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A Thermochromic 
Superhydrophobic Surface
Pietro Cataldi1, Ilker S. Bayer1, Roberto Cingolani1,2,3, Sergio Marras2, Ryad Chellali3,† & 
Athanassia Athanassiou1

Highly enhanced solid-state thermochromism is observed in regioregular poly(3-hexylthiophene), 
P3HT, when deposited on a superhydrophobic polymer-SiO2 nanocomposite coating. The conformal 
P3HT coating on the nanocomposite surface does not alter or reduce superhydrophicity while 
maintaining its reversible enhanced thermochromism. The polymeric matrix of the superhydrophobic 
surface is comprised of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) copolymer and an 
acrylic adhesive. Based on detailed X-ray diffraction measurements, this long-lasting, repeatable and 
hysteresis-free thermochromic effect is attributed to the enhancement of the Bragg peak associated 
with the d-spacing of interchain directional packing (100) which remains unaltered during several 
heating-cooling cycles. We propose that the superhydrophobic surface confines π–π interchain 
stacking in P3HT with uniform d-spacing into its nanostructured texture resulting in better packing 
and reduction in face-on orientation. The rapid response of the system to sudden temperature changes 
is also demonstrated by water droplet impact and bounce back on heated surfaces. This effect can be 
exploited for embedded thin film temperature sensors for metal coatings.

Most non-substituted conjugated polymers were not easily processed by solvents and thermoforming due to 
strong interchain interactions and chain stiffness. In order to solubilize them in common solvents, side chains 
were introduced such as alkyl side chains for polythiophenes or similar silicon containing side chains for soluble 
pentacene polymers. Hence, substituted conjugated polymers have become commonplace for various applications 
such as organic solar cells, field effect transistors, electrochromic windows and thin film sensors1–5. Attachment of 
relatively long and flexible side chains to conductive polymer backbones not only enables processing in solvents 
but also results in intriguing reversible color changes (chromism) under certain conditions, such as thermochr-
omism, solvatochromism, piezochromism, and affinitychromism6–9. Among conductive conjugated polymers, 
poly(alkylthiophenes), have emerged as one of the most popular class of conducting polymers. In particular, a 
specific structure known as highly regio-regular 2– 5′  head-to-tail coupled poly(3-hexylthiophene) or P3HT, has 
advanced the technology of polymeric field-effect transistors to the extent that field-effect mobilities now reach 
0.1 cm2V−1s−1 approximating that of α -Si10. P3HT in solution is highly sensitive to various parameters, such as 
temperature variations, light, and solvent type. Discovery of thermochromism in poly(3-alkylthiophenes) due to 
conformational changes dates back to the late 1980s11. Such alkyl-substituted polythiophenes are in fact semic-
rystalline polymers and melting of the crystalline sections due to heating is associated with drastic changes in the 
chain conformation. Melting causes disorder within the alkyl side chains disrupting planarity and long cWonju-
gation lengths12. Heeger and co-workers also showed that P3HT can maintain a liquid crystalline state after crys-
tal melting13. Similarly, such order-to-disorder transformations are observed in solvent dispersions of P3HT due 
to temperature or solvent type accompanied by solution color changes (solvochromic effect)14–16. For instance, 
P3HT can form nanorods in poor solvents or when cooled in good solvents accompanied by color changes15. In 
good solvents P3HT can also be found in the form of a mixture of random coils and nanorods17. Dissolving P3HT 
in chloroform (a good solvent) gives clear light red-orange solutions that slowly change color on standing for long 
times. Adding a poor solvent to this solution causes a drastic color change of the polymer to blue-violet in trans-
mission. Upon further addition of the good solvent, the polymer recovers its initial color.

Earlier studies showed that thin films of P3HT deposited on smooth glass or Si-wafer surfaces by spin coat-
ing from good solvents, are red-violet at room temperature, but when heated to temperature above 150 °C 
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change color to light red-orange18. On cooling, they slowly recover their initial color. The process was reported 
to be sensitive to oxidation by ambient oxygen levels. During transition, two phases can be discerned, a disor-
dered (red-orange) phase with a high density of defects, and an ordered (red-violet) phase with a low density of 
defects18. The transition from the disordered to the ordered phase is characterized by very long relaxation times.

