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Onion-like networks are both 
robust and resilient
Yukio Hayashi & Naoya Uchiyama

Tolerant connectivity and flow transmission within capacity are crucial functions as network. However, 
the threats to malicious attacks based on intelligent node selections and rapid breakdown by cascading 
overload failures increase more and more with large blackout or congestion in our contemporary 
networking systems and societies. It has been recently suggested that interwoven loops protect the 
network functions from such damages, but it is a computationally intractable combinatorial problem 
to maximize a set of necessary nodes for loops in order to improve the robustness. We propose a 
new method by enhancing loops in the incremental growth for constructing onion-like networks 
with positive degree-degree correlations, whose topological structure has the optimal tolerance of 
connectivity against attacks in the state-of-the-art. Moreover, we find out that onion-like networks 
acquire adaptive capacity in resilience by a change of routing policy for flow control to absorb cascading 
overload failures triggered by a single attack and simultaneous multi-attacks. The inhibitory effect is 
stronger than that in scale-free networks found in many real systems.

It is well-known that there exist a common topological structure called scale-free (SF) in many real social, tech-
nological, biological networks, and they are extremely vulnerable against intentional attacks to large degree nodes 
of hubs1. When similar degree nodes tend to connect in a SF network, the connectivity gives the optimal attack 
tolerance2,3 under its power-law degree distribution. Such networks with positive degree-degree correlations are 
called onion-like because of visualizing as similar degree nodes locate on concentric circles in decreasing order 
of degrees from core to peripheral. Onion-like networks can be constructed by self-organized incrementally 
growing methods4–6 instead of whole rewiring7 for positive degree-degree correlations. Other intelligent attacks 
to influencer8 or feedback vertex set (FVS)9 recently appear, and the insistent destruction of loops give severer 
damages than the conventionally worst hub attacks. However, one of the self-organized growing method6 takes 
into account the weakness inversely by enhancing loops in simple link attachments on the growth. Influencer 
and FVS are the minimum set of nodes to maximally prevent information spreading and formation of loops (or 
referred to cycles), respectively, as these nodes are removed in a network.

On the other hand, from the asymptotic equivalence of dismantling and decycling problems at infinite graphs 
in a large class of random networks with light-tailed degree distribution10, the strong robustness may be related 
to increasing the size of FVS which is necessary to form loops. In other words, the existence of many loops is 
probably crucial to maintain the connectivity of network within a finite size. Here, dismantling (or decycling) 
problem is to find the minimum set of nodes if its removal yields a graph with the largest connected cluster whose 
size is at most a constant (or a graph without loops). However, it is a nondeterministic polynomial(NP)-hard 
problem to find FVS11, there is no efficient algorithm for the exact solution due to the worst case difficulty. Thus, 
we consider a heuristic method for increasing the size of FVS, and show a further improvement of robustness in 
growing onion-like networks than the previous method6. We emphasize that onion-like networks emerge through 
enhancing loops with indirect influence to degree-degree correlations.

Moreover, we reveal the resilient property for onion-like networks. As the major meanings of resilience in 
system science, it is pointed out that12 resilience is the ability to prevent something bad from happening, or the 
ability to prevent something bad from becoming worse, or the ability to recover from something bad once it has 
happened, which focus on the buffer capacity to absorb shocks and still maintain the functions. We wish to head 
for the adaptive capacity, because resilience of complex adaptive system is not simply about resistance to change 
and conservation of existing systems, but also about opportunities that disturbance opens up in terms of recombi-
nation of evolved structures and process, renewal of the system and emergence of new trajectories13. For example, 
after a happened damage and the succeeding failures, a change of routing polity form usual shortest-based to 
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congestion-aware load-based selection of paths does not mean complete recovery but corresponds to renewal in 
flow control process. Thus, we show that onion-like network structure supplely absorb and decentralize pressure 
of transfer flow in the above change of routing policy, whose flow control inhibits cascading overload failures 
much more than the conventional defense14 and navigation15 strategies. In this paper, we mainly discuss the 
improvement in resilience achieved by adaptive changes in transmission dynamics rather than quick changes in 
the network structure, however the high performance is supported by the topological existence of many bypasses 
originated from interwoven loops. Indeed, even for a same routing strategy, some differences appear in compar-
ison with SF and onion-like networks as shown later. These results will open a prospective direction to develop 
more resilient structure in future re-organizing networks than SF structure found in many real systems.

