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Abstract. Excessive alcohol consumption is considered to be 
a major risk factor of alcohol‑induced osteonecrosis of the 
femoral head (AONFH). The gut microbiota (GM) has been 
reported to aid in the regulation of human physiology and 
its composition can be altered by alcohol consumption. The 
aim of the present study was to improve the understanding 
of the GM and its metabolites in patients with AONFH. 
Metabolomic sequencing and 16S rDNA analysis of fecal 
samples were performed using liquid chromatography‑mass 
spectrometry to characterize the GM of patients with AONFH 
and healthy normal controls (NCs). Metagenomic sequencing 
of fecal samples was performed to identify whether GM 
changes on the species level were associated with the 
expression of gut bacteria genes or their associated func‑
tions in patients with AONFH. The abundance of 58 genera 
was found to differ between the NC group and the AONFH 
group. Specifically, Klebsiella, Holdemanella, Citrobacter 
and Lentilactobacillus were significantly more abundant in 
the AONFH group compared with those in the NC group. 
Metagenomic sequencing demonstrated that the majority 
of the bacterial species that exhibited significantly different 
abundance in patients with AONFH belonged to the genus 
Pseudomonas. Fecal metabolomic analysis demonstrated 
that several metabolites were present at significantly different 
concentrations in the AONFH group compared with those in 
the NC group. These metabolites were products of vitamin 

B6 metabolism, retinol metabolism, pentose and glucuronate 
interconversions and glycerophospholipid metabolism. In 
addition, these changes in metabolite levels were observed to 
be associated with the altered abundance of specific bacterial 
species, such as Basidiobolus, Mortierella, Phanerochaete 
and Ceratobasidium. According to the results of the present 
study, a comprehensive landscape of the GM and metabolites 
in patients with AONFH was revealed, suggesting the existence 
of interplay between the gut microbiome and metabolome in 
AONFH pathogenesis.

Introduction

Osteonecrosis of the femoral head (ONFH) is a common 
orthopedic disease caused by a decrease in blood supply to 
the femoral head, with frequently reported features of osteo‑
cyte necrosis, trabecular bone fracture and articular surface 
collapse (1). It is estimated that there are ~8.12 million indi‑
viduals over the age of 15 years with ONFH in China and the 
total number of patients with ONFH worldwide will reach 20 
million in the next 10 years (2). ONFH can be categorized 
into traumatic ONFH and non‑traumatic ONFH, with the 
latter being further categorized into steroid‑ or corticoste‑
roid‑induced ONFH (SONFH) and alcohol‑induced ONFH 
(AONFH) (3). Excessive alcohol consumption is recognized 
to be a major risk factor for AONFH (4). Aberrant alcohol 
metabolism may contribute to femoral head tissue damage 
through the production of a number of toxic byproducts, such 
as acetaldehyde, free radicals and acetaldehyde adducts. In 
addition, alcohol metabolic impairments can adversely affect 
intravascular coagulation and the clotting cascade (4,5). 
However, the pathogenic mechanism of AONFH remains 
poorly understood.

The gut microbiota (GM) has been reported to be an 
important symbiotic partner in the regulation of human physi‑
ology (6). A number of studies have previously reported that gut 
microbiome composition and corresponding metabolic activity 
can participate in the regulation of bone homeostasis to exert 
pivotal effects on the development of osteochondral or bone 
diseases (6,7). These include estrogen deprivation‑induced 
bone loss (8) and bisphosphonate‑related osteonecrosis of the 
jaw (9). In addition, alcohol consumption can alter the GM 
composition and is related to overall health, and cause diseases 
such as inflammatory bowel disease, gastrointestinal cancers 
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and liver injury (10). However, to the best of our knowledge, 
the interaction among alcohol, the GM and GM metabolites, 
in addition to their roles in the development of ONFH, has not 
been reported to date. 

On the basis of the previously reported regulatory 
effects of GM on bone (6,7), it may be hypothesized that 
alcohol‑induced gut dysbiosis may participate in the devel‑
opment of AONFH. Therefore, in the present study, fecal 
integrated omics analysis was performed, including 16S 
rDNA gene sequencing, metagenomic and metabolomic 
analyses, to define the gut metabolome and metabolic profiles 
in patients with AONFH.

Materials and methods

Sample collection and ethical approval. The present study 
enrolled 98 Chinese men, including 48 healthy adults [nega‑
tive control (NC); age, 41.75±10.50 years] and 50 patients with 
AONFH (age, 43.98±11.40 years), from June 2021 to June 2022 
at the Luoyang Orthopedic‑Traumatological Hospital of Henan 
Province (Luoyang, China). The selected participants were 
Han Chinese from similar geographic areas, experienced the 
same environmental factors, with similar hygiene status and 
diet (except alcohol consumption). 

The patients with AONFH were required to meet the 
following inclusion criteria: i) Aged 18‑80 years; ii) history 
of any type of alcoholic beverage intake of >320 ml/week for 
>6 months (11); iii) AONFH diagnosis within 1 year of alcohol 
consumption at the aforementioned levels; iv) AONFH diag‑
nosed by clinical examination, X‑ray, CT and MRI; and v) no 
history of other osteoarticular diseases (such as injury, osteoar‑
thritis, rheumatoid arthritis, gout or skeletal fluorosis), chronic 
diseases (hypertension, diabetes or coronary heart disease) or 
bowel diseases (inflammatory bowel disease, irritable bowel 
syndrome or colorectal cancer), for which they received treat‑
ment in the past 6 months. The exclusion criteria of healthy 
controls were as follows: i) Musculoskeletal pathologies or 
recent injuries; and ii) use of antibiotics, probiotics, prebiotics 
or symbiotics in the previous 2 months. 

The general clinical data of patients were recorded, 
including age, educational background, height, weight and 
BMI. The present study was approved by the ethics committee 
of Luoyang Orthopedic‑Traumatological Hospital of Henan 
Province (approval no. KY2021‑007‑01). All participants 
provided written informed consent for participation into the 
present study and the study protocols followed the ethical 
guidelines of The Declaration of Helsinki. Fecal samples were 
collected by the participants and immediately transported to 
the laboratory, where they were divided into three portions 
per sample, packed into three freezer tubes, frozen in liquid 
nitrogen overnight and preserved at ‑80˚C for further testing. 

