infectious agents (33). In human tonsils, CXCR5loICOSlo pre-
Tfh cells (or extrafollicular helper T cells) express multiple Tfh 
molecules including CD40L, IL-21, and CXCL13 but not Bcl6 
and are localized outside of GCs where they help naïve B cells 
to become immunoglobulin-producing cells (34). By contrast, 
CXCR5hiICOShiPD-1hi GC Tfh cells provide help to GC B cells 
and promote their survival, proliferation, and differentiation 
into immunoglobulin-producing cells (28). In human tonsils, 
GC Tfh cells contain subsets coexpressing Bcl-6 and RORγt, and 
Bcl-6 and T-bet (8). This suggests that other Th subsets may 
be able to differentiate into Tfh cells or that Tfh cells share the 
same developmental path with Th1 and Th17 cells as observed 
in mice (35, 36).

A CXCR5+ subset of CD4+ T  cells can also be identified 
in the peripheral blood of mice and humans, subsequently 
referred to as circulating Tfh (cTfh) cells. Although these 
CCR7loPD-1+ cells express lower levels of ICOS and PD-1 
and seldom express Bcl6 they are closely related to Tfh cells 
(37). Their differentiation depends on ICOS and Bcl6 but not 
SLAM-associated protein (SAP), suggesting that cTfh cells are 
primary Tfh precursors or early memory Tfh cells. The cTfh 
cell subset undergoes active Tfh differentiation into mature Tfh 
cells in secondary lymphoid organs upon antigen reencounter 
and their presence correlates with autoimmune diseases such as 
lupus and rheumatoid arthritis (RA) (37). In addition, based on 
the expression of CXCR3 and CCR6, human cTfh cells can also 
be subdivided into three main subsets, namely, CXCR3+CCR6− 
(Tfh1), CXCR3−CCR6− (Tfh2), and CXCR3−CCR6+ (Tfh17) 
cells (38, 39). Tfh2 and Tfh17 cells, but not Tfh1 cells, represent 
efficient B cell helper cells to regulate immunoglobulin isotype 
switching (38). A recent data showed that in addition to cTfh 
memory, Tfh cells could be local in the draining lymphoid 
organs and sustain B cell responses after reactivation (40). In 
contrast to cTfh cells, local memory Tfh cells promote plasma 
cell differentiation and could be released to the circulating 
memory compartment over time.

Tfh CeLL DiFFeReNTiATiON

T follicular helper cell differentiation is a complex process, which 
is tightly regulated (41) (Figure 1). It begins during naïve CD4+ 
T cell priming by DCs in the T cell zone of secondary lymphoid 
tissues and continues through the first cognate T cell:B cell inter-
action at the T–B junction until Tfh cells differentiate into mature 
GC Tfh cells when they enter follicles (2, 3, 42, 43). At each of 
these stages, Tfh cell development is influenced by signaling path-
ways downstream of cell surface molecules including the T cell 
receptor (TCR), costimulatory molecules, and cytokine receptors 
leading to the activation of specific transcriptional machinery (2, 
3, 42, 43).

Costimulatory Molecules
T follicular helper cell differentiation from naive CD4+ T  cell 
precursors is a multistep process which requires costimulatory 
signals. Positive [CD28, ICOS, SAP, glucocorticoid-induced 
tumor necrosis factor receptor-related protein (GITR), etc.] 
and negative [CTLA4, PD1, and B and T  lymphocyte attenua-
tor (BTLA)] costimulation works together with TCR signaling 
during Tfh cell development to guide activation, proliferation, 
differentiation, migration, survival, and effector functions (1–3, 
33, 44). Imbalance between positive and negative costimulation 
signals leads to increased Tfh cell number and consequently to 
Tfh-driven autoimmunity (45, 46).

Positive Costimulation
CD28 and ICOS
CD28 and ICOS are two structurally and functionally related 
costimulatory molecules that are critical for Tfh cell differentia-
tion (2, 47, 48). CD28, which is constitutively expressed on both 
naïve and resting T cells, specifically binds to its ligands CD80 or 
CD86 and regulates T-dependent B cell responses (49, 50). While 
previous studies suggest the overlapping function of CD80 and 
CD86 in antibody responses, during virus infection CD86 expres-
sion on B cells but not CD80 is critical for Tfh cell generation and 
function (51). CD28 signaling regulates (i) early key events of Tfh 
differentiation, especially the expression of PD-1, ICOS, OX-40, 
Bcl6, and CXCR5 (47); (ii) the late stage of Tfh differentiation 
as B7 ligand blockade during ongoing infection impairs Tfh cell 
response (52, 53); and (iii) Tfh cell survival (53).

ICOS, another CD28 family member, is highly expressed on 
Tfh cells and is critical for Tfh cell generation and GC formation 
(2, 48). Unlike CD28, ICOS does not regulate any of the early 
differentiation steps of naïve T  cells into Tfh cells, particularly 
Bcl6 expression (47); however, ICOS is important to maintain 
the phenotype of already differentiated Tfh cells (47). Mice in 
which the ICOS–ICOSL interaction is disrupted as well as ICOS-
deficient patients have fewer Tfh cells and smaller GCs (6, 47). 
ICOS exerts its costimulatory function through phosphoinositide 
3-kinase (PI3K) signaling which results in the activation of Akt 
(47). Akt phosphorylates the transcriptional factor FOXO1 
which thereby stays in the cytoplasm and becomes functionally 
inactive (47). This is critical because FOXO1 suppresses Tfh cell 
differentiation through the negative regulation of Bcl6 and posi-
tive regulation of Klf2 expression (15). Klf2 plays a negative role 
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in Tfh differentiation by binding to promoter regions of CXCR5, 
CCR7, CD62L, PSGL-1, and S1pr1, which leads to the suppres-
sion of CXCR5, relocation of Tfh cells from B cell follicles back to 
T cell zone and their phenotype reversion to non-Tfh cells (44). 
Besides the ICOS–Klf2 axis, ICOS promotes interaction of the 
p85a regulatory subunit of PI3K with osteoponin (OPN-i), fol-
lowed by translocation of OPN-I into the nucleus, its interaction 
with Bcl6 and protection of Bcl6 from proteasome degradation; 
thus, sustain responses by Tfh cells (54).

SLAM-Associated Protein
SLAM-associated protein is an intracellular adaptor protein 
essential for the function of SLAM family receptors (SFRs) to reg-
ulate immune responses (55, 56). SFRs consist of nine members, 
four of which are highly expressed on Tfh and B cells: CD150/
SLAM, CD229/Ly9/SLAMF3, CD84/SLAMF5, and NTB-A/
Ly108/SLAMF6 (57–59). High intrinsic SAP expression in both 
human and mouse GC Tfh cells, but not in B cells, is important for 
the development of long-term humoral immunity: particularly 
formation of GCs, long-lived plasma cells, and memory B cells 
(57, 60, 61). Bcl6 is required for SAP expression in GC Tfh cells 
(62). SAP through SFRs regulates T:B cell adhesion, cytokine pro-
duction, and TCR signaling strength (63). Patients with X-linked 
lymphoproliferative disease (XLP) caused by a SAP gene muta-
tion as well as mice lacking SAP expression, display defects in GC 
Tfh cell generation and GC reactions (3, 55). While SAP-deficient 
CD4+ T cells express normal levels of CXCR5, ICOS, and Bcl6, 
they have an impaired ability to stably interact with cognate 
B cells and sustain GC reactions (58, 61, 64, 65). Thus, SAP is 
not required for early Tfh cell differentiation (Bcl6+CXCR5+), but 
is indispensable for sustained T:B cell interactions and the full 
polarization to GC Tfh cells (Bcl6hiPD1hi) mainly by the follow-
ing mechanisms: (1) SAP binds phosphotyrosines of the SLAM 
immunotyrosine switch motifs (ITSM) and mediates positive 
signaling by recruiting Src family kinase Fyn and PKCθ (66); (2) 
SAP competes with the tyrosine phosphatase SHP-1 for Ly108 
ITSM binding, signaling through which contributes to reductions 
of T:B contacts and to an impairment in GC Tfh cell generation 
and GC responses (58). In addition to regulating T:B adhesion, 
positive signaling through SAP and PKCθ regulates cytokine 
secretion by GC Tfh cells, particularly IL-4 (60, 67). Moreover, 
Sap/Ly108 engagement sustains the TCR signaling that is required 
for establishing the Tfh cell:B cell synapse and thus allowing Tfh 
cells to provide help to B cells (68).