It has been recently shown that bioinspired nanostructured surfaces drastically enhance thermochromism 
in inorganic thermochromic materials such as vanadium dioxide19. To the best of our knowledge, thermochro-
mic changes in polythiophenes on such bioinspired surfaces or on soft polymeric nanostructured materials have 
not been studied so far. Many superhydrophobic surfaces have been developed following bioinspired strategies. 
Recent studies indicate that certain physicochemical phenomena can be enhanced on superhydrophobic surfaces 
such as electro-osmosis, diffuso-osmosis, electrolyte diffusion in fuel cells, surface enhanced Raman scattering 
and cell adhesion19–23. For instance, superhydrophobic surfaces, due to their sub-micrometer surface texture and 
hydrophobic chemistry, can confine random analyte liquid spreading into a much smaller area compared to 
hydrophilic platforms, tremendously enhancing Raman scattering signals23. By the same token, in this work, we 
investigate and report on the thermochromic properties of thin regioregular P3HT films deposited on hydropho-
bic polymer and superhydrophobic polymer/silica nanocomposite surfaces. We show that although solvent-cast 
regioregular P3HT films demonstrate thermochromism on a soft, smooth, and hydrophobic polymer surface, 
surprisingly, on a superhydrophobic polymer-silica nanocomposite surface, the thermochromism is remarka-
bly enhanced with fast reversibility, excellent reproducibility and stability exceeding six months under ambient 
conditions.

Experimental
The chosen hydrophobic polymer was poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP (average 
Mw ~400,000, average Mn ~130,000). It was purchased from Sigma-Aldrich. It is a crystalline copolymer with 
good thermal stability as well as good solvent resistance. PVDF-HFP copolymers are being extensively studied 
as new alternatives for traditional liquid electrolytes in application for lithium-ion batteries24–29. P3HT having 
greater than 90% head-to-tail regiospecific conformation used in this study was produced by Rieke® Metals, 
Inc. Fumed hydrophobic silica nanoparticles (Aerosil R812S; 220 mg/m2, BET) treated with bis(trimethylsilyl)
amine (HMDS) were obtained from Evonik Inc. Initially, PVDF-HFP pellets were dissolved in dimethylaceta-
mide to form stock solutions containing 10% polymer by weight Spray solutions were prepared by diluting the 
stock solution with acetone to obtain solutions containing 3% polymer by weight. It was not possible to form 
pure PVDF-HFP coatings with firm substrate adhesion by spray. Spray-cast coatings of PVDF-HFP easily peeled 
off from aluminum substrates as free standing films after solvent evaporation and drying in an oven at 80 °C for 
one hour. In order to increase its metal substrate adhesion properties PVDF-HFP was blended in solution with 
an anaerobic cure acrylic adhesive (Loctite 270, Henkel) comprising polyethylene glycol dimethacrylate (65%), 
bisphenol A propylene oxide fumarate polymer (18%), poly (butyl methacrylate) (15%) and cumene hydroper-
oxide (2%). The approach followed was identical to earlier reports on blending fluorinated polymers with acrylic 
adhesives in solution to enhance final coating substrate adhesion as well as its abrasion resistance30,31. The best 
substrate adhesion performance was displayed by the polymer matrix comprising a blend of 50% PVDF-HFP and 
50% acrylic adhesive by weight.

Superhydrophobic nanocomposites were made by spraying acetone solutions containing PVDF-HFP, acrylic 
adhesive and Aerosil R812S SiO2 nanoparticles (NPs) onto aluminum substrates. Various amounts of fumed silica 
nanoparticles were added to the polymer solutions containing both PVDF-HFP and the adhesive in acetone. Mild 
sonication (Clifton MU Series, Analogue, Unheated Ultrasonic Bath, 200 W, U.K.) was used for half an hour to 
ensure the nanoparticles were dispersed thoroughly in the polymer solutions. After spray coating, all the sam-
ples were left under ambient conditions overnight for solvent evaporation and subsequently thermally treated at 
150 °C in an oven for 1 minute to ensure complete solvent evaporation. The hydrophobicity of the coatings was 
changed by varying the concentration of the nanoparticles with respect to the polymer matrix. The nanoparticle 
concentration was ranged from 1% to 30% by weight with respect to the polymer on dry basis. The best perform-
ing coating contained 20% by wt. nanoparticles. The coating demonstrated static water contact angles exceeding 
160° with negligible contact angle hysteresis; at the same time having good substrate adhesion measured by tape 
peel tests (see Supporting Information, Figure S1).