DNA extraction and 16S rDNA gene sequencing. A total of 48 
NC samples and 50 AONFH samples were subjected to 16S 
rDNA gene sequencing analysis. DNA was extracted using the 
E.Z.N.A.® Stool DNA Kit (cat. no. D4015; Omega Bio‑Tek, 
Inc.) according to the manufacturer's protocols. Nuclease‑free 
water was used as the negative control. Total DNA from each 
sample was eluted in 50 µl elution buffer and stored at ‑80˚C 
until PCR was performed.

The V3‑V4 region of the prokaryotic 16S rDNA gene was 
amplified using the following primers: 341 forward, 5'‑CCT 
ACG GGN GGC WGC AG‑3'; and 805 reverse, 5'‑GAC TAC 
HVG GGT ATC TAA TCC‑3' (N, A+C+G+T; H, A+C+T; V, 
A+C+G; W, A+T) (12). The 5' ends of the primers were tagged 
with specific barcodes for each sample, which were sequenced 
using universal primers (forward, 5'‑GTG CCA GCM GCC GCG 
GTA A‑3'; reverse, 5'‑GGA CTA CHV GGG TWT CTA AT‑3'). 
PCR amplification was performed in a reaction mixture with a 
total volume of 25 µl, containing 25 ng template DNA, 12.5 µl 
PCR premix, 2.5 µl of each primer and PCR‑grade water to 
adjust to the final volume, 1 µl of KOD DNA polymerase 
(2.5 U/µl; Toyobo). The PCR conditions used to amplify the 
prokaryotic 16S fragments were as follows: Initial denatur‑
ation at 98˚C for 30 sec; followed by 32 cycles of 98˚C for 
10 sec, 54˚C for 30 sec and 72˚C for 45 sec and a final extension 
at 72˚C for 10 min. PCR product amplification was confirmed 
using 2% agarose gel electrophoresis (Genecolour™; GBY‑II; 
Beijing Jinboyi Biotechnology Co., Ltd). Throughout the DNA 
extraction process, ultrapure water was used instead of sample 
solution as a negative control to exclude the possibility of 
false‑positive PCR results. The PCR products were purified 
using AMPure XT beads (Beckman Coulter, Inc.) and quanti‑
fied using Qubit 3.0 fluorometer (Invitrogen; Thermo Fisher 
Scientific, Inc.). The final library DNA concentration was 
10 ng/µl. The amplicon pools were prepared for sequencing 
and the size and quantity of the amplicon library were assessed 
using an Agilent 2100 Bioanalyzer (Agilent Technologies, 
Inc.) and the Library Quantification Kit for Illumina (Kapa 
Biosystems; Roche Diagnostics), respectively. The libraries 
were sequenced using the NovaSeq PE250 platform according 
to the manufacturer's instructions (Illumina, Inc.).

The raw 150 bp paired‑end reads were assigned to 
samples based on their unique barcodes and truncated by 
cutting off the barcode and primer sequence. Paired‑end 
reads were merged using FLASH (version 1.2.8; http://ccb.
jhu.edu/software/FLASH/). Quality filtering of the raw reads 
was performed to obtain high‑quality clean tags using ‘fqtrim’ 
(version 0.94, http://ccb.jhu.edu/software/fqtrim/). Chimeric 
sequences were filtered using Vsearch software (version 2.3.4; 
https://github.com/torognes/vsearch). Dereplication with 
DADA2 (13) generated a feature table and feature sequence. 
Alpha diversity and beta diversity were calculated using 
QIIME2 (version 2019.7; https://qiime2.org/), for which 
the same number of sequences were extracted randomly by 
reducing the number of sequences to the minimum for certain 
samples, and the relative abundance was used to determine 
the bacterial taxonomy. Alpha diversity and beta diversity 
figures were produced using the ggplot2 (version 3.2.0) 
toolbox implemented in R software. Blast (http://www.ncbi.
nlm.nih.gov/BLAST) was used for sequence alignment and 
each representative feature sequence was annotated using the 
SILVA database (version 138.1, http://www.arb‑silva.de) (14).

Fecal metagenomics analysis. As one sample from the NC 
group was missed in the fecal metagenomics analysis, a total 
of 47 NC and 50 AONFH fecal samples were subjected to 
metagenomics analysis. The DNA library was constructed 
using a TruSeq Nano DNA LT Library Preparation Kit 
(cat. no. FC‑121‑4001; Illumina, Inc.). DNA was fragmented 
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using dsDNA Fragmentase (cat. no. M0348S; New England 
BioLabs, Inc.) and incubated at 37˚C for 30 min, before the 
sequencing library was constructed from the fragmented 
cDNA. Blunt‑end DNA fragments were generated using a 
combination of fill‑in reactions and exonuclease activity, 
and size selection was performed with the provided sample 
purification beads. An A‑base was then added to the blunt 
ends of each strand, preparing them for ligation to the indexed 
adapters. Each adapter contained a T‑base overhang for 
ligating the adapter to the A‑tailed fragmented DNA. These 
adapters contained the full complement of sequencing primer 
hybridization sites for single, paired‑end and indexed reads. 
Single‑ or dual‑index adapters were ligated to the fragments 
and the ligated products were amplified by PCR using the 
following thermocycling conditions: Initial denaturation 
at 95˚C for 3 min; followed by 8 cycles of 98˚C for 15 sec, 60˚C 
for 15 sec and 72˚C for 30 sec and a final extension at 72˚C for 
5 min. 