Glucocorticoid-Induced Tumor Necrosis Factor Receptor-
Related Protein
Glucocorticoid-induced tumor necrosis factor receptor-related 
protein (TNFRSF18, and CD357), a member of the tumor necro-
sis factor receptor superfamily, is expressed at high levels in Tregs 
and activated T cells (69). Activation of GITR by its natural ligand 
GITRL enhances proliferation and effector T cell responses and 
inhibits Treg mediated suppression (70, 71). GITR is highly 
expressed on Tfh cells compared with non-Tfh cells in the spleens 
of collagen-induced arthritis (CIA) mice (72). GITR signaling 
promotes Tfh cell expansion and survival. Administration of 

GITR-Fc protein greatly reduces CIA severity by suppressing Tfh 
development and thereby humoral immune responses. In addi-
tion, in the chronic lymphocytic choriomeningitis virus (LCMV) 
infection model, a Tfh cell intrinsic role for GITR in sustaining 
Tfh cell responses and LCMV-specific antibody production has 
been identified (73). Thus, GITR signaling is considered as a 
positive regulator of Tfh generation (44).

Negative Costimulation
Programmed Cell Death-1
Programmed cell death-1 (PDCD1 and CD279) is a member 
of the CD28 superfamily which is transiently expressed by 
activated conventional T cells and delivers an inhibitory signal 
by engaging its ligands PD-L1/CD274/B7-H1 and PD-L2/
CD237/B7-DC that are expressed on activated B cells, DCs, and 
macrophages (74). PD1 shows high and sustained expression 
on exhausted T  cells, Tregs, Tfh, and T follicular regulatory 
(Tfr) cells (75–78). In addition to conventional T  cells, PD-1 
is expressed by B cells, natural killer cells, and myeloid cells as 
well (79, 80). Early studies utilizing complete knockouts of PD1, 
PD-L1, or PD-L2, or their respective blocking antibodies tried 
to address the role of the PD-1 pathway in controlling humoral 
immunity. Interestingly, some studies have shown attenuated 
humoral immune responses upon PD-1 signaling blockade, 
whereas others have found enhanced responses (74, 81–85). 
Later work using cell-type specific deletion of PD1 and its 
ligand helped to delineate the function of PD1 signaling in GC 
responses and gain insight into the individual role of PD1 in Tfr 
and Tfh cells and PD1 ligands in DCs and B cells in the regula-
tion of humoral immunity (77). The PD-1–PD-L1 pathway 
plays an immunoregulatory role in limiting the differentiation 
and suppressive function of Tfr cells (77). PD-1 expression can 
also modulate Tfh differentiation and function. Tfh cells from 
aged mice express higher levels of PD-1 compared with Tfh cells 
in young mice; PD-1 blockade in aged Tfh cells restores Tfh cell 
function, suggesting a cell-intrinsic role of PD1 in Tfh cells (12, 
86). Interestingly, PD-L1 expression on DCs, but not B  cells, 
inhibits Tfh and Tfr cell differentiation (87).

Cytotoxic T Lymphocyte Antigen 4
Cytotoxic T lymphocyte antigen 4 is a key checkpoint in immune 
tolerance (88–92). While CTLA4 and CD28 share the same 
ligands CD80 and CD86, CTLA4 interacts with them with higher 
affinity and avidity compared with CD28 (48). The central tenet 
of CTLA4 function is to regulate CD28 signaling, since fatal 
multiorgan inflammation as well as increased antibody levels 
in CTLA4 KO mice are prevented by the blockade of CD80 and 
CD86 (93–95). CTLA4 is constitutively expressed in Tregs and 
upregulated after activation in conventional T cells and plays a 
key role in mediating Treg function and in controlling conven-
tional T cells (48). In fact, a Treg-specific deletion of CTLA4 reca-
pitulates the phenotype of germline CTLA4 KO mice including 
increase in antibody production, indicating the role of CTLA4 in 
Tregs to control B cell responses (96). Recently, multiple groups 
assessed the role of CTLA4 in B cell responses and identified the 
function of CTLA4 on multiple T cell subsets including Tfh, Tfr, 
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and Tregs in regulating humoral immune responses (13, 97). 
While it was suggested that CTLA4-dependent suppression is 
the primary mechanism used by Treg and Tfr cells to control Tfh 
cell development and humoral immunity via CTLA4-dependent 
downregulation of CD80 and CD86 on B cells, Foxp1-dependent 
CTLA4 expression on non-Treg CD4+ cells has cell-intrinsic and 
negative regulatory functions in Tfh cell differentiation, mainte-
nance, and function (13). CTLA4 controls Tfh cell differentiation 
by regulating the degree of CD28 engagement (52).

B and T Lymphocyte Attenuator
B and T lymphocyte attenuator (CD272) is an inhibitory recep-
tor expressed on T and B cells that binds TNFR family member 
herpesvirus entry mediator and attenuates T and B cell activa-
tion and effector functions (98–100). Mice lacking BTLA exhibit 
increased antigen-specific IgG responses and with age gradually 
develop autoimmune hepatitis-like disease and autoantibody 
production to nuclear antigens (101), suggesting that BTLA 
negatively regulates humoral immune responses. BTLA is highly 
expressed in CXCR5+ Tfh cells compared with conventional 
CXCR5− CD4+ T cells. While Tfh cell development is not affected 
in BTLA-deficient mice, BTLA expression in Tfh cells but not in 
B cells is critical to control GC B cell development and antigen-
specific IgG2a and IgG2b production (102). Moreover, BTLA 
controls Tfh-mediated B  cell responses by suppressing IL-21 
production (102).

Cytokines
Along with antigen and costimulation signaling, specific 
cytokine-dependent cues play a central role in governing naive 
CD4+ T  cell differentiation into specific effector T helper cell 
subsets. For example, IL-12 and IFNγ promote Th1 differentia-
tion, whereas IL-4 drives Th2 differentiation (42). In addition, IL6 
and IL-21 in combination with TGFβ induce Th17 differentiation 
(42). There are multiple cytokines that exercise either positive 
or negative roles at different stages of Tfh development (1, 2). 
However, cytokine-dependent Tfh cell formation varies between 
mice and humans (1, 42). Particularly, while TGFβ signaling 
opposes Tfh development in mice, it is required for human Tfh 
cell development (42).