Results
Incrementally growing onion-like networks.  We consider incrementally growing methods of strongly 
robust onion-like networks with positive degree-degree correlations2,3 by the following attachments via interme-
diations and new modifications of the minimum degree selection. At each time step of growing from an initial 
configuration until reaching a size N: total number of nodes, a new node is added and connects to existing nodes. 
As the connection rule for even number m links emanated from the new node, we introduce a pair of attach-
ments based on random and long-distance (RLD) attachment, from which a range-limited approximation of 
RLD referred to as intermediation (MED) attachment6 is derived. We assume that each link is undirected. Since 
multiple links are prohibited in the attachments from a new node, if a same node is chosen, then other selection is 
tried again. We should remark that loops and bypasses originated from them are formed by pairs of attachments 
as shown in Fig. 1. The interwoven loops via new node are significant for m ≥ 46.

RLD-kmin: One of link destination is uniformly randomly chosen as encountering, and another link destina-
tion is the furthest node from the randomly chosen pair node. When there are several candidates of the furthest 
with a same distance counted by hops, the node with the minimum degree is selected.

MED-kmin: Instead of the furthest node, we consider intermediations in a few hops as a range-limited 
approximation to reduce connection cost or effort. We select a node with the minimum degree for intermedia-
tions in μ hops from the randomly chosen pair node. Intermediations in μ hops mean attachments to the μ + 1-th 
neighbors.

MED-rand: Instead of the node with the minimum degree, we randomly chosen a node in the μ + 1-th neigh-
bors from the randomly chosen pair node. This is the previous best method in growing strongly robust onion-like 
networks6.

Since older nodes tend to have larger degrees in random attachment16, this attachment contributes to making 
positive correlations among large degree nodes, while another attachment to the node with the minimum degree 
enhances positive correlations among low degree nodes. In other words, the attachment establishes a connection 
between the node with the minimum degree in the μ + 1-th neighbors and a new node with the minimum degree 
m in the network, then it enhances positive correlations among low degree nodes. When a node is randomly 
chosen in the μ + 1-th neighbors in the previous method6, the degree of randomly chosen node is usually larger 
than the minimum in the neighbors. Therefore, the correlations become somewhat weaker in MED-rand than 
MED-kmin from the difference of attached nodes with the minimum and larger degrees by a new node. This 

Figure 1.  Pairs of attachments in RLD or MED. Bold and dashed lines denote added links to a current network 
and existing paths in the network. Zigzag lines denote paths of μ = 5 intermediations from randomly attached 
nodes.
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modification from random selection to minimum degree selection in the neighbors seems to be slight, however it 
is very important to improve the robustness of connectivity as shown later.

We also consider other attachments for increasing the size of FVS in order to study the effect of loops on the 
robustness, since the nodes of FVS are necessary to form loops. We discuss not exact nodes of FVS but the candi-
dates by an approximation method9,17 because of its NP-hardness11. To investigate the potential of FVS for the 
robustness of connectivity especially in onion-like networks, we consider the following four types of attachments 
for direct links from a new node or pairs of nodes with/without recalculation of qi

0 for Eqs (2–6) in the approxi-
mation method. Note that the probability that a node is included in FVS is lower as it has smaller qi

0. By these 
attachments, the selected nodes with small qi

0 as the link destinations newly contribute to forming loops via a new 
node. Thus, the attached nodes may be joined in FVS, the enhancement of robustness is expected.

All-minq-recal: As a link destination, the node with the minimum qi
0 is chosen and directly attached from a 

new node. This process is repeated in m times through the recalculation of qi
0 after every selection of the attached 

node.
All-mimq-bottom4: The nodes of the bottom m in increasing order from the minimum qi

0 are chosen and 
directly attached from a new node. The value of qi

0 is not recalculated.
Rminq-recal: Pairs of nodes are attached from a new node in m/2 times. One of link destination is uniformly 

randomly chosen, and another link destination is the chosen node with the minimum qi
0 in the μ + 1-th neigh-

bors of pair node through the recalculations of qi
0 after every selection of pair.

Rminq-norecal: As the half of destinations, m/2 nodes are randomly chosen in advance. Then, another link 
destination is the chosen node with the minimum qi

0 in the μ + 1-th neighbors of each pair of random selection. 
The set q{ }i

0  is calculated only at once.
Once q{ }i

0  is calculated after the updating in appropriate number of rounds ≈100 by the massage-passing of 
Eqs (2–6), the minimum qi

0 and the bottom m nodes are easily obtained. Even if the attached nodes are chosen in 
the μ + 1-th neighbors, the calculations are necessary for the whole N nodes. While many recalculations of q{ }i

0  
to grow a network are computationally expensive, we study the attachments with recalculations to compare the 
robustness with that in the networks generated by other attachments.