Raw sequencing reads were processed to obtain valid 
reads for further analysis. First, sequencing adapters were 
removed from sequencing reads using ‘cutadapt’ (version 1.9, 
http://cutadapt.readthedocs.org/en/stable/guide.html). The 
low‑quality reads were then trimmed by ‘fqtrim’ (version 0.94, 
http://ccb.jhu.edu/software/fqtrim/) using a sliding‑window 
algorithm. The reads were next aligned to the host genome 
using ‘bowtie2’ (version 2.2.0) to remove host DNA contami‑
nation (15). Once quality‑filtered reads were obtained, they 
were de novo assembled to construct the metagenome for 
each sample using IDBA‑UD (version 1.1.1) (16). All coding 
regions (CDS) within the metagenomic contigs were predicted 
using ‘MetaGeneMark’ (version 3.26) (17). CDS sequences 
from all samples were clustered using CD‑HIT (version 4.6.1) 
to obtain unigenes (18). Unigene abundance for individual 
samples were estimated by transcripts per million based on 
the number of aligned reads using bowtie2 (version 2.2.0). The 
lowest common taxonomic ancestors of the unigenes were 
obtained by aligning them against the National Center for 
Biotechnology Information Non‑Redundant Protein Sequence 
database using DIAMOND (version 0.9.14) (19). Similarly, the 
functional annotation of unigenes were obtained using Gene 
Ontology (GO) database (version go_2018.12.21, http://www.
geneontology.org/) Kyoto Encyclopedia of Genes and Genomes 
(KEGG‑release_87.1, http://www.genome.jp/kegg/).

A random forest model was constructed using the random 
forest package in R software (version 3.4.4). Receiver oper‑
ating characteristic (ROC) curves were generated and the area 
under the curve (AUC) values were computed using pROC in 
R software. Functional annotation of the unigenes was also 
performed using Blast (http://www.ncbi.nlm.nih.gov/BLAST). 
Finally, differentially expressed unigenes were identified at 
the taxonomic, functional or gene level by Fisher's exact test 
based on the taxonomic annotation, functional annotation and 
abundance profiles, respectively. 

Metabolomics and data analysis. One sample from the 
AONFH group was missed in the metabolomics analysis, 
so a total of 48 NC samples and 49 AONFH samples were 
subjected to metabolomics analysis. The metabolites were 
extracted from fecal samples with 50% methanol buffer and 
incubated at 24˚C for 10 min. The extraction mixture was 

stored overnight at ‑20˚C. After centrifugation at 4,000 x g for 
20 min at room temperature, the supernatants were transferred 
into 96‑well plates and stored at ‑80˚C prior to being subjected 
to liquid chromatography‑mass spectrometry (LC‑MS) anal‑
ysis to identify the metabolites. Pooled quality control (QC) 
samples were prepared by combining 10 µl each extraction 
mixture. Chromatographic separation was performed using 
the UltiMate 3000 high‑performance LC system (Thermo 
Fisher Scientific, Inc.). No internal standard was used (20). 
An ACQUITY UPLC BEH C18 column (size, 100x2.1 mm; 
1.8 µm; Waters Corporation) was used for the reversed phase 
separation. The column temperature was maintained at 35˚C. 
The flow rate was 0.4 ml/min, and the mobile phase consisted 
of solvent A (water, 0.1% formic acid) and solvent B (aceto‑
nitrile, 0.1% formic acid). The gradient elution conditions 
were as follows: 0‑0.5 min, 5% solvent B; 0.5‑7 min, 5‑100% 
solvent B; 7‑8 min, 100% solvent B; 8‑8.1 min, 100‑5% solvent 
B; 8.1‑10 min, 5% solvent B. The injection volume for each 
sample was 4 µl.

A high‑resolution triple time‑of‑flight (TOF) 5600 Plus 
tandem mass spectrometer (SCIEX) was operated in both 
positive ionization mode and negative ionization mode for 
detecting metabolites eluted from the column. The curtain gas 
was set to 30 psi, ion source gas1 was set to 60 psi, ion source 
gas2 was set to 60 psi and the interface heater temperature was 
set to 650˚C. For positive ion mode, the Ionspray voltage was 
set at 5,000 V. For negative ion mode, the Ionspray voltage was 
set at ‑4,500 V. The mass spectrometry data were acquired in 
information‑dependent acquisition mode. The TOF mass range 
was in the 60‑1,200‑Da range. The survey scans were acquired 
in 150 msec, and ≥12 product ion scans were collected if they 
reached the threshold of >100 counts/sec with a 1+ charge‑state. 
The total cycle time was fixed at 0.56 sec. A total of four‑time 
bins were summed for each scan at a pulser frequency value of 
11 kHz through monitoring the 40 GHz multichannel thermal 
conductivity detector with four‑anode/channel detection. 
Dynamic exclusion was set at 4 sec. During acquisition, the 
mass accuracy was calibrated every 20 samples. Furthermore, 
to evaluate the stability of the LC‑MS procedure throughout 
acquisition, a QC sample (pooled sample) was processed after 
every 10 samples. The following multiple reaction monitoring 
transitions were selected: m/z 1861.3→70.02 (positive), m/z 
1889.0→72.02 (negative).

The acquired MS data were pretreated by peak picking, 
peak grouping, retention time correction, second peak 
grouping and annotation of isotopes and adducts using the 
XCMS software. LC‑MS raw data files were converted into the 
‘mzXML’ format and then processed using XCMS, CAMERA 
and the metaX toolbox implemented with the R software 
(version 3.5.3 R Core Team, 2019; https://www.R‑project.org/). 
Each ion was identified by combining the retention time and 
m/z data. The intensity of each peak was recorded and a 3D 
matrix containing arbitrarily assigned peak indices (retention 
time‑m/z pairs), sample names (observations) and ion intensity 
information (variables) was generated. 

The KEGG and Human Metabolome Database (HMDB 
5.0, http://www.hmdb.ca) databases were used to annotate 
the metabolites by matching the exact molecular mass data 
(m/z) of samples with those from the databases. If the mass 
difference between the observed and database values was <10 
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parts per million, the metabolite would be annotated, and the 
molecular formula of the metabolite would be further identi‑
fied and validated by isotopic distribution measurements. An 
in‑house metabolite fragment spectrum library was used to 
validate the identified metabolites (21). 

Peak intensity data were further preprocessed using metaX. 
Features that were detected in <50% of QC samples or 80% of 
biological samples were removed and the remaining peaks with 
missing values were imputed using the ‘k‑nearest neighbor’ 
algorithm to further improve data quality (22). Principal 
component (PC) analysis was performed for outlier detection 
and batch effect evaluation using the pre‑processed dataset. 
QC‑based robust locally weighted scatter‑plot smoother signal 
correction was then fitted to the QC data with respect to the 
order of injection to minimize signal intensity drift over time. 
In addition, the relative standard deviations of the metabolic 
features were calculated across all QC samples and any that 
were >30% were removed.