Cytokines That Support Tfh Cell Formation in Mice 
and Humans
IL-6, IL-21, and IL-27
IL-6, IL-21, and IL-27 have all been implicated in Tfh cell devel-
opment, although with differing roles (1, 2, 6, 7, 103, 104). IL-6 
is mainly derived from activated B cells, DCs, and follicular DCs 
and is required in the initial stage of Tfh cell formation by induc-
ing Bcl6 and IL-21 expression (5, 103, 105, 106). Mice deficient 
in IL-6 or IL-6R show reduced or delayed Tfh cell formation due 
to impaired signaling through STAT3 and STAT1 (5, 107). In 
addition, at the late stage of chronic viral infection, IL-6 derived 
from activated follicular DCs is crucial for maintenance of Tfh 
cell by upregulation of Bcl6 and viral control (3). Similar to mice, 
in humans, IL-6 derived from circulating plasmablasts is also a 
potent inducer of Tfh differentiation (108). IL-21 is primarily 

produced by select CD4+ T cells including Tfh, Th17 cells, and 
natural killer T (NKT) cells and plays a more prominent role in 
sustaining Tfh cell identity and function (6, 7, 18, 36, 109). IL-21- 
and IL-21R-deficient mice display reduced numbers of Tfh cells 
after antigen immunization suggesting an autocrine role for IL-21 
in the maintenance and augmentation of Tfh cell programming (6, 
110). However, in mice deficient either in IL-6 or IL-21 signaling, 
Tfh cell development is only partially compromised, indicating 
that these cytokines may play redundant roles in Tfh cell develop-
ment (5, 103). In fact, loss of both cytokines significantly dimin-
ished Tfh cell numbers compared with an IL-6 or IL-21 deficiency 
alone (5, 103). However, an IL-6/IL-21 deficiency does not cause 
the complete absence of Tfh cells, suggesting an existence of IL-6 
and IL-21-independent mechanisms for Tfh cell generation. In 
fact, it has been reported that the cytokine IL-27 contributes to 
Tfh cell maintenance by promoting IL-21 expression (104). Mice 
deficient in IL-27 signaling show reduced IL-21 expression, Tfh 
cell number, and GC activity (104). Similar to mice, DC-derived 
IL-27 is critical for the induction of Tfh cell polarization, IL-21 
secretion by Tfh cells, and Tfh-dependent production of IgG by 
B cells (111). In addition to IL-21 induction, it has been suggested 
that IL-27 may play an important role in Tfh cell development by 
antagonizing IL-2 signaling, which negatively regulates Tfh cell 
development (10, 112).

TGF-β, IL-12, IL-23, and Activin A
Recent data suggest that different groups of cytokines support 
Tfh cell formation in humans, with prominent roles for TGF-β, 
IL-12, and IL-23. While IL-12 and IL-23 are capable of inducing 
IL-21 expression in naïve CD4+ T cells from human tonsils and 
peripheral blood, only IL-12 could augment expression of CXR5, 
ICOS, CD40L, and Bcl6, thus IL-12 is likely to act at an early 
stage of human Tfh cell development. B cells co-cultured with 
IL-12-primed CD4+ T cells produce antibodies which in part is 
dependent on the expression of CD40L (113). In support of the 
importance of IL-12 and IL-23 for Tfh development, individuals 
with mutations disrupting the function of IL-12Rβ1 (receptor 
for IL-12 and IL-23) have fewer circulating and GC Tfh cells and 
memory B cells. In mice, acting through STAT4, IL-12 induced 
a transitional stage in Tfh–Th1  cells, which express IL-21 and 
Bcl6. However, the IL-12–STAT4 pathway also promotes Tbet 
expression, which ultimately represses Bcl6 expression and Tfh 
cell programming. Since IL-12 is also linked to the generation 
of human Th1  cells, additional factors may also contribute to 
human Tfh cell generation. Surprisingly, TGF-β acts as an 
important cofactor for the early differentiation of human Tfh 
cells, but not in mice (7, 8, 114). TGF-β synergizes with IL-12 
and IL-23, activating STAT4 and STAT3, and promoting Tfh cell 
development through induction of Tfh key molecules including 
CXCR5, ICOS, IL-21, Bcl6, Batf, c-Maf, and the downregulation 
of Blimp-1 expression (8). Recently, Activin A was identified as 
a novel inducer of Tfh cell programming in human and non-
human primate cells, but not in mice by upregulating CXCR5, 
CXCL13, and PD-1 expression and repressing CCR7 and Blimp-1 
expression (9). Activin A, in combination with IL-12, promotes 
the generation of Tfh like cells that have high expression levels 
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of CXCR5, Bcl6, PD-1, LAMF1, CXCL13, IL-21, LIF, LTA, and 
TNF (9). Activin-A-induced Tfh programming is dependent on 
signaling via SMAD2 and SMAD3 (9).

Cytokines Which Inhibit Tfh Cell Formation
IL-2, IL-10, and IL-7
The IL-2/STAT5 axis is shown to be inhibitory for Tfh cell 
formation. In an in vivo mouse model of influenza infection, 
it was shown that exogenous administration of IL-2 sup-
presses Tfh cell differentiation, GC formation, and neutralizes 
antibody production (10). T  cell-intrinsic expansion of Tfh 
cells is mediated by loss of IL-2Rα (115, 116). Mechanistically, 
activation of STAT5 by IL-2 enhances Blimp-1 expression and 
prevents binding of STAT3 to the Bcl6 locus (10). In addition, 
IL-2 inhibits the expression of IL-6 receptor α-chain (IL-6rα) 
and to a lesser extent, gp130 and thus negatively regulates Tfh 
differentiation (117). Moreover, a recent study depicts that 
IL-2 drives cells toward Th1 rather than Tfh differentiation 
through the activation of Akt and mTORC1 kinase (118). IL-7 
negatively regulates Tfh differentiation by activating STAT5 
and thereby repressing Bcl6 and CXCR5 (11). An additional 
study showed that IL-10, which has traditionally been viewed 
as a costimulator of antibody production, could also inhibit 
antibody responses indirectly by suppressing a subset of Tfh 
cells that produce IL-17 and IL-21 (119).

Transcriptional Regulation of Tfh Cells
The differentiation of naïve CD4+ T cells into Tfh cells is regu-
lated by coordinated interplay between cell-extrinsic factors 
and cell-intrinsic transcriptional networks. Since the discovery 
of Bcl6 as a key factor for Tfh differentiation, several other 
transcriptional factors that either support [IFN-regulatory fac-
tor 4 (IRF4), c-Maf, Batf, STATs, Ascl2, TCF1, LEF1, etc.] or 
oppose [FOXO1, FOXP1, BLIMP-1, STAT5, KLF2, and peroxi-
some proliferator-activated receptor gamma (PPARγ)] Tfh cell 
development, migration, and function have been defined (1–3).  
A dynamic balance between these multiple transcriptional 
factors is the main determinant of normal Tfh development 
and immunity, since dysfunction of negative transcriptional 
machinery triggers autoimmunity (120, 121).

TFs Positively Influencing Tfh Cell Differentiation
B-Cell Lymphoma 6 Protein
The Bcl6 has been recognized as a key transcriptional factor for 
Tfh cell development and for efficient GC responses (7, 26, 27). 
Expression of Bcl6 is driven by CD28 and IL-6/IL-21–STAT1/
STAT3 signaling (47). Bcl6 overexpression leads to the upregula-
tion of PD-1, CXCR5, CXCR4, and SAP which are essential for 
Tfh cell function in T and B  cell interactions (106, 115). As a 
transcriptional repressor, Bcl6 functions to suppress genes that 
controls Tfh cell development by the following mechanisms: (i) 
Blimp-1 expression; (ii) genes encoding proteins that controls 
migration including EBI2, CCR7, CCR6, S1PR1, and PSGL1; (iii) 
Klf2 expression; (iv) genes that support Th1 (IFNGR1, T-bet, and 
STAT4), Th2 (Gata3), and Th17 (IL-17 and RORγt) cell develop-
ment (7, 26, 27, 122–126).

c-Maf
c-Maf is a bZIP transcriptional factor that plays an important 
role in the regulation of cytokine production and Th2, Th17, 
and Tfh cell differentiation (87). Both Th17 and Tfh cells have 
higher expression of c-Maf, and loss of c-Maf in T cells results in 
a defect in IL-21 production and fewer Th17 and Tfh cells (36). 
Recent data further indicate an important and non-redundant 
role for c-Maf in the initiation of Tfh cell development and T-cell-
mediated humoral responses. Loss of c-Maf expression in T cells 
leads to the decreased expression of key Tfh molecules, such as 
BCL6, CXCR5, and PD1 (127).