Further improved robustness in growing onion-like networks.  We show an improvement of robust-
ness from the previous results6 for growing onion-like networks with positive degree-degree correlations. To 
investigate degree-degree correlations, we measure the assortativity −1 ≤ r ≤ 1 as the Pearson correlation coeffi-
cient for degrees18.

= ∑ ′ − ∑ + ′

∑ + ′ − ∑ + ′
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where ke and k′e denote degrees at end-nodes of link e, M is the total number of links. The positive or negative 
correlation is distinguished by the sign r > 0 or r < 0.

In addition, to investigate robustness of connectivity we use the most commonly used measure: robustness 
index3

∑=
=

R S q N( )/ ,
q N

def

1/

1

where S(q) denotes the number of nodes included in the giant component (GC as the largest connected cluster) 
after removing qN nodes, q is a fraction of removed nodes by intelligent High Degree Adaptive (HDA) attacks8 
with recalculation of the highest degree node as the target, or Belief Propagation (BP) attacks9 with recalculation 
of the highest qi

0 by Eqs (2–6) in a network. To simplify the discussion, we omit Collective Influence attacks8 
because it gives intermediate damage between the typical HDA and the worst BP attacks6. If a network has both 
high R and r values by investigating these measures, it belongs to an onion-like network. Because connections 
among similar degree nodes in an onion-like network give rise to a high r value with positive degree-degree cor-
relations, and consequently emerge the strong robustness with a high R value2,3, which is not so much affected by 
the rewiring7 for enhancing degree-degree correlations (as mentioned later in Table 1). There exists a robust 

Network RbpOri RbpRew RhubOri RhubRew

MED-kmin-μ0 0.361550 0.359178 0.370585 0.376964

MED-kmin-μ1 0.352980 0.364312 0.366646 0.382378

MED-kmin-μ2 0.360434 0.366723 0.374655 0.384626

MED-kmin-μ3 0.359403 0.367581 0.373487 0.385679

MED-kmin-μ4 0.359551 0.367752 0.373386 0.385714

BA model 0.223078 0.316637 0.229811 0.335264

Table 1.  Robustness index against BP and HDA attacks in the networks at N = 5000 grown with m = 4 links per 
time from the initial complete graph K5. Ori and Rew denote the original networks by MED-kmin or BA model 
and the rewired versions, respectively. The case of Ori for μ = 1 has slightly smaller R than other cases of Ori for 
μ = 0, 2, 3, 4 in MED-kmin. These results are averaged over 100 realizations.
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network with only high R but low r 0, which is not onion-like due to non-positive correlations6. In the follow-
ing, we set m = 4 links for attachments from a new node in order to effectively enhance the robustness by inter-
woven loops.

Figure 2 shows the assortativity r in the growing networks by the attachments of All-minq-recal, 
All-minq-bottom4, Rminq-recal-μ4, Rminq-norecal-μ4, MED-rand-μ4, and MED-kmin-μ4 in μ = 4 interme-
diations from four types of the typical initial configurations: complete graph among five nodes, Erdös–Rényi (ER) 
random graph with Poisson degree distribution, random attachment network with exponential degree distribu-
tion, and SF network by Barabási-Albert (BA) model16. To be uncorrelated in the initial networks, we add the 
procedure of configuration model by uniformly random rewiring19 under these degree distributions. As shown 
in Fig. 2, All-minq-recal (green line) has strong degree-degree correlations, while All-minq-bottom4 (light blue 
line) and MED-rand-μ4 (blue line) have slightly weak but positive correlations. MED-kmin-μ4 (purple line) has 
moderate r > 0.3, which corresponds to onion-like networks. Remember that too large positive correlations are 
not suitable to be robust2. In comparison with same color lines, the dependency of the initial configurations is 
very small except the initial SF networks whose case takes a larger size for the convergence in the growth.