Unparied Student's t‑tests were conducted to detect 
differences in metabolite concentrations between the two 
groups. The P‑value was adjusted for multiple tests with a 
false‑discovery rate (FDR) using the Benjamini‑Hochberg 
method. A median FDR<0.05 was used as a cutoff value. 
Supervised partial least squares discriminant analysis 
(PLS‑DA) was conducted using metaX to discriminate 
between the different variables whereas the XCMS software 
was used to pretreat the acquired MS data. The raw LC‑MS 
raw data files were processed with metaX using the ‘XCMS’ 
package for peak detection and the ‘CAMERA’ package for 
peak annotation in R. The variable importance in projection 
(VIP) was calculated, where a VIP cut‑off value of 1.0 was 
used to select important features.

Statistical analysis. Continuous variables were presented 
as the mean ± standard deviation (SD) and Student's t‑test 
or the Wilcoxon signed‑rank test was used to compare their 
differences. Pearson's chi‑squared test or Fisher's exact test 
was used to compare differences for count data. Spearman's 
correlation analysis was conducted to calculate the correla‑
tion between species and metabolites. P<0.05 was considered 
to indicate a statistically significant difference. All data 
were analyzed using GraphPad Prism software (version 6; 
Dotmatics), R software and Microsoft Excel (version 3.3.2.13, 
Microsoft Corp.).

Results

Characteristics of the study population. A total of 50 patients 
with AONFH and 48 healthy adults were included in the 
present study. The demographic characteristics of the two 
groups did not show any statistically significant difference 
(Table I), suggesting that there were no confounding factors 
that could have influenced the results.

GM changes in patients with AONFH. To identify changes 
in the gut microbiome in patients with AONFH, 16S rRNA 
metagenomics analysis was conducted on 98 fecal samples, 
including 48 samples from the NC group and 50 samples from 
the AONFH group. After QC, >21 million valid bases were 
obtained for each sample (Table SI). 

The rRNA sequences were then grouped into operational 
taxonomic units (OTUs) based on sequence similarity to 
classify the microbial diversity in terms of bacterial strains. 
Performing a 97% similarity cluster analysis identified 4,966 
OTUs in the NC group and 4,248 OTUs in the AONFH group, 
where 1,697 OTUs were shared between the two groups 
(Fig. 1A). 

Alpha diversity analysis was then used to analyze the 
complexity of species diversity in each sample using several 
indices, including the observed OTUs, Chao1, Shannon and 
Simpson indices. The richness and diversity rarefaction 
curve in the two groups tended to be flat or reach a plateau, 
suggesting satisfactory sequencing depth (Fig. S1). Alpha 
diversity analysis demonstrated no significant differences 
in observed OTUs, Chao1, Shannon and Simpson indices 
between the NC group and the AONFH group (Fig. S2), 
which indicated that the complexity of species diversity was 
similar. 

Principle coordinate analysis (PCoA) and analysis of 
similarities (ANOSIM) testing for beta diversity demonstrated 
a significant difference in GM composition and abundance 
between the two groups (unweighted Unifrac P=0.005 and 
Jaccard P=0.003; Fig. 1B and C).

AONFH‑related changes in gut microbiome composition. 
Taxon‑dependent analysis (Fig. 1D) identified 31 phyla 
present in both groups, with Firmicutes, Actinobacteriota, 
Proteobacteria, Bacteroidota and Verrucomicrobiota being the 
most dominant phyla. Firmicutes was the most predominant 

Table I. Characteristics of participants in the present study.

 Patients with alcohol‑induced
Characteristica  osteonecrosis of the femoral head (n=50) Negative controls (n=48) P‑value

Age, years 43.98±11.40 41.75±10.50 0.32
Height, cm 172.64±5.30 174.58±5.76 0.09
Weight, kg 72.46±11.74 71.19±11.48 0.59
BMI, kg/m2 24.31±3.79 23.35±3.54 0.20
Alcohol consumption 50 (100) 0 (0) <0.001
Smoking 4 (8) 0 (0) 0.12

aData are presented as either the mean ± standard deviation or n (%).
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Figure 1. Gut microbiome diversity and structure analysis of patients with AONFH and NCs. (A) Venn diagram of the observed features (amplicon sequence 
variants) in the AONFH and NC groups. PCoA of the microbiota based on (B) unweighted UniFrac (ANOSIM, R=0.058, P=0.005) and (C) Jaccard (ANOSIM, 
R=‑0.060, P=0.003) distance matrices for the AONFH and NC groups. (D) Heatmap was generated at phylum level based on the relative abundance values. 
Statistically significant differences in bacterial abundance at the (E) phylum and (F) genus level between the AONFH and NC groups (mean ± SD). *P<0.05, 
**P<0.01. AONFH, alcohol‑induced osteonecrosis of the femoral head; NC, negative control; PCoA, principal coordinate analysis; ANOSIM, analysis of 
similarities; p_, at phylum level, g_, at genus level. 
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phylum, accounting for 55.23 and 48.19% of the GM in the NC 
group and the AONFH group, respectively. Further analyses 
demonstrated that, at the phylum level, Campylobacterota 
(P=0.0048) and Chloroflexi (P=0.0392) were significantly 
more abundant in the NC group compared with those in the 
AONFH group, whereas Planctomycetota (P=0.0099) and 
Proteobacteria (P=0.0438) were significantly more abundant 
in the AONFH group compared with those in the NC group 
(Fig. 1E). 

At the genus level, the abundance of 58 genera was 
significantly different between the NC group and the AONFH 
group. Among them, UCG‑002 (P=0.0241), Pseudomonas 
(P=0.0342), UCG‑005 (P=0.0436) and Incertae sedis 
(P=0.0208) were significantly more abundant in the NC 
group compared with those in the AONFH group, whereas 
Klebsiella (P=0.0232), Holdemanella (P=0.0229), Citrobacter 
(P=0.0468) and Lentilactobacillus (P=0.0093) were signifi‑
cantly more abundant in the AONFH group compared with the 
NC group (Fig. 1F).