Static water contact angles and droplet roll-off angles of the samples were measured by a video based optical 
contact angle measuring instrument DataPhysics, Germany. Ten microliter of deionized water was gently placed 
on the surfaces. Measurements were conducted on four different locations and averaged for each sample. In order 
to measure the RAs, the substrates were tilted until the droplets started to roll off the surfaces. The substrate angle 
at the onset of droplet roll-off was recorded. All RA values were averaged over three different measurements on 
each sample. The standard deviation was ±4° for the static contact angle measurements and ± 1° for the droplet 
roll-off angle measurements. All measurements were performed in ambient conditions. Changes in the static 
water contact angle as a function of tape peel events were recorded by the same optical contact angle measure-
ment system. For this purpose, a plastic 3 M tape with 820 N/m adhesion strength on steel was used as reported 
by the manufacturer. Tapes were cut in proper sizes and adhered on the surface of the coatings by hand applying 
downward pressure at the same time. After the tapes were peeled off, water droplets were deposited on those spots 
where the tape was applied and contact angles were recorded. Four measurements were taken after each peel 
event. Two different superhydrophobic surfaces were tested containing 20 wt% and 30 wt% SiO2 nanoparticles 
with respect to the polymer binder. None of the coatings could be completely removed at the end of 15 peel events 
indicating that the coating adhesion to aluminum was larger than 820 N/m. However, the coating with 30 wt% 
SiO2 nanoparticles demonstrated lower water contact angles close to the generally accepted superhydrophobicity 
threshold (150°).
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The enhanced thermochromic effect was observed when a thin layer (~0.15 μ m) of P3HT was sprayed over the 
cured superhydrophobic coatings. For this, a solution containing 0.1% by wt. P3HT in chloroform was prepared. 
This additional P3HT layer did not reduce superhydrophobicity of the coatings as it conformed to the underlying 
texture. After spraying P3HT the solvent was completely evaporated overnight under standard hood ventilation. 
Further details regarding the thermochromic effect measurements are given under the results and discussion 
section of this letter. Atomic force microscopy (AFM) images were obtained by a Park System AFM instrument 
(XE-100) in true noncontact mode. The images were acquired in air using an anti-vibration table (Table Stable 
TS-150) and an acoustic enclosure. Single-beam silicon cantilevers tips (PPP-NCHR-10) were used for the data 
acquisition with less than 10 nm nominal radius and 42 N/m elastic force constant for high sensitivity. The reso-
nance frequency was defined around 280 kHz. The scan rate was between 0.2 and 1.0 Hz.

Melting and crystallization temperatures were measured by heating and cooling the sample from 20 to 250 °C 
at a rate of 10 °C min−1 using a differential scanning calorimeter (TA Instruments, 2920 Modulated DSC).

The crystal structure was studied by X-ray diffraction (XRD) using a Rigaku SmartLab X-Ray diffractometer, 
equipped with a 9 kW Cu Kα  (λ  =  1.542 Å) rotating anode, operating at 40 kV and 150 mA. A Göbel mirror was 
used to convert the divergent X-ray beam into a parallel beam and to suppress the Cu Kβ  radiation (λ  =  1.392 Å). 
The diffraction patterns were collected at room and elevated temperatures, over an angular range of 4° to 35°, with 
a step size of 0.05° and scan speed of 1.2°/min. Grazing Incidence X-ray diffraction (GI-XRD) measurements 
were conducted through University of Illinois beam time at the 12-ID-C beamline (energy =  11.26 keV, pixel 
size =  79.6 μ m, wavelength =  1.101 Å, 2θ  =  0 −  20° at Argonne National Laboratory, USA.