Figure 3 and the Inset show the robustness index R against HDA and BP attacks, respectively, in the grow-
ing networks by the attachments from the typical initial configurations. Note that initial complete graph has 
the maximum value of R = 0.5 at N = 5. It suggests the crucial importance for increasing the size of FVS that 
All-minq-recal (green line) and Rminq-recal-μ4 (orange line) have the largest R for both HDA and BP attacks, 
however they require much computation for selecting the attached nodes in constructing the networks. While 
MED-kim-μ4 (purple line) has a similar large R to them, All-minq-bottom4 (light blue line) and MED-rand-μ4 
(blue line) as the previously best method6 have slightly smaller R. Therefore, newly proposed MED-kim-μ4 (pur-
ple line) is the most suitable with high robustness but less computation.

It is common for all cases that the behavior of R become stable with high values in the early stage of N < 1000 
in Fig. 3 and the Inset. Moreover, as mentioned in6,9, BP attacks give larger damage than HDA attacks because of 
Rbp < Rhub in comparison with same color lines corresponded in Fig. 3 and the Inset. Figure 4 shows the relative 
size S(q)/N for a fraction q of removed nodes by HDA and BP attacks on the networks at N = 5000 grown from the 
initial complete graph K5 in comparison with that in the rewired version7 as the nearly optimal attack-tolerance 
under a given degree distribution. In our onion-like networks by MED-kmin the differences for the rewired ver-
sions are very small, while in SF networks by BA model there are large gaps between the original (green, orange 
line) and the rewired version (purple, light blue line). The small gap (between purple and green lines, light blue 
and orange lines) means that the rewiring is no longer effective to enhance degree-degree correlations in our net-
work, because similar degree nodes are already connected in it. In contrast, the large gap means that the rewiring 
is effective to improve the robustness by enhancing degree-degree correlations in SF network under its power-law 

Figure 2.  Assortativity r for size N in onion-like networks grown with m = 4 links per time step from typical 
initial configurations. (Top Left) Initial configurations of complete graph K5 among five nodes, (Top Right) ER 
random graph with Poisson degree distribution, (Bottom Left) random attachment network with exponential 
degree distribution, and (Bottom Right) SF network by BA model of 200 nodes. Note that K5 has r = 1.0 at N = 5. 
These results are averaged over 100 realizations.
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degree distribution. Note that the rewiring generates a onion-like topological structure from any original network 
which may be not onion-like. The results of robustness index are summarized in Table 1 to compare the original 
with the rewired version.

In the growing networks by MED-kmin attachment, we compare the robustness for the number μ of inter-
mediations as shown in Fig. 5 and the Inset. The differences between the initial configurations from Top Left 
to Bottom Right are little for N > 500. For HDA attacks in Fig. 5, MED-kmin-μ2 (green line) has the largest 
R. The order of higher R is MED-kmin-μ2 (green line) > MED-kmin-μ4 (purple line) ≈ MED-kmin-μ3 (blue 
line) > MED-kmin-μ0 (light blue line) > RLD-kmin (orange line) > MED-kmin-μ1 (yellow line). For BP attacks 
in the Inset of Fig. 5, MED-kmin-μ0 (light blue line) has the largest R. The order of higher R is MED-kmin-μ0 
(light blue line) > MED-kmin-μ2 (green line) > MED-kmin-μ3 (blue line) ≈ MED-kmin-μ4 (purple 
line) > RLD-kmin (orange line) > MED-kmin-μ1 (yellow line), which is slightly different from the order for 
HDA attacks. This order is corresponding to the decreasing order of fractions of FVS estimated by the approx-
imation method17 for μ0, μ2, μ3, μ4, μ1 as shown in Fig. 6 (from top to bottom lines), and suggests a network 
becomes more robust as larger fractions of FVS (see Supplementary information, S1). These results show that the 
attachment to the furthest node by RLD-kmin is not necessary, rather the attachment to a distant node in a few 
hops by MED-kmin is better to be robust network. There remains a question why MED-kmin-μ1 is the worst in 
this study, however the degradation of R is very small.

Resilience to absorb overload by flow control.  We introduce a model of cascading overload failures14, 
which can be widely applied for communication or transportation networks with routing flows. For a given (undi-
rected) network of a constant size N, we assume that at each time step a communication request is generated 
between every pair of nodes (i, j) and a packet (unit object for transfer) is transmitted along paths connecting 
nodes i and j. The selections of paths are depending on routing strategies explained later. The load Lk(t) of node k 
at time t is defined by the total amount of packets passing through the node k per unit time. In the case of shortest 
paths counted by hops, the load is nothing but the betweenness centrality. The load capacity Ci of node i is set to 
be proportional to its initial and necessary load Li(0),

α= +C L(1 ) (0), (1)i i
def

where a constant α ≥ 0 is the tolerance parameter. We assume that before cascading failures the initial paths are 
usual shortest paths as a base for comparison with routing strategies.