Batf
Batf is basic leucine zipper protein in the AP-1 family which was 
originally implicated in Th17 differentiation through direct regu-
lation of transcription of RORγ, IL-21, and IL-22 (128). While 
Batf expression is moderately increased in Tfh cells compared 
with other T helper subsets, Batf is an essential component for 
Tfh development through combined regulation of Bcl6 and c-Maf 
(129, 130). Batf-deficient mice fail to generate Tfh cells, and Bcl6 
and c-Maf overexpression in Batf-deficient T cells improves Tfh 
cell development but not to the level of Batf reconstitution, sug-
gesting that additional targets are required for complete Tfh cell 
induction (130). In addition, the Batf/IRF4 complex in coopera-
tion with STAT3 and STAT6 is required for IL-4 expression in 
Tfh cells (120).

IFN-Regulatory Factor 4
Together with the well-known function of IRF4 in Th2, Th17, 
Th9, and Treg differentiation as well in plasma cell maturation 
(131–139), IRF4 also plays a critical role in Tfh cell development 
and GC formation (140). Mechanistically, IRF4 may cooperate 
with other transcriptional factors that determine T  cell fate 
decision: (i) IRF4 interacts with Jun and Batf to form an IRF4–
Jun–Batf complex that binds to AP-1–IRF4 composite elements 
(141); (ii) binds with STATs (142), and Bcl6 (143). Recently, it 
has been acknowledged that TCR signaling strength controls 
IRF-4 concentration and consequently cell fate choice between 
Bcl6-expressing Tfh and Blimp-1 expressing Teff cells (144). 
Increased TCR signaling leads to elevated IRF4 levels that func-
tion to coordinate Teff cell fate choice at the expense of Tfh cell 
fate (144).

Signal Transducers and Activators of Transcriptions
There are several members of the STAT family including STAT1, 
STAT3, and STAT4 that contribute to Tfh cell development  
(1, 6, 14, 106). It has been reported that STAT1 is required for 
early Tfh differentiation (107). Besides, IL-6 signaling during Tfh 
differentiation is mediated by both STAT1 and STAT3 TFs (107). 
It has also been noted that STAT1 directly regulates expression 
of key Tfh genes including Bcl6, CXCR5, and PD-1 by binding 
to their promoter loci (145). IL-6–STAT3 and IL-21–STAT3 
signaling can promote Tfh cell differentiation by inducing Bcl6 
expression (6, 7, 146, 147). STAT3 cooperates with the Ikaros zinc 
finger TFs, Aiolos, and Ikaros, to regulate Bcl6 expression (148). 
IL-6-mediated STAT3 activation restricts IL-2Rα expression to 
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limit Th1 cell differentiation (107). In humans, functional STAT3 
deficiency compromises Tfh cell generation (149). STAT4 can 
promote the expression of Bcl6 and the classical Tfh cell cytokine 
IL-21 in both mouse and human Tfh cells in  vitro (35, 150). 
However, continued IL-12-driven Stat4 signaling can decrease 
the expression of Bcl6 and IL-21 and strengthen T-bet-derived 
Th1 differentiation at the expense of Tfh cells (35). Interestingly 
after acute viral infection, T-bet is co-expressed with Bcl6 in 
Tfh cells and is required alongside STAT4 to coordinate IL-21 
and IFN-γ production in Tfh cells and for promotion of the GC 
response (151).

Notch1 and Notch2
Notch proteins belong to the family of evolutionary conserved 
transmembrane-bound receptors and play an important role in 
CD4+ T helper cell differentiation and/or function including Tfh 
cells (152). Mice with T-cell-specific deletions of Notch1 and 
Notch2 display impaired Tfh cell differentiation, IL-4 secretion by 
Tfh cells and GC reactions after immunization with T-dependent 
antigens or infection with parasites (153). Notch1- and Notch2-
deficient Tfh cells express reduced levels of Tfh-associated 
molecules (CXCR5, PD-1, BTLA, and Bcl6), but normal levels of 
ICOS and increased Blimp-1 expression (153). Notch receptors 
1 and 2 are required for Tfh cell generation and IL-4 expression 
by Tfh cells, but are dispensable for Th2 cell differentiation in 
response to parasitic helminth infection. Thus, Notch signaling is 
an important checkpoint in the bifurcation between Tfh and Th2 
cell-driven hallmarks of type-2 immunity (154).

NFAT
Nuclear factor of activated T cells 2 (NFAT2) is highly expressed 
in Tfh cells, NFAT2 deficiency in T cells leads to enhanced GC 
reactions due to the impairment of Tfr cells to upregulate CXCR5 
but not Tfh cells (155). A loss of both NFAT1 and NFAT2 in CD4+ 
T cells leads to impaired GC reactions due to reduced Tfh cell dif-
ferentiation and decreased expression of proteins such as ICOS, 
PD-1, and SFRs which are important players in T/B interactions 
and B cell help (156).

Achaete-Scute Homolog 2
Achaete-scute homolog 2, a bHLH-domain-containing TF, is 
selectively upregulated in Tfh cells and initiates Tfh cell develop-
ment (157). Overexpression of Ascl2 can lead to a substantial 
induction of CXCR5 expression, but not Bcl6 and downregulation 
CCR7 expression in vitro, as well as accelerated T cell migration 
to the follicles and Tfh cell development in vivo in mice (157). 
Ascl2 inhibits expression of Th1 and Th17 signature genes (157). 
Ascl2 deletion as well as inhibition of its function with E-protein 
inhibitor Id3 leads to a total impairment of Tfh cell development 
and GC response (157).

T Cell Factor 1 (TCF-1) and LEF-1
T cell factor 1 is highly expressed in Tfh cells (158–160). TCF-1 
plays an important role in the initiation of Tfh cell differentiation 
and the effector function of differentiated Tfh cells, as TCF-1 
deficiency results in reduced generation of Tfh cells and impairs 

their function to provide B cell help (159, 160). Similar to TCF-1, 
LEF-1 is also known for its essential role in early Tfh cell develop-
ment (161, 162). LEF-1 and TCF-1 are upstream of Bcl6 induction 
and directly target Tfh signaling molecules (Bcl6, IL-6R, gp130, 
and ICOS) to promote Tfh cell differentiation (158). TCF-1 also 
suppresses Blimp-1 and IL-2Ra expression (159).

Early Growth Response Gene 2 (EGR2) and EGR3
Early growth response gene 2 and EGR3 can directly regulate the 
expression of Bcl6 and differentiation of Tfh cells (163).

Bob1
It has been reported that B-cell-specific octamer-binding protein 
1, Bob1 in cooperation with TFs Oct1/Oct2 can directly bind to 
Bcl6 and BTLA promoters and promote their expression and Tfh 
cell development (164). However, at the same time, other groups 
have reported that the function of Bob1 is to mainly restrict the 
cellular frequency of Tfh cells (165, 166).

NF-kB1
It has been reported that NF-kB1 promotes Tfh cell responses 
by facilitating CXCR5 expression but no other Tfh-related mol-
ecules (Bcl6, IL-21, and PD-1), and the NF-kB1-deficient T cells 
partially lose their ability to provide help to B cells in vivo (167). 
In addition, the non-canonical NF-kB pathway may also play an 
essential role in Tfh development through regulation of ICOSL 
expression in B cells (168).

TFs Negatively Influencing Tfh Cell Differentiation
FOXO1 and FOXP1
Early studies suggest that a decreased expression of FOXO1 either 
because of increased expression of ICOS (15) or because of ITCH-
mediated degradation (169) may increase Tfh cell differentiation. 
Analysis of mice with a specific deletion of Foxo1 in T  cells 
revealed the requirement for Foxo1 in the suppression of Bcl6 
expression and Tfh cell differentiation (15). In addition, enforced 
nuclear localization of Foxo1 prevents Tfh cell differentiation 
(15). However, Foxo1 is required during final differentiation to 
GC Tfh cells as Foxo1 deficient GC Tfh cells are substantially 
reduced (15). Foxp1 is an additional negative regulator of Tfh cell 
development. It mainly plays a role in dampening ICOS and IL-21 
expression by regulating CCR7 and CTLA4 expression (170).