Next, linear discriminant analysis (LDA) was performed 
and integrated with effect size to generate a cladogram to iden‑
tify the specific bacteria species that dominate in the GM of 
patients with AONFH (Fig. 2A). Significant differences were 
demonstrated in 21 OTUs (LDA>3), including Pseudomonas, 
Pseudomonadaceae, Oscillospiraceae, UCG‑002, Firmicutes 
and Streptococcus, which were more abundant in the NC 
group compared with those in the AONFH group. By 
contrast, Burkholderiaceae, Buekholderiales, Holdemanella, 
Erysipelotrichaceae, Klebsiella pneumoniae, Klebsiella, 
Gammaproteobacteria, Proteobacteria and Enterobacterales 
were more abundant in the AONFH group compared with 
those in the NC group (Fig. 2B). 

Prediction of gene function in the GM. Next, Phylogenetic 
Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt 2.2.0b http://huttenhower.sph.
harvard.edu/galaxy/root?tool_id=PICRUSt_normalize) was 
used to compare gut microbial gene functions across Clusters 

Figure 2. Gut microbiome composition and functional analyses. (A) Cladogram indicating the phylogenetic distribution of the microbiota in the AONFH 
and NC groups. (B) Linear discriminant analysis integrated with effect size demonstrated differences in abundance between the AONFH and NC groups. 
(C) Predicted functions of the gut microbiota based on KEGG pathway analysis. The extended error bar plot demonstrated the significantly different KEGG 
pathways between the AONFH and NC groups. AONFH, alcohol‑induced osteonecrosis of the femoral head; NC, negative control; KEGG, Kyoto Encyclopedia 
of Genes and Genomes. p, phylum; c, class; o, order; f, family; g, genus; s, species.
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of Orthologous Genes (COGs), KEGG and KEGG orthology 
functional orthologues between the AONFH and NC groups 
(Figs. S3‑5). KEGG pathway analysis identified important 
functions, such as ‘CDP‑diacylglycerol biosynthesis I/II’, 
‘L‑histidine biosynthesis’ and ‘superpathway of L‑serine and 
glycine biosynthesis I’ (Fig. 2C), whereas COG database 
analysis highlighted ‘Flp pilus assembly protein TadG’, 
‘lipid‑binding SYLF domain’ and ‘CBS‑domain‑containing 
membrane proteins’ in the AONFH group were higher when 
compared with the NC group (Fig. S3). KEGG analysis indi‑
cated that gut microbial genes were upregulated in AONFH 
group, such as those participating in ‘propanoate metabolism’, 
‘fructose and mannose metabolism’ and ‘phosphotransferase 
system’. However, those participating in RNA degradation and 
transcription machinery were downregulated (Fig. S4). KEGG 
orthology analysis indicated that ‘AgrD protein’, ‘formate 
dehydrogenase’, ‘diapolycopene oxygenase’, ‘kumamolisin’ 
and ‘carotenoid cleavage dioxygenase’ were enhanced in the 
AONFH group (Fig. S5).

Metagenomic sequencing demonstrates significant differences 
between the AONFH and NC groups. Metagenomic sequencing 
was performed on fecal samples from 50 patients with AONFH 
and 47 healthy individuals. A total of 317,243 genes were 
identified. The samples from the NC group contained 3,177 
specific genes that were not detected in the AONFH samples. 
Compared with the NC group, 20,823 unigenes were found 
to be differentially expressed in the AONFH group (10,171 
upregulated and 10,652 downregulated). 

The alpha diversity was lower in the AONFH group 
compared with that in the NC group, as measured by the 
observed species and Chao1 indices, Whilst the Shannon and 
Simpson indices did not demonstrate any significant difference 
in alpha diversity between the groups (Fig. S6). The results 
indicated that the complexities of species diversity of the two 
groups were similar, although the species richness was lower 
in the AONFH group.

PCoA and ANOSIM testing for beta diversity demonstrated 
no significant difference in microbial composition between 
the AONFH and NC groups at the species level (Bray‑Curtis 
Unifrac P=0.06; Fig. 3A). Comparing the profiles of the 
AONFH and NC groups demonstrated that Pseudomonas, 
Pseudomonas fluorescens, Pseudomonas sp. TMW‑2.1634, 
Pseudomonas weihenstephanensis and Pseudomonas 
fragi were significantly less abundant in the AONFH group 
compared with those in the NC group (Fig. 3B and Table SII). 

Potential role of GM biomarkers in AONFH risk assess‑
ment. A random forest model was constructed based on the 
genera that demonstrated significantly different abundances 
to identify potential diagnostic biomarkers that could be used 
to predict AONFH. The optimal model that provided the best 
discriminatory power utilized 20 genera (Fig. 3C). According 
to the aforementioned analysis, there were significant differ‑
ences in the composition of the microbial community between 
AONFH and NC groups. Therefore, to determine the ability 
of the identified bacterial biomarkers to discriminate between 
the two groups, receiver operating characteristic curves were 
produced and the AUC was calculated. The top five AUC 
values were for Enhygromyxa salina (89.47%), Hyphomonas 

beringensis (87.84%), Thermococcus profundus (87.41%), 
Syncephalastrum racemosum (86.93%) and Roseovarius 
nitratireducens (86.91%; Fig. 3D). 

Functional analysis of differentially expressed genes in the 
AONFH group identified by metagenomic sequencing. The 
top 10 GO items for the three types of gene classifications 
provided by the GO database were selected (Fig. S7A). 
Next, GO enrichment analysis of the differentially 
expressed unigenes between the two groups was performed 
and the top 20 GO terms were analyzed (Fig. S7B). KEGG 
analysis of the differentially expressed unigenes was then 
performed to identify the metabolic pathways that differed 
most significantly between the two groups. The expres‑
sion of genes related to ‘starch and sucrose metabolism’, 
‘RNA degradation’, ‘pentose and glucuronate interconver‑
sions’, ‘glutathione metabolism’, ‘flagellar assembly’ and 
‘bacterial chemotaxis’ differed significantly between the 
AONFH and NC groups (P≤0.01; unigene number >50; 
Fig. S7C and Table SIII).