Cascading overload failures may occur from a small trigger through the following process.

Figure 3.  Robustness index R against HDA attacks (Inset BP attacks) in onion-like networks for size N grown 
with m = 4 links per time step from typical initial configurations. (Top Left) Initial configurations of complete 
graph K5 among five nodes, (Top Right) ER random graph with Poisson degree distribution, (Bottom Left) 
random attachment network with exponential degree distribution, and (Bottom Right) SF network by BA 
model of 200 nodes. These results are averaged over 100 realizations.
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Step 0: An initial attack, e.g. to the node with the maximum degree or the maximum load, is given at t = 0. 
After the initial attack, the damaged node and the links emanated from it are removed.

Step 1: At next time t ← t + 1, by changing paths due to the trigger of attack or the repeatedly succeeding node 
failures, the loads {Li(t)} of affected nodes are updated. If some nodes receive much loads that exceed own capac-
ities, then the overloaded nodes collapse, and are removed as malfunction.

Step 2: Until no failures are propagated, go to Step 1. The cascading process is stopped at T when the updated 
load satisfies Lk(T) ≤ Ck for all remaining N′ nodes.

The damage is quantified by the relative size Ν= ′G N /def  of the GC for varying the value of tolerance parameter 
α. Simultaneously, we measure the network efficiency

∑=
− ≠

E
N N D

1
( 1)

1 ,
i j ij

def

where Dij denotes the length of shortest path counted by hops between nodes i and j. Note that 1/E is the har-
monic mean of path lengths between two nodes in a network, and slightly underestimated as smaller than the 
arithmetic mean.

In the following, each result is averaged over 10 realizations at N = 103 for SF networks by BA model and 
onion-like networks by MED-kmin grown from a complete graph K5, since the variance is almost smaller than 
10−6 and the amount of computation is huge for many combinations. As shown in Fig. 7, more nodes survive in a 
larger G by our detour routing (purple line) than the usual shortest-based routing (light blue line), the navigation 

Figure 4.  Robustness against HDA and BP attacks. (Left from Top to Bottom) Onion-like networks by MED 
μ = 0, 2, 4, (Right from Top to Bottom) Onion-like networks by MED μ = 1, 3 and SF networks by BA model. 
These results are averaged over 100 realizations.
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(green line)15, and the defense (orange and yellow lines) strategies with fs = 0.1 or 0.2 (10 or 20% sacrifices)14, 
while high network efficiency E is obtained for α > 0.2 in each of them. Note that the value of E is recovered to the 
original levels: 0.333, 0.271, 0.281, 0.290, 0.291, 0.294, in the non-damaging networks generated by BA model and 
MED-kmin of μ = 0, 1, 2, 3, 4, respectively. In particular, the inhibitory effect on cascading failures is superior in 
onion-like networks (right of Fig. 7) which have a larger G and just a little lower E than the corresponding results 
in SF networks (left of Fig. 7). We remark that the defense (orange and yellow lines) strategy is no longer effective 
because of a very small G for α < 0.1 in onion-like networks. There is little difference for the trigger nodes with 
the maximum degree and load distinguished by line and mark. The results in the right of Fig. 7 are investigated in 
more detail for our detour routing on onion-like networks generated by MED-kmin. As shown in Fig. 8, the 

Figure 5.  Comparison of robustness index R against HDA attacks (Inset BP attacks) in MED-kmin and 
RLD-kmin in the evolution of onion-like networks grown with m = 4 links per time step from the initial 
configurations. (Top Left) Initial configurations of complete graph K5 among five nodes, (Top Right) ER random 
graph with Poisson degree distribution, (Bottom Left) random attachment network with exponential degree 
distribution, and (Bottom Right) SF network by BA model of 200 nodes. These results are averaged over 100 
realizations.

Figure 6.  Fraction of the size of FVS in growing onion-like networks by MED-kmin and SF networks by BA 
model from the initial complete graph K5. These results are averaged over 100 realizations. Each fraction also 
shows the critical q value with breakdown of GC for N = 5000 in Fig. 4.
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relative size G is coincident in varying µ = ∼0 4, while the network efficiency E is higher as the number μ of 
intermediations is larger. The reason of high network efficiency is because many shortest paths are detected in our 
routing as shown in Table 2.