Krüppel-Like Factor 2
The TF, Klf2, regulates naïve T cell trafficking to secondary lym-
phoid tissues by promoting the expression of CD62L and S1PR1 
(16). KLF2 expression impairs Tfh cell differentiation, whereas 
ablation of KLF2 expression enhances Tfh cell differentiation 
(171). This effect is related to the capacity of KLF2 to promote 
the expression of genes that oppose Tfh cell differentiation 
(Blimp-1, Gata3, and T-bet) and to repress the transcription of 
CXCR5 (171).

Blimp1 and STAT5
Blimp1, which is encoded by Prdm1, is a transcriptional repressor 
that has the ability to inhibit Bcl6 expression in B and T cells (122). 
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Blimp-1, induced by IL-2/IL-7 and STAT5 signaling, suppresses 
expression of Bcl6 and other Tfh-associated genes including 
CXCR5, c-Maf, Bcl6, Batf, and IL-21, thus preventing Tfh cell 
differentiation (14, 172).

Peroxisome Proliferator-Activated Receptor Gamma
Peroxisome proliferator-activated receptor gamma is a TF that 
regulates lipid and glucose metabolism (173). One-year-old 
T-cell-specific PPARγ-deficient mice exhibited a moderate 
autoimmune phenotype with increased Tfh cells, GC B cells, glo-
merular inflammation, and enhanced autoantibody production. 
Mechanistically, PPARγ by stabilizing the activity of Ikbα, Foxo1, 
and Sirt1 negatively regulates Bcl6 and IL-21 to inhibit Tfh cell 
differentiation and GC formation (173).

OTHeR FOLLiCULAR T CeLLS

Several types of follicular T cells that have been found in GCs and 
characterized such as Tfr cells, follicular regulatory CD8+ T cells 
(CD8 Tfr), natural killer T follicular helper (NKTfh) cells, and 
follicular CD8+ T cells (fCD8).

Tfr Cells
T follicular regulatory cells, a newly identified subset of Tregs, 
have been found in GCs where they control GC responses (75–77, 
86, 174–176). Tfr cells originate from thymic-derived Foxp3+ 
T cells as well as from Foxp3− precursors rather than from Tfh 
cells (78, 177). They are different from Tfh cells and Tregs: on 
the one hand, Tfr cells express large amounts of Tfh-related fac-
tors including CXCR5, PD-1, Bcl6, CXCL13, and ICOS; on the 
other hand, they share numerous molecules that are expressed 
by Tregs, such as GITR, CTLA4, IL10, CD25, and Foxp3 (75, 
76, 178).

T follicular regulatory cells similarly possess a multistage 
and multifactorial differentiation process (176) that requires 
CD28 and ICOS signaling (76, 77), Sap-dependent interaction 
with B  cells (76), and expression of Bcl6 (178). TF NFAT2 
contributes to the initial upregulation of CXCR5 in Tfr 
cells (155). In addition, recently it has been noted that the 
mTORC1–STAT3–TCF-1–Bcl6 axis and TRAF3 are essential 
for Tfr differentiation (179, 180). However, there are also some 
signals which inhibit Tfr-cell differentiation and function: 
PD-1, CTLA4, Blimp1, and helix-loop-helix proteins ID2 and 
ID3 (77, 78). In addition, the cytokine IL-21 can suppress Tfr 
cells through the upregulation of Bcl6 expression and down-
regulation of CD25 (103, 181, 182).

T follicular regulatory cells act to limit excessive GC responses 
by acting on both Tfh and GC B cells (13, 77, 86, 183). Moreover, 
Treg suppression is not limited to GC B cells and occurs at vari-
ous steps during B cell differentiation, from B cell activation to 
class-switched B  cells and plasma cells (78). The effect of Tfr 
cells to modulate GC reaction could be through several potential 
mechanisms. Tfr cells could suppress Tfh cells through CTLA-
4, by dampening expression of CD28 ligands on GC B  cells  
(13). Two immunosuppressive cytokines, IL-10 and TGF-β, may 
mediate the immune suppressive functions of Tfr within GCs 
(114, 119, 176, 184); however, a recent research showed that IL-10 

is important for B cell survival and proliferation; thus, a detailed 
mechanism remains to be investigated (185). Interestingly, 
Tfr cells potentially have effects on antibody affinity, and their 
suppressive function could result in the selection of the highest 
affinity antigen-specific antibody and in the selection of higher 
affinity memory B cells (78).

Follicular Regulatory CD8 T Cells (CD8 Tfr)
In contrast to Foxp3+CD4+ Tregs, mouse CD8 Tregs do not 
constitutively express Foxp3 in the thymus and periphery 
(186), and the CD8+Foxp3+ T cells do not comprise CD8 Treg 
population due to lack of suppressive activity (187). Similarly, 
most of the human CD8 Tregs also lack Foxp3 (188). In mice, a 
specific subset of Qa-1-restricted CD8 Tregs with high expres-
sion levels of CXCR5 (named as CD8 Tfr) were found to possess 
the ability to limit GC size and prevent autoimmune disease in 
mice (189). Tfh cells are one of main targets of CD8 Tfr cells 
(189). In autoimmune-prone mice, CD8 Tfr cells can suppress 
the expansion of Tfh cells as well as autoantibody production 
(190). Recent data indicate on the importance of the TF STAT4 
for CD8+ Tfr development, maintenance, and function toward 
Tfh and plasma B cells (191). Moreover, CD8 Tfr cells express-
ing IL-2Rβ are also shown to inhibit CD8 T cell function in an 
IL-10-dependent manner (192). Recently, cells with a CD8 Tfr 
phenotype (CD3+CD8+CXCR5hiCD44hi) have been identified in 
humans (193). In chronic CIV infection, CD8 Tfr cells localized 
in the follicles exhibit enhanced Tim-3 and IL-10 expression, but 
express less perforin compared with CD8 T cells. CD8 Tfr cells 
modestly limit HIV replication in Tfh cells by impairing IL-21 
production via Tim-3 and inhibit B cell function (194). In addi-
tion, it has been reported that the KIR+CD8+ cells (KIR, killer cell 
immunoglobulin-like receptor, functional homolog of murine 
Ly49) exert inhibitory activity on CD4+CXCR5+ Tfh target cells 
in humans (193).

NKTfh Cells
Recently, a subset of invariant NKT cells, recognized as follicular 
helper NKT cells (NKTfh cells), was discovered (195). NKTfh cells 
express CXCR5, PD-1, and Bcl-6 and support B cell responses 
(196). Similar to the development of conventional Tfh cells, 
the formation of NKTfh cells is dependent on CD28-mediated 
cognate interactions with B  cells and Bcl6 expression (196). 
Studies utilizing CD4+ T  cell-specific loss of Bcl6 determined 
that both Tfh and iNKTfh cells contribute to B cell help (197). 
However, unlike Tfh-derived B  cell responses, those driven by 
NKTfh cells have no potential to generate long-lived plasma cells 
and memory B cells (196). NKTfh cells also possess the ability 
to boost memory B cell responses to T-dependent antigens but 
not T-independent lipid antigens (198). In addition, the NKTfh 
cells can induce limited GC B  cell responses in the absence of 
CD4+ cell help (199). Further studies are still needed for a deeper 
understanding of the mechanisms of NKTfh cells in immunity 
and their roles in disease.