The thermochromic response of the P3HT films on the superhydrophobic nanocomposites was measured 
using diffuse reflection spectroscopy with an integrating sphere attachment to UV-Vis-NIR spectrophotometer 
(Varian Cary 6000i). The measurements were performed by placing the samples in front of the incident light 
window, and concentrating the light reflected from the sample on the detector using a sphere having a barium 
sulfate-coated interior. The obtained value becomes the reflectance (relative reflectance) with respect to the reflec-
tance of the reference standard white board, which is taken to be 100%. A flat resistive heater was attached on the 
back side of the coated aluminum substrates in order to collect reflection spectra as a function of temperature (in 
steps of 10–15 ° C).

Results and Discussions
Figure 1 shows atomic force microscope (AFM) topography and energy dispersive X-ray mapping (EDS) of the 
fluorine atom distribution pertaining to PVDF-HFP/adhesive polymer surface (hydrophobic surface) and the 
superhydrophobic nanocomposite (with 20% wt. hydrophobic SiO2 NPs) prior to P3HT deposition.

Figure 1. (a) AFM surface topography of the hydrophobic PVDF-HFP/adhesive coating. Randomly dispersed 
mostly spherical and smooth regions are attributed to the adhesive. (b) Fluorine EDX signal form the same 
surface (not exactly the same location). Dark regions correspond to cured adhesive domains. (c) AFM surface 
topography of the superhydrophobic polymer-silica nanocomposite. (d) Fluorine EDX signals form the same 
surface (not exactly the same location) showing much more uniform signal distribution. (e) An image sequence 
showing a water droplet (~10 μ L) being dispensed on the superhydrophobic surface and its subsequent 
oscillation and rolling off the surface.
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In general, the adhesive forms random micron-scale phase separated domains within PVDF-HFP as shown in 
Fig. 1a,b. The superhydrophobic film appears to have a dual scale hierarchical topology as can be seen in Fig. 1c. 
The fluorine atom distribution of this surface (Fig. 1d) is much more uniform compared to the unfilled polymer 
matrix (Fig. 1b). The degree of superhydrophobicity of this surface is demonstrated by a sequence of images col-
lected during the deposition of a 10 μ L water droplet in Fig. 1e. It is practically very difficult to maintain a water 
droplet on such surface as a slight tilt causes the droplet’s roll-off. Note that the superhydrophobicity is main-
tained when the surface was coated with P3HT. Further surface topography analysis of the superhydrophobic 
surfaces coated with P3HT was also made by AFM. Results indicate that surface roughness of the polymer-silica 
nanocomposite is preserved as seen in Fig. 2a. Typical roughness profile on such a surface is shown in Fig. 2b. 
The roughness profile is obtained from the diagonal line shown in Fig. 2a where the deepest valley is set to zero 
in the plot (Fig. 2b). Based on the measurements from different samples of identical nature, we found that the 
maximum surface roughness value does not exceed 450 nm. A 3D AFM topology is exemplified in Fig. 2c. The 
normal roughness distribution of the thermochromic superhydrophobic surface shown in Fig. 2d was found to 
be narrow and remained below 1 μ m with an average roughness of ~350 nm. Such a roughness profile is sufficient 
to create the self-cleaning “lotus effect” when combined with a uniformly formed hydrophobic surface chemistry 
as shown in Fig. 1d in the form of EDS fluorine signals.

Figure 3 shows the thermochromic behavior of a P3HT layer deposited on both the hydrophobic surface polymer  
surface (Fig. 3[1],[2]), and on the superhydrophobic nanocomposite (Fig. 3[3],[4]), at temperatures between 
room temperature and 200 °C (obtained on a hot plate under ambient conditions). Thermal conductivity of  
aluminum is very high (215 Wm−1K−1 at 25 °C) enabling rapid heat transfer from the hot plate to the coating  
layers. As can be seen in Fig. 3, for the P3HT applied on the hydrophobic polymer film, the color change  
perception is not significant once the film is heated to 200 °C. P3HT on the superhydrophobic nanocomposite 
surface, however, displays a distinct purple-red color at room temperature that changes to light orange-yellow 
color at 200 °C. The degree of superhydrophobicity of the P3HT coated nanocomposite surface and its response 
to sudden temperature changes are demonstrated in Fig. 3 ([5]–[8]). A sequence of high speed camera images is 
shown, in which a water droplet impacts on the surface maintained at 200 °C. As the room temperature droplet 
impacts and spreads, the color of the contact region immediately turns purple-red indicating the rapid response 
of the system to the changes in temperature. Once the droplet bounces away from the surface, the color of the 