In addition, for different distributions of capacity =C L (0)i i
def  + α′Li(0)β 20 and α=




 + ′






β( )C L1 (0)i
k

k i
def i

max

21,22, 

we obtain the advantage of our routing to other strategies as similar to Figs 7 and 8 (see Supplementary informa-
tion, S3), where α′ is set as α∑ ∑ βL L(0)/ (0)i i i i  and α∑ ∑ βL k k L(0)/ ( / ) (0)i i i i max i , respectively, for 0 ≤ α ≤ 1 and 
0.2 ≤ β ≤ 1.4 in order to be equivalent to the total capacity of load ∑ Ci i defined by Eq. (1). Thus, our detour rout-
ing according to Eqs (7 and 8) distributes flow in the way to avoid passing through nodes with much load, the 
resilient effect is analogous to decentralization of physical force in a shock absorber for a given impact pressure.

Instead of the initial attack to a node, we study the tolerance against multiple targeted attacks23,24 by simultane-
ously removing nm nodes selected in decreasing order of degree or load as the trigger in the total 103 nodes, since 
these nodes are considered as the weakest parts for cascading failures. As shown in the left and right of Fig. 9, SF 
networks are not sustainable with high G and E from nm = 8,16 (blue and purple lines): 1% node removals of trig-
ger around α ≈ 0.5 (as a reasonable setting: Ci is 1.5 times larger than the initial load in Eq. (1)), while onion-like 

Figure 7.  Cascading failures measured by relative size G and network efficiency E for tolerant parameter α. 
Trigger by a removal node with maximum degree or maximum load is distinguished by line or mark. (Left) SF 
networks by BA model, (Right) Onion-like networks by MED-kmin μ4. For other μ = 0, 1, 2, 3, similar results 
are obtained (See also Fig. 8).

Figure 8.  Comparison of G & E in cascading failures for our detour routing on onion-like networks by MED-
kmin of μ = 0, 1, 2, 3, 4 intermediations.
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networks have strong tolerance even for nm = 64,100 (red and black line): 10% node removals of trigger. The 
orange, red, black lines for nm = 32,64,100 in the middle of Fig. 9 show that for α < 0.5 the tolerance in onion-like 
networks by MED-kmin of μ = 0 becomes somewhat weaker than that in the right of Fig. 9. This degradation is 
consistent with the result of low efficiency E in the right of Fig. 8.

Discussion
We have proposed a pair of attachments for incrementally growing onion-like networks with positive degree-degree 
correlations2,3, and shown a further improvement of robustness against the intelligent HDA and BP attacks8,9 than 
the previous method6. One of the attachments is based on uniformly random selection, and contributes to enhancing 
the correlations among large degree nodes. Another is based on the selection of minimum degree node in the neigh-
bors of a few hops through range-limited intermediations from the the randomly chosen pair node, and contributes 
to enhancing the correlations among small degree nodes. We have numerically investigated that the enhancement 
of interwoven loops by increasing the size of FVS is crucial to the improvement of robustness in focusing on design 
principle beyond process level of rewiring7. Moreover, we have found out that onion-like networks acquire adap-
tive capacity in resilience13 by a change of policy for flow control from usual shortest-based to congestion-aware 
load-based routing in order to absorb cascading overload failures triggered by malicious attacks, and that our 
congestion-aware detour strategy is superior to both the defense14 and the navigation15 strategies. In particular, 
onion-like networks with bypasses originated from loops have strong tolerance against trigger of multi-attacks in 
comparison with SF networks found in many real systems. As one of unsolved subjects, it is an important issue to 
understand complex behavior and predict it in multi-scale (or multilayer, interdependent) networks of techno-social 
systems25. For cascading failures, some studies26–28 have made a challenge to the problems on interdependent net-
works which are beyond our current scope. In addition, as other strategies to be resilient networks, repairing or 
healing29–31 by adding rewired links can be considered, however they remain in future studies.

Supplementary, we discuss an explanation from organization theory. The connections between randomly 
chosen and the distant nodes via new node in our proposed networks correspond to long-distance relations in 
case studies in organization theory: long-distance relations led to overcome the crisis of Toyota group’s supply 
chain damaged by large fire accident to their subcontract plants32–34. Usual connections among different suppliers 
through voluntary meetings in the intentional Toyota’s strategy quickly reconstruct other productions by using 
the intermediations based on trust rather than immediate profit in building long-term win-win relations. The 
power of complex web of Toyota’s communication networks has been pointed out as follows33,35.