Metabolomic analysis reveals abnormal metabolic altera‑
tions in patients with AONFH. To identify changes in the gut 
microbiome in patients with AONFH, metabolomic analysis 
was performed on 97 fecal samples, including 48 samples 
from the NC group and 49 samples from the AONFH group. 
PLS‑DA was performed to identify discriminant metabolites 
in the fecal samples from these two groups. Using negative 
ion mode (NIM), there was an apparent trend towards the 
separation of metabolic features in the fecal samples from 
patients with AONFH and NCs (Fig. 4A). The combined 
explained variance of PC1 and PC2 (Fig. 4B) was 18.84%, 
R2=(PC1, 0.0; PC2, 0.6568) and Q2=(PC1, 0.0; PC2, ‑0.3303). 
In positive ion mode (PIM), there was also an apparent trend 
toward separation between the metabolic features of the fecal 
samples from patients with AONFH and NCs (Fig. 4C). The 
combined explained variance of PC1 and PC2 was 18.41% 
(Fig. 4D), R2=(PC1, 0.0; PC2, 0.6386) and Q2=(PC1, 0.0; 
PC2 ‑0.3213).

Fecal metabolomic changes in patients with AONFH. 
Metabolomic analysis identified 21,486 features and 11,723 
metabolites in PIM and 14,155 and 7,576 metabolites in NIM. 
The obtained data were used as the batch query against the 
HMDB for single‑stage mass spectrometry analysis, which 
annotated 5,098 and 3,689 individual samples with the features 
identified in PIM and NIM, respectively. In the HMDB super‑
class analysis, the most abundant metabolites were ‘lipids 
and lipid‑like molecules’ and ‘organic acid and derivatives’ 
(Fig. 5A). 

Comparative metabolomic analysis demonstrated clear 
differences in fecal metabolite profiles between patients 
with AONFH and NCs (Fig. 5B). A total of 483 significantly 
upregulated and 396 significantly downregulated metabolites 
in PIM, whereas 358 significantly upregulated and 296 signifi‑
cantly downregulated metabolites in NIM were identified, in 
the AONFH group compared with those the control group 
(Table SIV). These metabolites can potentially be regarded 
as part of various signaling pathway networks underlying 
AONFH occurrence.

https://www.spandidos-publications.com/10.3892/etm.2024.12599
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Metabolite profiling and AONFH‑related pathways. Pathway 
analysis demonstrated the detailed impact of AONFH‑related 
alterations in metabolic networks (Fig. 5C). The most influ‑
ential metabolic pathway had a pathway impact of >0.05 and 
log10(P‑value)>0.3. A total of four metabolic pathways were 
identified as being disturbed in the fecal profiles of patients with 
AONFH, which included ‘vitamin B6 metabolism’, ‘retinol 

metabolism’, ‘pentose and glucuronate interconversions’ and 
‘glycerophospholipid metabolism’. KEGG enrichment anal‑
ysis identified the most abundant metabolic pathways in the 
two groups (Fig. 6A). Based on P‑values, pathway impact and 
enrichment ratios, the top two differentially expressed meta‑
bolic pathways were deemed to be ‘vitamin B6 metabolism’ 
and ‘retinol metabolism’. 

Figure 3. Differences in the gut microbiota in the AONFH and NC groups based on the metagenomic sequencing data. (A) PCoA analysis based on the 
Bray‑Curtis distance matrix between the AONFH and NC groups at the species level (ANOSIM, R=0.02; P=0.06). (B) Relative abundance of the top 20 species 
enriched in the AONFH and NC groups. Data were presented as median ± interquartile range. (C) Performance of a random forest model classification as 
assessed using the R ‘random forest’ package. (D) Receiver operating characteristic curve displaying the top five biomarkers for distinguishing between the 
AONFH and NC groups. *P<0.05. AONFH, alcohol‑induced osteonecrosis of the femoral head; NC, negative control; PCoA, principal coordinate analysis; 
ANOSIM, analysis of similarities; AUC, area under the curve.
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Figure 4. (A) Partial least squares discriminant analysis score plot in negative ion mode. (B) Permutation plot in negative ion mode. (C) Partial least squares 
discriminant analysis score plot in positive ion mode. (D) Permutation plot in positive ion mode. AONFH, alcohol‑induced osteonecrosis of the femoral head; 
NC, negative control; PC, principal component; Cor, correlation coefficient.

A correlation matrix was next created using Spearman 
correlation and correlation network analyses to explore the 
potential relationships between changes in the GM and changes 
in metabolic product concentrations (Fig. 6B and Table SV). 
The levels of ptilosteroid b, 16‑methyl‑6z,9z,12z‑heptadecatri‑
enoic acid, allylestrenol, heptabarbital, n‑benzoylaspartic acid, 
ezetimibe and vanilloylglycine were found to be positively 
correlated with the abundance of various genera, such as 
Schizosaccharomyces, Oceanicella, Basidiobolus, Mortierella 
and Roseovarius. The levels of kanzonol E, sophoracoumestan 
A, dicaffeoylputrescine, neobavaisoflavone, pentylbenzene, 
sophorapterocarpan A, pyrazine, ropivacaine, o‑methylpon‑
gamol, erythrinin C and semilicoisoflavone B were negatively 
correlated with the abundance of various genera, such as 

Phanerochaete, Ceratobasidium, Candidatus Hodgkinia, 
Smittium, Schizosaccharomyces and Syncephalis. 

Discussion

GM is an important symbiotic partner that facilitates the main‑
tenance of physiology in animals and humans. In addition, it 
can regulate several aspects of host physiology, such as nutri‑
tional metabolism (5). The GM has also been reported to be 
implicated in a number of conditions, including neurodegener‑
ative diseases (23), cancer (24), obesity (25) and Kashin‑Beck 
disease (26). As the prime pathogenic factor contributing to 
AONFH, alcohol is largely metabolized within the gastro‑
intestinal tract (27). Alcohol can alter GM composition, 

https://www.spandidos-publications.com/10.3892/etm.2024.12599
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impact the gut immune system and lead to downstream 
systemic effects on immune system communication with other 
organs (28). High levels of alcohol intake can result in nutrient 
malabsorption and deficiencies, including vitamin D, alter the 
gut microbiome and gut metabolites, affect the expression 

of bone metabolism‑regulating hormones, induce osteoclast 
activation and influence GM composition (28). In addition, 
glucocorticoids can induce the loss of Lactobacillus animalis 
and its extracellular vesicles from the gut, which is associated 
with the pathogenesis of glucocorticoid‑induced ONFH (29). 