Follicular CD8+ T Cells (fCD8)
In contrast to the previous opinion that CD8+ T cells are restricted 
to extrafollicular areas (200), recent studies have showed that the 
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CD8+ T cells from human and non-human primates possess the 
ability to migrate to the lymphoid follicles and GCs to support 
B  cells (201). CD8+ T  cells localize in human tonsil follicles 
and possess follicular helper-like characteristics including high 
expression of Bcl6, CXCR5, ICOS, PD-1, CCR5, CD27, CD28, 
CD69, and CD95, but do not express CCR7, Blimp-1, Tim-3, 
and CD244 and are named as follicular CD8+ T  cells (fCD8) 
(201–206). The current evidence suggests a crucial role of fCD8 
in controlling intracellular pathogens and malignancies through 
the production of various cytokines (IFN-γ, TNF-α, and MIP1β) 
in LCMV-infected mice, HIV-infected individuals, and cancer 
patients (203–205, 207–211). These cytokines activate APCs, 
promote polarization of naïve CD4+ T cells to Th1 cells, sustain 
activation of CD8+ T cells; thus, contributing in the control of 
viral infection and tumor growth. In addition, similar to Tfh 
cells, IL-21-producing fCD8 cells promote Ag-specific antibody 
responses by stimulating B cells, as well as generating and main-
taining follicles and GCs (201).

THe ROLe OF Tfh CeLLS iN DiSeASeS

The main function of Tfh cells is to control clonal selection of 
GC B cells and support B cell immunoglobulin synthesis, isotype 
switching, and somatic hypermutations. Pathological B  cell 
activation and the production of autoantibodies is a hallmark of 
the defective immune response that accompanies autoimmunity. 
In the sections below, we discuss the role of Tfh cells in various 
disease settings (Figure 2).

Systemic Lupus erythematosus (SLe)
Observations in animal models and in humans provide strong 
evidence that Tfh cells are important players in SLE pathol-
ogy. Patients with SLE have an increased number of cTfh cells, 
which positively correlates with autoantibody titers (212). 
Furthermore, the proportion of peripheral blood T  cells 
expressing ICOS is higher in patients with active SLE disease 
than in patients with inactive disease or in controls which 
probably leads to enhanced autoantibody production upon 
activation via ICOS–ICOSL interactions in these patients (45, 
213). Production of high levels of IL-21 is a hallmark of Tfh 
cells and multiple studies have shown an increased frequency 
of CD4+IL-21+ T cells in SLE patients that was associated with 
disease severity (214). An increase in Tfh cells is also associ-
ated with a shift in the Th17/Treg populations with increases in 
Th17 cells and decreases in Tregs as well as an elevation of IgG+ 
class-switched memory B cells leading to a more inflammatory 
environment as observed in SLE (214–219). It is worthy to note 
that Tfh cells not only affect priming in secondary lymphoid 
tissues but can also impact local B cell activation and expan-
sion. For example, within the tubulointerstitium of patients 
with lupus nephritis, Tfh-like cells are organized with B cells in 
structures resembling GCs (220, 221) suggesting that Tfh cells 
may also play a role in various complications that are associated 
with autoimmune pathologies.

Mice that have a single-amino-acid mutation in Roquin1 
(a negative regulator of ICOS mRNA stability) demonstrate 
a spontaneous lupus-like phenotype that is accompanied by 
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elevated numbers of Tfh cells expressing higher level of ICOS, 
IFN-γ OX40, and IL-21 and activated phenotypes of GCs (28, 
222). Importantly, manipulation of Bcl6 expression and thus 
Tfh cell generation or adoptive transfer of lupus-associated Tfh 
cells from Roquinsan/san mice into healthy recipients induces the 
formation of GCs, highlighting a contributing role of Tfh cells 
in SLE (223). Another interesting model to study lupus-related 
pathophysiology is the BXSB mouse model, which displays lym-
phoid hyperplasia, monocytosis, immune complex-mediated 
glomerulonephritis, and an aberrant IL-21-dependent Tfh 
response (224). The MRL/lpr mouse model displays defective 
Fas signaling (225), which is characterized by high levels of 
autoantibodies and extrafollicular Tfh like cells that are depend-
ent on ICOS, Bcl-6, and IL-21 signaling. The pathological func-
tions of these T cells support extrafollicular B cell differentiation 
and plasmablast maturation (226). While increasing evidence 
suggests the importance of an extrafollicular Tfh-dependent 
response in the murine models of SLE (227–230), the impor-
tance of Tfh cells and extrafollicular sites in SLE patients is not 
well defined due to limitations in obtaining non-circulated 
follicular-resident Tfh cells.

There have been several relatively successful attempts to 
reduce the severity of SLE in humans via blockade of Tfh-cell 
differentiation and activity. Early results from SLE therapies 
targeting T  cells showed that patients had reduced serum 
anti-dsDNA titers, but presented minimal reduction of protec-
tive antibodies, increased complement markers, and reduced 
nephritis scores (231). Studies using monoclonal antibodies 
against ICOS-L inhibited the development of Tfh and GC 
B cells resulting in decreases in anti-dsDNA Igs and improved 
kidney function. For years, the main therapy for SLE has been 
broad spectrum immunosuppressant’s; however, a growing 
body of work shows that Tfh cells may be a more precise and 
attractive target for treating SLE.

Sjögren’s Syndrome
Increased numbers of human peripheral blood CXCR5+ICOS+, 
CXCR5+PD-1+ Tfh cells and enhanced GC formation positively 
correlate with autoantibodies titers and severity of the primary 
Sjögren’s syndrome (pSS) (227–230). IL-6 levels are increased in 
the serum, tears, and salivary gland epithelial cells of patients 
with pSS. Interestingly, co-cultures of salivary gland epithelial 
cells with T  cells induce Tfh cell differentiation (3, 232) sug-
gesting a critical role for epithelial cell-derived IL-6 in Tfh cell 
differentiation in pSS. There are several treatment options for 
patients with pSS that target Tfh cell functions and therefore the 
humoral response. Abatacept is a fusion molecule combining 
CTLA-4 with IgG Fc that binds to CD80/86 and consequently 
impairs CD28-mediated T cell costimulation (233). It has been 
shown that abatacept inhibits T  cell-dependent B  cell activa-
tion either via DC-defective Th activation or via blockade of 
T/B cell interactions (234). Abatacept treatment in pSS patients 
reduces circulating numbers of ICOS+ cTfh cells resulting in an 
attenuated Tfh cell-dependent B cell hyperactivity (235) provid-
ing a promising therapy for pSS and some other autoimmune 
pathologies.

Juvenile Dermatomyositis (JDM) and 
Autoimmune Myasthenia gravis (Mg)
Serum autoantibodies can be found in up to 70% of patients with 
JDM. Furthermore, these patients display changes in cTfh cells 
subsets with a decrease in cTfh1 cells, and an increase in the cTfh2 
and activated memory cTfh17 cell subpopulations; resulting in 
an overall increase in cTfh subsets with efficient helper functions. 
Significantly, these changes in the composition of cTfh cell sub-
sets positively correlate with disease activity and the frequency of 
circulating plasmablasts (38).

Elevated levels of circulating CXCR5+CD57+, CXCR5+ICOShi, 
and CXCR5+PD1hi CD4+ T  cells have also been reported in 
patients with MG (236). Functional studies demonstrate that 
cTfh cells from MG patients support autoantibody produc-
tion, and thus, contribute to the development of disease. 
Interestingly, Tfh1 and Tfh17, but not Tfh2 cells, were found 
to be the major secretors of IL-21 (237). Thus, alterations in 
the composition of peripheral blood memory Tfh1, Tfh17, and 
Tfh2 subsets seems to be one of the distinct features of several 
autoimmune diseases including SLE (238), Sjogren’s syndrome, 
multiple sclerosis (239), and MG (237). While an increasing 
body of evidence reports a shift in the Tfh1/Tfh2/Tfh17 balance 
in the peripheral blood of patients with autoantibody-mediated 
pathologies, it is not clear whether the same shift in the Tfh 
subsets occurs within the inflamed tissues and GCs in the 
secondary lymphoid tissues. It would be important to identify 
molecular mechanisms and microenvironmental stimuli that 
direct a preferential repopulation of Tfh17 and Tfh2 cells in 
autoimmune settings.