•	 As a result of these relations, employees at Toyota belong to large numbers of committees (iinkai), self-organizing 
study groups (jishuken), and informal groups.

•	 The internal structure of Toyota support the free exchange of ideas, emphasizing the communications of differ-
ences to improve operations and resolve problems.

•	 Operating on the assumption that “everybody knows everything,” information within Toyota flows freely up and 
down the hierarchy and cross functional and seniority levels, extending outside the organization to suppliers, 
customers, and dealers.

The long-distance relations are also useful for rapidly organizing world-wide economic networks with expanding 
business chances by Wenzhou people in China34. More than 400,000 Wenzhou people go out abroad, and the half pros-
pers by making business networks for daily necessary garments or leathers in Europe. By entrusting something in coop-
eration with each other, intermediations of human, goods, and funds bridge structural holes36 between lingual, cultural, 
organizational, or geological gaps including their home-town and the distant partner’s places located in world-wide.

On the brain circulation system known as Silicon Valley (SV) model, by immigrant engineers, shortcut connec-
tions between SV and his/her home country such as China or India strongly contribute for developing innovational 
high-tech industry with market opportunities37. The established connections via intermediations probably work well 

α SF Onion μ0 μ1 μ2 μ3 μ4

0.0 0.94506 0.99284 0.9949 0.99257 0.99457 0.9952

0.1 0.94506 0.99284 0.9949 0.99256 0.99457 0.9952

0.2 0.94507 0.99284 0.9949 0.99257 0.99457 0.9952

0.3 0.94506 0.99284 0.9949 0.99256 0.99457 0.9952

0.4 0.94506 0.99284 0.9949 0.99256 0.99457 0.9952

0.5 0.94507 0.99284 0.9949 0.99256 0.99457 0.9952

0.6 0.94507 0.99284 0.9949 0.99256 0.99457 0.9952

0.7 0.94506 0.99284 0.9949 0.99256 0.99458 0.9952

0.8 0.94506 0.99284 0.9948 0.99256 0.99457 0.9952

0.9 0.94507 0.99284 0.9949 0.99256 0.99457 0.9952

1.0 0.94507 0.99284 0.9948 0.99256 0.99458 0.9952

Table 2.  Rate of including the shortest paths in our routing on SF and onion-like networks by BA model and 
MED-kmin over 100 realizations. When there exist some paths between two nodes in our routing, we consider 
the fraction of coincidences of the number of hops in our detour paths and the shortest paths. The rate is 
accumulated by the fractions for all combinations of source and terminal nodes.
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for managing cross-border operations. These case studies suggest the universal importance of long-distance relations 
through daily cooperation for enhancing both robustness and efficiency of network. From mere relations, by our 
proposed growing methods, the importance is extended to interwoven loops for constructing onion-like networks 
which give the strongest robustness in the state-of-the-art network science. It is an issue for future infrastructure of 
socio-technological systems how such intermediations will be able to be naturally realized beyond selfish thinking of 
preferential attachment16 in growing organizational networks including communications or transportations.

Methods
Approximation method for finding FVS.  We briefly review an approximation method for finding FVS. 
This method is not our original. As mentioned in ref.17, it is assumed that nodes j ∈ ∂i are mutually independent 
of each other when node i is removed. Here, ∂i denotes the set of connecting neighbor nodes of i. Such approxi-
mated tree-like graph is called cavity graph in statistical physics. Let us consider the marginal probability qi

Ai for 
the state Ai of node i. Since Ai represent the index of root node of i, it is influenced by the neighbor nodes in the 
cavity graph after removing node i denoted by \i. Based on the product of independent marginal probability 

→qj i
Aj  

for the state Aj, the joint probability is

∈ ∂ ≈ Π .∈∂ →A j i q( : )i j j i j i
A

\
j

In the cavity graph, if all nodes j ∈ ∂i are either empty (Aj = 0) or roots (Aj = j), the added node i can be a root 
(Ai = i). There are the following exclusive states.

	 1.	 Ai = 0: i is empty (removed). Since i is unnecessary as a root, it belongs to FVS.
	 2.	 Ai = i: i becomes its own root.

The state Aj = j of j ∈ ∂i is changeable to Aj = i when node i is added.
	 3.	 Ai = k: one node k ∈ ∂i becomes the root of i when it is added, if k is occupied and all other j ∈ ∂i are either 

empty or roots.