Figure 5. Fecal metabolomic changes and metabolic pathway in patients with AONFH. (A) The gut metabolites were identified by HMDB superclass analysis. 
(B) Volcano plot demonstrated the number of dysregulated metabolites in the feces of patients with AONFH compared with the NC group. (C) Computed 
metabolic pathways as a function of P‑value and the pathway impacts of the key metabolites that were differentially expressed between the AONFH and NC 
groups. AONFH, alcohol‑induced osteonecrosis of the femoral head; NC, negative control; HMDB, Human Metabolome Database. 
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Figure 6. Differentially expressed metabolic pathways in patients with AONFH. (A) The most abundant metabolic pathways in the two groups as identified by 
Kyoto Encyclopedia of Genes and Genomes enrichment analysis. (B) Correlation between changes in the gut microbiota and the changes in metabolic product 
concentrations in patients with AONFH. AONFH, alcohol‑induced osteonecrosis of the femoral head; NC, negative control. 

Therefore, it is possible that the GM can serve a role in ONFH. 
However, to the best of our knowledge, no prior study has 
systematically investigated the role of GM and associated gut 
metabolites in the development of ONFH to date. 

The results from the present study demonstrated that gut 
dysbiosis occurred in patients with AONFH, suggesting that 
alcohol may participate in AONFH pathogenesis by altering 
the GM composition. The 16S rDNA gene sequencing 
results demonstrated that Pseudomonas, Pseudomonadaceae, 
Oscillospiraceae, Firmicutes and Streptococcus were more 
abundant in the NC group compared with those in the AONFH 
group. By contrast, Burkholderiaceae, Buekholderiales, 
Holdemanella, Erysipelotrichaceae, Klebsiella pneumoniae, 
Klebsiella, Proteobacteria and Enterobacterales were more 
abundant in the AONFH group compared with those in the NC 
group. The metagenomics analysis results demonstrated that 
Pseudomonas was significantly less abundant in the AONFH 
group compared with those in the NC group.

In previous studies of clinical alcohol use disorder (AUD), 
the associated dysbiosis was characterized by a lower abundance 
of Bacteroidetes and Akkermansia muciniphila (30). In animal 
models of high‑dose alcohol consumption, a decrease in bacte‑
rial diversity was observed, exemplified by fewer Bacteroidetes 
and Firmicutes (31,32), coupled with increased Proteobacter, 
Proteobacteria and Actinobacter (31‑33). In particular, 
Proteobacteria is one of the most abundant phyla in the human 
GM and is frequently overrepresented in diseases, especially 
in those associated with an inflammatory phenotype, such as 
inflammatory bowel disease, asthma and chronic obstructive 
pulmonary disease (34). The present study demonstrated that 
Proteobacteria were more abundant in patients with AONFH, 
suggesting this species to be attributable to alcohol consump‑
tion. Pseudomonas is a member of the Proteobacteria phylum 
that has been reported to be associated with alcohol‑related 
diseases and ONFH. This species is particularly prevalent in 

the intestine of rats with alcohol‑related liver injury, where 
their abundance could be reduced by transplantation with fecal 
filtrate from a healthy rat (35). Liu et al (36) previously reported 
that Pseudomonas aeruginosa and Pseudomonas putida may 
be pathogens in patients with ONFH. However, the present 
study found decreased Pseudomonas abundance in patients 
with AONFH, suggesting that Pseudomonas abundance was 
decreased by alcohol consumption. The discrepancy between 
this study and Liu et al (36) may be due to all kinds of ONFH 
patients being included in their study, while only patients with 
AONFH were included in the present study. Another reason 
is that they reported the result at the species level, while the 
present study reported them at the genus level. Klebsiella and 
Streptococcus form another two members of the Proteobacteria 
phylum family. Individuals who consume excessive amounts 
of alcohol have previously been found to exhibit increased 
susceptibility to lung infection by Streptococcus pneumoniae 
and Klebsiella pneumoniae (37). Yuan et al (38) reported that 
≤60% of individuals with non‑alcoholic fatty liver disease in 
a Chinese cohort were infected with Klebsiella pneumoniae, 
a bacterial strain that produces alcohol as a byproduct of 
glucose. Taken together, these aforementioned studies suggest 
that alcohol consumption can increase susceptibility to 
Klebsiella pneumoniae infection and the subsequent excessive 
endogenous alcohol production due to GM alteration. Since 
Klebsiella pneumoniae and Klebsiella were found to be more 
abundant in the AONFH group in the present study, alcohol 
consumption may likely increase Klebsiella pneumoniae abun‑
dance in this group, resulting in the excessive production of 
endogenous alcohol and aggravation of AONFH pathogenesis. 

Firmicutes and Bacteroidetes are two major phyla 
in the healthy human GM. They are documented to be 
involved in colonic metabolism through a complex meta‑
bolic energy‑harvesting mechanism based on cross‑feeding 
and co‑metabolism (39). The Firmicutes/Bacteroidetes 
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ratio has been implicated in the predisposition to several 
disease states (40). Wang et al (26) previously reported that 
patients with Kashin‑Beck disease were characterized by 
decreased Firmicutes levels and a significantly decreased 
Firmicutes/Bacteroidetes ratio. In addition, Firmicutes 
abundance was found to be positively associated with 
calcium absorption (41), which was significantly decreased 
in the presence of alcohol (42), a finding that was verified by 
Cheng et al (28). In the present study, it was demonstrated that 
Firmicutes levels were decreased in patients with AONFH, 
suggesting that alcohol consumption may contribute to 
AONFH pathogenesis by decreasing Firmicutes abundance. 