Figure 2. (a) Atomic force microscope (AFM) topography of the superhydrophobic polymer-silica 
nanocomposite coated with a P3HT which conforms to the texture. The diagonal line is used to obtain a 
random roughness profile on the surface shown in (b). (b) Roughness profile corresponding to the diagonal 
line in (a). The deepest valley is designated as zero. (c) 3D topological features of a 5 ×  5 μ m thermochromic 
superhydrophobic surface. (d) Normal (Gaussian) roughness distribution obtained from such as surface with an 
average roughness of 350 nm.
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region underneath the droplet impact turns back to light orange-yellow. Upon impact, water droplet causes a 
decrease in the temperature of the surface and this is reflected as a local color change due to re-crystallization 
and macromolecular rearrangement due to cooling. Note that during all this process the surface still maintains 
its superhydrophobicity. In fact, according to Ewbank et al.32, in all the solid phases of P3HT such as crystalline, 
meso, or kinetically trapped phase, the hydrophobic alkyl side chains always orient perpendicular to the plane of 
the substrate. Only the case of “face-on” morphology forces the waxy hydrophobic side chains to orient parallel 
to the substrate. It is therefore highly probable that during crystallization and degradation of crystal domains on 
the superhydrophobic surfaces the “face-on” orientation does not occur but rather the morphological changes can 
pertain to transformation from crystalline to meso or to kinetically trapped phase.

Figure 4a demonstrates the evolution of the color change of the P3HT coated superhydrophobic nanocom-
posite containing 20% wt. SiO2 NPs. The event was recorded by a high speed camera at 600 fps when the sample 
was suddenly placed on a hot plate maintained at 200 °C. The recorded frames were processed by a color tracking 
algorithm. For enhanced perception, the algorithm assigns blue to room temperature and green to 200 °C. The 
heating of the plate starts from two opposite corners and propagates to cover the whole plate within 1.3 seconds. 
The initiation of the heating from the corners can be attributed to the plate’s curvature. The observed ther-
mochromic response of the P3HT films on the superhydrophobic nanocomposites was measured using diffuse 
reflection spectroscopy with an integrating sphere attachment to UV-Vis-NIR spectrophotometer (Varian Cary 
6000i). The change in the reflectance spectra between 450 nm to 750 nm is displayed in Fig. 4b. As the tem-
perature increases the spectra show a blue shift and at the same time the reflectance intensity increases at all 
wavelengths. The shifts in the spectra due to heating were followed by recording the changes in the wavelength 
corresponding to 45% reflection that is approximately half of the reflection range. The shifts were denoted by 
Δ λ R1/2 for every temperature step. Alternatively, the backward shift of the thermochromic coatings was also 
recorded during cooling back to room temperature to gauge the degree of repeatability as well as the presence of 
any hysteresis.

In the case of P3HT on the hydrophobic coating, the shift Δ λ R1/2 is less than 10 nm until 175 °C and becomes 
30 nm at 200 °C (see Fig. 4). Upon cooling, however, a Δ λ R1/2 of 10 nm is suddenly obtained and then no more 
change is detected until room temperature is reached. Upon heating again, a similar trend in Δ λ R1/2 is observed 
but at the maximum temperature a lower Δ λ R1/2 value is reached compared to the first heating cycle. After the 
fifth cycle, Δ λ R1/2 practically remains constant indicating termination of thermochromism. On the contrary, when 
P3HT was deposited on the superhydrophobic surface, the Δ λ R1/2 changes were found to be highly repeatable with 
slight hysteresis for both heating and cooling cycles. During heating, the wavelength shift Δ λ R1/2 is 20 nm at 95 °C, 
and remains somewhat steady until 130 °C. Above this temperature an almost linear increase of the shift occurs 
until 200 °C and at 200 °C suddenly Δ λ R1/2 jumps to 85 nm (maximum shift). During cooling a similar trend was 
observed and the heating-cooling cycles were stopped after twenty loops with no visible deterioration in thermo-
chromism. Effect of hydrophobic SiO2 NPs concentration on the observed shifts in the reflective spectra was also 
studied. The maximum shift in Δ λ R1/2 was found to correlate with the amount of SiO2 NPs as shown in the inset 
of Fig. 5. The superhydrophobic surface with 20% wt. SiO2 NPs concentration demonstrates minimum contact 
angle hysteresis (see also Fig. 1e) as well as a maximum shift in Δ λ R1/2. This means that thermochromism of the 