The corresponding probabilities to the above three states are represented by
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Figure 9.  Tolerance against the trigger of multi-attacks for our detour routing on (Left) SF networks, onion-
like networks by MED-kmin of (Middle) μ = 0, and (Right) μ = 4. Line and mark distinguish the cases of 
simultaneously removing nm nodes selected in decreasing order of degree and load from the maximum, 
respectively, however there is little difference between them.
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where ∂i(t) denotes node i's set of connecting neighbor nodes at time t, and x > 0 is a parameter of inverse tem-
perature. We have the normalization constant
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The massage-passing iterated by Eqs (2–6) is called belief propagation (BP). This calculation of qi
0, qi

i, qi
k, 

→qi j
0 , 

→qi j
i , and 

→qi j
k  is executed through the massage-passing until to be self-consistent in principle but practically to 

reach appropriate rounds from initial setting of (0, 1) random values. The unit time from t to t + 1 for calculating 
a set q{ }i

0  consists of a number of rounds by the updating Eqs (2–6) in order of random permutation of N nodes. 
Thus, as a candidate of FVS17 or the target of BP attack9, a node of the highest qi

0 is chosen and removed with 
recalculation for the remaining subgraph at t. Since the precise process in BP attack stops after all loops have been 
destroyed9, we continue it for the component of remaining trees by switching to HDA attack until removing 
nodes of fraction q.

Strategies against cascading overload failures.  We explain the conventional defense and navigation 
strategies. A defense strategy based on intentional removal of nodes has been proposed14. As sacrifices, the frac-
tion fs of nodes with the smallest ∆ = −L L(0)i i i

gdef  are intentionally removed to avoid the heavy generation of 
packets from the peripheral nodes that rarely contribute to transmitting packets. The total load generated by node 
i is

∑= + .
≠
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g

j i
ij

def

The remaining quantity Δi from the initial load Li(0) is the part that contributes to transmitting packets at 
node i before the trigger of attack. In this defense strategy, after removing the sacrificed nodes, cascading process 
is executed in updating loads {Li(t)} based on the shortest paths without a change of routing policy.

A navigation strategy has been also proposed15 in considering a combination of shortest and degree-based 
paths. For any path P(i → j) through i = v0, v1, …, vn−1, vn = j, the efficient path that minimizes the weighted length
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is selected. Here, k(vi) denotes the degree of node vi, kmax is the largest degree in the network, and 0 ≤ w ≤ 1 is 
a weight parameter. In particular, when w = 0, L(P(i → j):0) corresponds to the traditional shortest path, when 
w = 1, L(P(i → j):1) corresponds to the degree-based path which avoids passing through large degree nodes usu-
ally with much load. Apart from the shortest-paths, we chose w = 0.5 to avoid the decreasing of G in w ≈ 1.0. 
The efficient paths are found for all combinations of source and terminal in N nodes in one unit time. Note that 
the ordering of selection of source and terminal nodes does not affect the determination of paths that minimize 
L(P(i → j): w). In cascading failures after the trigger, at every time step t ≥ 1, the loads {Li(t)} are updated in a 
similar way to the betweenness centrality on the efficient path instead of the shortest path.

On the other hand, we propose a congestion-aware routing with random order of transfers between two nodes 
i and j in order to drastically reduce cascading overload failures. In our detour strategy, we chose a path that min-
imizes the sum of one hop and fraction of load defined by
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for connecting nodes i = v0, v1, …, vk, …, vn−1, vn = j. By the second term of penalty in Eq. (7), this path tends 
to avoid the passing through congested nodes with much load at τ, and to distribute packet flows. In randomly 
selected order of source and terminal nodes i and j, the detour paths are found by minimizing the sum of Eq. (7) 
for connecting nodes in the interval Δτ = unit time × 2/N(N − 1). After finding the detour paths from i to j, the 
load at v1, …, vk, …, vn−1 on the paths is updated by

τ τ τ
σ

σ
+ ∆ ← +L L

v
( ) ( )

( )
,

(8)
v v

ij k

ij
k k

where σij denotes the number of detour paths and σij(vk) is the number of paths as the subset that is passing 
through node vk in the detour paths. The routing process according to Eqs (7,8) is repeated for the next source and 
terminal nodes at τ ← τ + Δτ. In one unit time, all paths for the combination of N nodes as source and terminal 
are found. Although we can consider the weighted version 1 − w + wLi(t)/Ci, it has same results in the resilience 
of network for 0.01 ≤ w< 1.0 (see Supplementary information, S2). Note that the case of w → 0 is corresponded 
to the shortest-based routing.
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