ONFH develops because of varying degrees of necrosis 
in the local microenvironment (5). This can in turn lead 
to a number of pathological changes caused by erroneous 
metabolic processes, including intravascular fat embolism, 
endovascular coagulation, lipid metabolism, apoptosis and 
inhibition of angiogenesis (5). It can therefore be possible 
that alterations in certain metabolic molecular markers are 
evident in the bloodstream during the early stages of the 
ONFH pathological process. In the present study, several 
important gut microbial gene functions were identified, 
such as CDP‑diacylglycerol biosynthesis I/II, L‑histidine 
biosynthesis and the L‑serine and glycine biosynthesis I 
superpathway. CDP‑diacylglycerol is a critical interme‑
diate in lipid metabolism, taking part in the synthesis of 
phosphatidylglycerol, cardiolipin and phosphatidylino‑
sitol (42). CDP‑diacylglycerol synthase (CDS) produces 
CDP‑diacylglycerol from phosphatidic acid and cytidine 
triphosphate (43). CDS has been reported to serve an 
important role in various processes, including mitochondrial 
function, signal transduction, membrane trafficking, secre‑
tion and cytoskeletal rearrangements (44). In the present 
study, CDP‑diacylglycerol biosynthesis was identified as one 
of the most important gut microbial gene functions altered 
in patients with AONFH. Therefore, CDP‑diacylglycerol 
and CDS may serve key roles in AONFH pathogenesis, 
but further studies are needed to investigate the underlying 
mechanism of this process. 

A previous bioinformatics analysis performed by 
Yang et al (1) revealed that histidine, cysteine and methionine 
metabolism were associated with ONFH pathogenesis, where 
subsequent metabolic pathway analysis found that L‑histidine 
is a key molecule in histidine metabolism and L‑serine has a 
central role in cysteine and methionine metabolism. Histidine 
is an essential amino acid in mammals that can regulate gene 
expression, biological activity of proteins and signal transduc‑
tion (45). By contrast, L‑serine has been reported to promote 
osteoclast formation and therefore induce bone resorp‑
tion (46). These aforementioned previous findings support the 
microbial gene function prediction results of the present study, 
suggesting that L‑histidine and L‑serine may serve regulatory 
roles in the pathology of AONFH.

In the present study, it was found that glycine biosynthesis 
may participate in the pathological process of ONFH. Betaine 
is a trimethyl derivative of glycine and an important nutrient for 
humans, which regulates a series of vital biological processes, 
including oxidative stress, inflammatory responses, osteoblast 
differentiation and apoptosis (47‑49). Yang et al (50) previously 
reported that betaine is a potential pharmacotherapy option 

for alcohol‑induced ONFH in vivo, since it was observed to 
exert a protective role against ethanol‑induced suppression 
of osteogenesis and mineralization of human bone marrow 
mesenchymal stem cells. 

Vitamin A is vital for a variety of bodily functions, 
including gene expression, reproduction, embryonic develop‑
ment and immune function (51). Whilst insufficient vitamin 
A intake can cause a number of adverse effects, including low 
bone density, excessive vitamin A consumption can also cause 
bone loss and increase the risk of fracture, leaving a narrow 
range of optimal dosage (52). As the biologically active form 
of vitamin A, retinol can enhance osteoblast proliferation 
and hinder osteoclast resorption (53). It has previously been 
reported that chronic alcohol consumption can mediate 
adverse effects on vitamin A metabolism, which can be 
directly associated with the development of alcohol‑induced 
disease (54). In the present study, retinol metabolism was 
identified to be one of the most important AONFH‑related 
pathways. Therefore, alcohol may disturb retinol metabolism 
in this disease, forming a part of AONFH pathogenesis. 
Vitamin B6 deficiency is common in individuals with alco‑
holism (55). This condition was previously found to be a 
potential risk factor for osteoporosis and bone fracture (56). 
Additionally, serum vitamin B6 concentration was observed 
to significantly associate inversely with the concentration 
of the bone resorption marker parathyroid hormone, whilst 
significantly associating positively with the concentration 
of 25‑hydroxyvitamin D (57). Vitamin B6 deficiency may 
affect the mechanical property of the bone due to reduced 
cortical thickness, trabecular osteoid and coarse trabecula‑
tion (57). Therefore, alcohol may potentially induce vitamin 
B6 deficiency, which can disturb the balance between bone 
resorption and bone reconstruction in AONFH. 

Dysfunction of lipid metabolism is reported to serve a 
crucial role in ONFH. A previous study reported different 
serum lipidomic profiles between patients with SONFH and 
healthy controls, where glycerophospholipids occupied a 
large part of this difference (58). In addition, it was reported 
that glycerophospholipids were distinguished in the bone 
trabecula and plasma of patients with ONFH compared with 
those in healthy controls, most glycerophospholipids were 
upregulated in patients with ONFH (59,60). Mei et al (61) 
previously reported that glycerophospholipid metabolism was 
the metabolic pathway that was the most significantly altered 
in rabbits with SONFH, suggesting it to be a potential pathway 
for the targeted intervention against SONFH. In the future, the 
detailed mechanism of how glycerophospholipid metabolism 
impacts AONFH requires further study.

In conclusion, the present study demonstrated that gut 
dysbiosis occurred in patients with AONFH, possibly causing 
alterations in gut metabolites. This altered GM profile and 
metabolites may serve as potential diagnostic markers for 
AONFH, even if the GM metabolites are from host cells 
or food in the intestinal tract. In particular, analysis of the 
interactions among alcohol, GM, metabolites and AONFH 
discussed in the present study may enhance the understanding 
of the mechanisms underlying AONFH pathogenesis. The 
findings from the present study regarding GM and metabolite 
changes may also facilitate the discovery of novel thera‑
peutic targets. However, several research directions remain 
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that require further elucidation. Detection of additional 
biochemical indicators associated with bone metabolism 
is required to understand the relationship between the GM 
and biochemical indicators. This may in turn deepen the 
understanding into the role of GM in AONFH pathogenesis. 
In addition, since probiotics, prebiotics or symbiotics can 
regulate the GM (26), future studies are required to inves‑
tigate the relationship among such substances, gut dysbiosis 
and AONFH.
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