Figure 3. Top row: [1] P3HT layer on hydrophobic PVDF-HFP/adhesive coating on aluminum at room 
temperature, [2] P3HT layer on hydrophobic PVDF-HFP/adhesive coating on aluminum at 200 °C, [3] P3HT 
layer on superhydrophobic polymer-silica nanocomposite on aluminum at room temperature, and [4] P3HT 
layer on superhydrophobic polymer-silica nanocomposite on aluminum at 200 °C. Panels [5–8] are sequence of 
a water droplet impacting on a hot surface ~200 °C. The droplet was released from plastic pipette (visible in the 
images). The lower section of the surface is cooler than the center as that edge of the coated aluminum was not 
in contact with the hot plate surface in order to enable handling during experiments. When the droplet makes 
impact, due to cooling, the color of the zone under the droplet immediately changes to purple-red. Video of this 
sequence is available in electronic supplementary information.
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P3HT on these non-wetting surfaces is optimum in terms of perceptional color changes. Although surfaces with 
more than 20 wt% by wt. nanoparticle content were still superhydrophobic and with reasonable perceptional color 
changes, their tape-peel resistance (durability) decreased (see electronic Supplementary Information Figure S1).

Both PVDF-HFP and P3HT are semi-crystalline polymers and their crystallinity is well studied32–36. 
According to the DSC measurements, P3HT used in this study melts at around 213 °C upon heating and it crystal-
izes at about 173 °C. Hence, the highest temperature used in this study (200 °C) is very close but does not exceed 
the melting temperature of P3HT. The crystallinity of PVDF-HFP copolymer is lower than PVDF but it retains 
sufficient mechanical stability to allow it to act, for example, as a separator between the electrodes of a lithium-ion 
battery, while the amorphous phase can contain the liquid electrolyte37,38. The XRD spectrum of the hydropho-
bic coatings is shown in Fig. 6a. The separate XRD measurements of the pure adhesive yielded no crystallin-
ity. Within the coating, PVDF-HFP is mostly in α  crystalline form with non-polar trans–gauche–trans–gauche′  
(TGTG′ ) conformation. However, the band at 2θ =  26.7° indicates some presence of the γ  phase which has an 
intermediate polar TTTGTTTG′  conformation, occurring when the polymer is moderately stressed38. The poly-
mer here was not mechanically stressed; however, the presence of random but mostly spherical adhesive domains 
shown in Fig. 1 can induce various levels of internal stress to PVDF-HFP resulting in the partial appearance of the 

Figure 4. (a) High speed camera image sequences (600 fps) showing heating and resulting color change of the 
thermochromic superhydrophobic surface. The blue background corresponds to room temperature and green 
to 200 °C as a result of image processing for better perception. The red smudge on the lower right corner is the 
uncoated region for sample handling. (b) Temperature dependent shift in the surface reflection measured by 
diffuse reflection spectroscopy between 450–750 nm.

Figure 5. Changes in the spectra as a function of temperature traced by recording the changes in the 
wavelength corresponding to 45% reflection. The shifts were denoted by Δ λ R1/2 for every temperature step. 
The hysteresis is also shown by cooling down the heated surfaces for P3HT on the superhydrophobic surface 
and on the polymer coating alone. The inset shows the value of Δ λ R1/2 and water contact angle hysteresis as a 
function of SiO2 nanoparticle concentration within the polymer matrix.
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γ  phase39. When the PVDF-HFP/adhesive polymer matrix is kept at 200 °C, the well-defined α  (100) at 2θ =  18.4° 
and α  (110) peaks at 2θ =  20° disappear indicating an amorphous state while some of the γ  phase with α  +  γ (021) 
still retains its form 2θ =  26.6° (results not shown)28.