Rheumatoid Arthritis
One of the other examples for the implication of Tfh cells in 
autoimmune disease setting is RA, which is characterized by 
high levels of autoantibodies and abnormal GC B cell responses, 
which contribute to inflammation in the joints. Tfh cells have 
been detected in the synovial tissue of patients with RA, and 
along with IL-21 are found in higher frequencies in the periphery 
(240–242). The increase in Tfh cells in RA patients is positively 
correlated with elevated serum level of anti-CCP antibodies and 
consequently with disease severity (240). In animal models, a 
T cell-specific CXCR5 deficiency results in a significant reduction 
in GC formation, decreased levels of collagen-specific IgG1 anti-
bodies and a resistance to CIA induction (243). As Tfh cells play a 
significant role in the progression of RA, therapeutic targeting of 
Tfh cells could be a valuable option for treating patients with RA.

Type 1 Diabetes (T1D)
Type 1 diabetes is caused by the autoimmune destruction of 
insulin-producing β-cells in the pancreas. T1D patients have 
higher frequencies of circulating CD4+CXCR5+ICOS+Tfh cells 
and higher levels of IL-21 which positively correlates with an 
increase in plasmablasts, serum autoantibodies, and C-peptide 
levels (244–246). It is possible that Tfh cells may play a critical 
role in the initial stages of T1D with an increase of activated 
CXCR5+PD-1+ICOS+ cTfh cells being found in both children with 
newly diagnosed T1D and in children at late stages of preclinical 
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T1D, characterized by impaired glucose tolerance (247, 248). Data 
from animal models also show that transfer of Tfh cells from a 
diabetic to a control animal induces elevated blood glucose levels 
and increased T  cell infiltration into islets (244). Furthermore, 
Roquinsan/san mice that have overreactive Tfh cells display dra-
matically accelerated T1D induction. Collectively, there is direct 
evidence for a pathogenic role for Tfh cells in progression to T1D. 
Importantly, the increase in activated cTfh cells is strongly associ-
ated with positivity for multiple autoantibodies and could be used 
as a biomarker for the identification of a subgroup of patients with 
an active setting of T1D.

Type 2 Diabetes (T2D)
Evidence indicates a key contribution of the immune response 
in the manifestation of chronic low grade inflammation under 
the conditions of adipose tissue inflammation, islet β-cell dys-
function, and T2D. While the role of macrophages, CD4+, CD8+ 
cells, and follicular B cells is firmly established, there is limited 
knowledge about the Tfh cell role in obesity and T2D. Recently, 
Zhou and colleagues found that non-obese T2D patients vs 
BMI-matched healthy subjects have higher IgG levels and Tfh 
cells that are highly enriched in IFN-γ, but not IL-4 and IL-17 
(249). Interestingly, overweight T2D patients (BMI ≥ 24.0) had 
higher levels of cTfh and the balance of cTfh cell subsets was 
shifter toward the Th17 subtype (52). Importantly, patients with 
abdominal obesity had additional increases in cTfh compared 
with patients without abdominal obesity (52), suggesting that 
cTfh may play a critical role in the modulation of adipose tissue 
inflammation in obesity-induced T2D.

Atherosclerosis
Recent reports revealed a critical role for Tfh cells and conse-
quently GC B cells in the development and progression of human 
and mouse atherosclerosis. Tfh cells support atherogenesis via 
the production of pathological Abs and the generation of highly 
active GCs. The loss of Tfh cells via a conditional knockout of 
Bcl6 leads to a reduced atherosclerotic burden in atherosclerosis-
prone mice (250, 251). Interestingly, a percentage of Tregs can 
switch the phenotype into pro-atherogenic Tfh cells but ApoAI 
can prevent Treg to Tfh cell conversion throughout atherosclero-
sis (250). It remains to be determined how atherosclerosis-prone 
conditions alter the memory pool of Tfh cells and how Tfh cells 
impact the processes of selection of high-affinity B cells and B cell 
memory development in atherosclerosis.

Allergy
Patients with allergic rhinitis (AR) and asthma preferentially 
have increased levels of cTfh cells that exhibit a Tfh2 cell phe-
notype (252). In patients with seasonal AR to ragweed pollen, 
activation of Tfh cells increases significantly during peak-season 
(253). It has been noted that the acute anaphylaxis response to 
peanut allergen is driven by IL-4+IL21+ Tfh cells and to a lesser 
extent by Th2 cells (254). Presence of Tfh cells but not Th2 cells 
is required for IgE production and for the development of an 
allergic response.

The increased levels of serum IgE is also a hallmark of atopic 
dermatitis (AD) (255–258). Peripheral Tfh cells in children with 

AD have significantly increased levels of ICOS, PD-1, and IL-21 
suggesting a highly activated phenotype. Furthermore, a strong 
positive correlation has been detected between the numbers of 
IL-21+ Tfh-like cells, activated memory B cell pool, and disease 
severity (259, 260). Interestingly, patients with asthma also dis-
play elevated levels of PD-1+ICOS+ Tfh2 cells and the ratio of 
Tfh2:Tfh1 cells positively correlates with the total IgE levels in 
the blood (46). In correlation with the data on human samples, 
mRNA and protein expression levels of CXCR5, ICOS, ICOSL, 
and IL-21 were also elevated in mouse models of asthma. Our 
recent findings also identify an important role of the TF Batf 
toward the generation of IL-4-expressing Tfh cells rather that Th2 
and to their pro-allergic function (120). We further demonstrated 
that the IL-4–STAT6 signaling contributes to the Batf induction 
in Tfh cells and the Batf/IRF4 complex along with Stat3 and Stat6 
aids IL-4 production in Tfh cells. Recent studies have also shown 
that Tfh cells can sense specific microenvironmental conditions 
and differentiate into Th2 cells after repeat exposure with house 
dust mite (HDM) (261). At the initial stage of disease, Tfh cells are 
preferentially differentiated, but a second exposure leads to the 
Tfh switch into Th2 cells which migrate to the lung and produce 
an inflammatory response. These results suggest that targeting 
Tfh cells may be a good therapeutic strategy to prevent Th2-cell-
mediated immunity to HDM (261).

Primary immunodeficiency
There are several immunodeficiencies that directly affect the 
development and functions of Tfh cells and as a result alter 
B  cell-dependent responses. XLP is a primary immunode-
ficiency caused by mutations in SH2D1A (encoding for SAP, 
signaling lymphocytic activation molecule-associated protein). 
A SAP deficiency does not impact CD4+ T  cell development, 
but compromises Tfh cell differentiation (262). In line with this 
observation, XLP patients exhibited significant defects in GC 
formation, reductions in memory B cell responses, hypogam-
maglobulinemia, and impaired antigen-specific antibody 
responses (263). Mutations in CD40L, ICOS, and STAT3 also 
cause reduced number of CD4+CXCR5+ cells, defective GC 
formation, and impaired humoral immune responses. A recent 
study also highlighted the importance of the IL-12/IL-12R axis 
as patients with mutations in IL-12Rβ1 demonstrate fewer 
circulating memory Tfh, memory B  cells, and defective GCs 
compared with control subject (264).