As a result of various carefully conducted studies, there is now a consensus on a model for the ideal crys-
tallinity of poly(alkylthiophenes) in which stacks of poly-conjugated main chains organize in layers, with the 
side chains extending in the regions between the stacked main chains33–37. When P3HT is spray-coated from a 
chloroform solution on aluminum with subsequent solvent evaporation and short thermal curing, it gives rise to 
an X-ray diffraction pattern as shown in Fig. 6a. The band at 2θ = 6.9–7.0° is normally indexed as (100) in the lit-
erature corresponding to the characteristic periodicity between adjacent layers of chains with non-interdigitating 
side chains. The present polymorph shows a broad diffraction pattern in the region 2θ =  23°–28° which can be 
indexed as (020). P3HT layers spray deposited on the hydrophobic coating and on the superhydrophobic nano-
composites, however, displayed significantly different changes in the X-ray diffraction patterns at room tem-
perature. Particularly, at room temperature on hydrophobic coatings, the (100) diffraction signal was enhanced 
considerably and the broad (020) Bragg signal transformed into two bands (a narrow one at 2θ =  22.4° and 
broader one at 2θ =  23.5°) that can be indexed by (010) as seen in Fig. 6a. These out-of-plane (010) reflections 
due to π –π  interchain stacking correspond to inter-chain distances of d[010] =  3.81 Å and d[010] =  3.96 Å, respec-
tively. It is unusual to observe the splitting of the broad (020) peak which is characteristic of the spray cast films 
on aluminum. However, this sort of changes in crystallinity was observed before in polyalkylthiopehenes. Prosa 
et al. attributes this splitting of the board halo of (020) to “side chain disorder”13. Similar crystallinity disorder 
observations were also reported by Wu et al. later on11. This unusual structural behavior can be ascribed to layers 
of interdigitated, tilted alkyl chains having intra-stack perpendicular chain-to-chain spacing and a dense side 
chain nearest neighbor spacing37–40. As such, depending on the intra-stack chain repeat length and orientation, 
the broad (020) halo can be split into various reflections. Herein we denote the split reflections on the hydropho-
bic polymer with (010) as these could have mixed indices and in reality indexing them is quite hard as indicated 
by Yuan et al.37

The enhancement in intensity of the (100) diffraction signal on the hydrophobic coatings indicates a higher 
degree of crystallinity in P3HT as well as the absence of smaller or scattered domains in which the polymer ori-
entation is random or disordered41–44. Foong et al. reported that nano-confinement imposes changes in the crys-
tallinity (reduction) and the orientation of the P3HT polymer45. For heterojunction solar cells, this is considered 
non-ideal for transport of charges from the exciton dissociation interface to the electrodes44,45. They observed 
that P3HT molecules within TiO2 nanotube arrays were less crystalline than unconfined P3HT molecules with 
reduction in the intensity of the d[100] peak42. They also indicated that hydrophilicity of the underlying substrate 
imposes changes in P3HT configuration. On hydrophilic surfaces, P3HT would assemble over its backbone rather 
than the hydrophobic alkyl side-chains45,46.

The inter-chain distance d[100] of the P3HT packing on the hydrophobic surface is 16.6 Å, which corresponds 
to the typical P3HT interchain packing distance for a lamella packing pattern reported in the literature45–50. In 
the case of the P3HT layer on aluminum the d[100] is 18.4 Å, higher than the generally accepted lamella packing 
value of 16.6 Å. The reduced d-spacing of the first Bragg peak of P3HT on the hydrophobic surface indicates 
that P3HT is better packed along the interchain direction. When the P3HT is applied on the superhydrophobic 
nanocomposite containing 20% wt. SiO2 NPs, at room temperature, the (100) Bragg peak is preserved well with 
corresponding d[100] =  16.6 Å. This means that the superhydrophobic nanostructured texture does not disrupt 
the interchain packing distance. As mentioned earlier, the broad halo of P3HT indexed by (020) on the hydro-
phobic polymer splits into two peaks, one narrow and one slightly broader resembling the original halo on the 