Hiv and Siv Pathologies
Proper activation of Tfh cells and their interactions with GC 
B cells are essential for an effective humoral immune response 
and the extermination of pathogenic human and simian immu-
nodeficiency viruses (HIV and SIV, respectively). Paradoxically, 
HIV-infected individuals (265) and monkeys infected with SIV 
(266) display a significantly higher frequency of ICOS+ Tfh, 
PD-1+ Tfh, and ICOS+PD-1+ Tfh cells among total CD4+ T cells 
compared with non-infected controls. Furthermore, Tfh cell 
frequency is significantly higher in non-treated HIV+ patients 
compared with HIV+ patients treated with combination anti-
retroviral therapy, suggesting that an HIV viral persistence con-
tributes to Tfh cell expansion (265–267). Interestingly, Tfh cells 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


12

Qin et al. Tfh-Mediated Immunity and Pathology

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1884

in humans and macaques show preferential infection with HIV 
and SIV, respectively (200, 267, 268), likely via the chemokine 
receptor CCR5 as CCR5 is expressed on a precursor subset of 
Tfh cells and may potentially serve as a co-receptor for HIV 
(269). GC Tfh cells have been implicated in HIV persistence by 
supporting viral replication during treated infection and serve as 
an important cellular reservoir of HIV-1 DNA (270, 271). One 
explanation is that cytotoxic CD8+ T cells are CXCR5 negative 
and thus unable to migrate to follicles and target HIV-infected 
GC Tfh cells (200, 272, 273). In line with an increased number of 
Tfh cells, hypergammaglobulinemia is detected in HIV+ patients 
(274), but these antibodies are ineffective (265, 273, 275–278). 
Studies have proposed that PD-1 triggering by PD-L1 on GC 
B cells is a mechanism for the abnormal Tfh functions and defec-
tive B cell help (277). In addition, due to the increased number of 
Tfh cells, the exacerbated interactions of Tfh and GC B cells may 
lower the threshold for B cell selection resulting in the selection 
of B cells with low affinities (223). Thus, the relationship between 
viral entrance into Tfh cells, number and functions of Tfh cells, 
and B cell activation/maturation is complex and requires further 
investigations.

Chronic infections
Lymphocytic choriomeningitis virus persistence results in 
extended TCR engagement and an IL-6-driven shift from a Th1-
induced response toward a Tfh response (279, 280). In addition 
to studies that identified a key role of Tfh cells in HIV and SIV 
infections, studies with the LCMV disease model further high-
light the importance of timely expansion and sustained functions 
of Tfh cells in the orchestration of a proper humoral response for 
control of persistent viral infection (279, 280). Moreover, annual 
influenza virus studies determined an increase in the number 
and activation levels of cTfh cells. These studies not only show 
that an increased cTfh cell frequency contributes to circulating 
plasmablast responses and infection clearance but can also be 
used as a marker to monitor the efficacy of influenza vaccination 
(281, 282). In other infections such as chronic hepatitis B virus 
patients have an increase in circulating regulatory Tfh cells (283). 
Interestingly, long-term disruptions of proper T cell-dependent 
Ab production have been detected in the case of parasitic 
infections such as Leishmania (284), Litomosoides sigmodontis 
(285), and Plasmodium infection (286) suggesting the negative 
regulation of the number and functions of Tfh cells under these 
conditions. To date, the precise mechanisms that regulate differ-
entiations and functions of Tfh and Tfr cells in different infection 
settings remain to be determined. Particularly, further studies are 
required to assess the mechanisms governing Tfh cell develop-
ment, persistence, and function at the different stages of various 
infection diseases.

Cancer
Accumulating evidence suggests that Tfh cells are involved in 
peripheral T cell and B cell-associated tumors due to their high 
impact on growth and survival of different leukocyte subsets. 
Angioimmunoblastic T cell lymphoma (AITL) is an aggressive 
tumor and isolated neoplastic T  cells express CXCL13, ICOS, 
CD154, CD40L, and NFATC1 (287, 288), making these T cells 

similar to Tfh cells (289). The expression of mutated RhoA G17V 
induces Tfh cell differentiation/activation; increased proliferation 
associated with ICOS upregulation, elevated PI3K, and mitogen-
activated protein signaling (290). Loss-of-function mutations in 
epigenetic regulators such as TET2 and DNMT3A are frequent 
events in the pathogenesis of AITL. Interestingly, RhoA G17V 
expression accompanied with TET2 loss results in AITL devel-
opment in mice. It is worth to note that altered RhoA GTPase 
activity has been linked with autoimmunity and studies in AITL 
further highlight a role of RhoA in shaping Tfh cell phenotype 
and response.

Like AITL, in follicular T cell lymphomas, infiltrating T cells 
resemble a phenotype of Tfh-like cells and express IL-4, TNF-α, 
IFN-γ, LT-α, CCL17, and CCL22 chemokines that play a role in 
the regulation of Treg and Th2 cell migration and modulate the 
activity of GC B cells within follicles as well. Not only Tfh-like 
cells but also Foxp3+ Tfr cells are found within neoplastic fol-
licles and the number of Tfr cells is elevated during progression 
lymphomagenesis. Thus, there is a complex T  cell response 
that is regulated by a delicate balance of CD4+, Tregs, and Tfh 
subsets. Probably one of the strongest predictors of survival 
would be the location pattern for T cell subsets, as accumulation 
within the follicles is linked with poor survival compared with 
a distribution pattern outside the follicle (291). To date, there is 
limited understanding in the functions of Tfh and Tfr subsets in 
lymphomagenesis and more detailed research in animal models 
and human samples will help to dissect the complex role of Tfh 
cells in cancer.

Unexpectedly, Tfh cells have protective roles in nonlymphoid 
tumors. Higher levels of Tfh cell infiltrates and their ability to 
organize tertiary lymphoid structures within tumors has been 
associated with increased survival and reduced immunosup-
pression which strongly correlate with an increased survival in 
breast cancer (292). Evidence suggest that IL-21 and CXCL13 
may play a key role in the protective functions of Tfh cells via 
the modulation of local leukocyte recruitment. Infiltrating Tfh 
cells have also been reported in chronic lymphocytic leuke-
mia, non-small cell lung cancer, osteosarcoma, and colorectal 
cancer (214, 293–297), where they positively correlated with 
patient survival (293). So far, very little is known about how 
Tfh cells impact the immune response involved in the suppres-
sion of tumor initiation and progression and further studies 
will be important for a better understanding of Tfh-related 
pathologies.

CONCLUSiON

Since the identification of Tfh cells and the discovery of Bcl6 as 
a critical factor in their generation, there has been substantial 
progress made in understanding the molecular and cellular 
requirement for the development and function of mouse and 
human Tfh cells. To date, multiple cell-extrinsic and -intrinsic 
factors (costimulatory molecules, cytokines signaling, and 
transcriptional factors) have been determined to positively or 
negatively contribute to Tfh cell development. However, still 
many questions remain to be answered: (i) What is the exact 
composition and hierarchy of these factors and what are their 
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stage-specific requirements? (ii) Is Bcl6 required complete Tfh 
cell commitment? (iii) How Tfh-specific transcriptional factors 
impact epigenetic mechanisms governing Tfh cell generation? 
(iv) Which factors contribute to Tfh cell maintenance and 
memory formation? (v) What are the appropriate Tfh-specific 
target(s) for therapy in Tfh mediated autoimmune disorders and 
cancer?

T follicular helper cells mainly localize in secondary lymphoid 
organs and circulate in the blood and are beginning to emerge 
as crucial players in maintaining a healthy balance between 
protective and pathogenic immunity (Figure  2). However, 
due to the localization of Tfh cells in secondary lymphoid 
tissues, the study of human Tfh cell heterogeneity and func-
tion in normal and disease settings has been difficult. Further 
analysis and comparison of human circulating counterparts to 
tissue-resident Tfh cells in various disease settings is critical, 
since it will help to reveal the level of Tfh cell heterogeneity at 
various stages of diseases as well as will determine whether the 
disease-associated alterations in Tfh cells are the main cause 
or result of disorders. Thus, in view of an emerging role of Tfh 
cells in various disease settings, we believe that current progress 
and further understanding of the heterogeneity and regulation 

of tissue-specific and cTfh cells in health and disease will lead 
to improved vaccine designs, better management of major 
autoimmune, inflammatory disorders, and cancer, and can be 
utilized as a novel prognostic biomarker for the identification 
of lymphoid and solid tumors.
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