Figure 6. (a) Room temperature XRD results of P3HT and PVDF-HFP/adhesive polymer spray coated 
on aluminum and from P3HT coated on PVDF-HFP/adhesive polymer and on the superhydrophobic 
nanocomposite. (b) XRD results of P3HT coated on PVDF-HFP/adhesive polymer and the superhydrophobic 
nanocomposite at 200 °C.
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hydrophobic polymer. On the superhydrophobic nanocomposite, this somewhat broader peak also vanishes. This 
might correspond to an “edge-on” type orientation when P3HT is deposited on the superhydrophobic surface 
textured mainly by the SiO2 nanoparticles. According to the review by Brinkmann50, the edge-on orientation 
reveals clear (010) reflection whereas in the case of mostly “face-on” type structure, the (010) reflection vanishes. 
Similarly, Yuan et al.37 indicated that edge-on or face-on orientation along with the side chain intra-alignments 
can produce sharp or diffused and split (010) reflections depending on the hybrid morphology, respectively. As 
seen, the broad peak at 2θ =  23.5° disappears on the superhydrophobic surfaces, whereas the narrow peak at 
2θ =  22.4° is strong. Hence, the π –π  interchain stacking conforms to a single distance at d[010] =  3.96 Å, indicating 
that on the superhydrophobic surface at room temperature, P3HT chains are probably packed more uniformly 
along the interchain direction39–41. When the P3HT layer on pure aluminum surface was heated to 200 °C, the 
(100) and (020) Bragg peaks significantly lost their intensity (not shown for brevity) but after cooling down 
to room temperature both crystalline indices reappeared. This is a well-known behavior related to the loss of 
π -stacking order due to melting of the crystals45–50. Upon heating P3HT coated hydrophobic polymer and supe-
rhydrophobic nanocomposite surfaces to 200 °C (Fig. 6b), the Bragg peaks of PVDF-HFP associated with α (100) 
and α (110) are replaced by a much broader signal centered around 2θ =  16°, as a result the polymer loses its 
trans–gauche–trans–gauche′  (TGTG′ ) conformation. P3HT on the polymer, on the other hand, maintains the 
Bragg peaks at (100) as well as the two peaks associated with the (010) plane observed at room temperature. 
The splitting of the (020) plane into two (010) planes at 200 °C is better defined, particularly, the original signal 
at 2θ =  23.5° is narrower and shows a slight shift to 23.1°, indicating formation of more uniform π –π  interchain 
stacking distances. On the hot superhydrophobic nanocomposite surface, the first Bragg peak of the P3HT main-
tains a strong d-spacing, d[100], still at 16.6 Å. The second Bragg (010) diffraction peak at 2θ =  23.1° is absent, like 
in the case of the room temperature analysis, and the (010) peak at 2θ =  22.4° is preserved. At the same time, the 
small Bragg diffraction signal at 2θ =  26.6° pertaining to the γ  phase of PVDF-HFP gets stronger. Summarizing, 
on the hydrophobic polymer surface or on the superhydrophobic nanocomposite surface, the inter-chain distance 
d[100] of the P3HT packing is strong and reduced compared to P3HT on aluminum and does not shift between 
heating and cooling, remaining very stable. On the other hand, the broad out-of-plane (020) reflection due to π –π  
interchain stacking of P3HT on aluminum transforms into two narrow out-of-plane π –π  interchain stacking that 
can be indexed by (010) on PVDF-HFP polymer. The suppression of one of these reflection at 2θ =  23.5° indicates 
reduction of polymorphism in regioregular P3HT and the fact that it also occurs at 200 °C indicates highly stable 
polymer chain stacking of P3HT on the nanocomposites.

In Fig. 7, room temperature grazing-incidence X-Ray diffraction (GIXRD) patterns are shown. The 2D 
GIXRD images enable probing of the molecular-scale packing of the polythiophene on a particular surface, and 
are particularly sensitive to the efficient organization of P3HT in two orthogonal directions: the π –π  stacking 

Figure 7. Room temperature grazing-incidence X-Ray diffraction (GIXRD) measurements and 
schematics representing face-on and edge-on orientation of P3HT. 2D GIXRD pattern of (a) P3HT 
deposited on bare aluminum surface, (b) P3HT deposited on PVDF-HFP/adhesive coating, (c) P3HT 
deposited on the superhydrophobic coating and (c) room temperature 2D GIXRD pattern on P3HT 
deposited on the superhydrophobic surface after cooling down from 10 seconds of 200 °C exposure. The 
panel next to (b) represents a face-on orientation of P3HT which is generally associated with hydrophobic 
surface (see inset) and the panel next to (d) represents the edge-on orientation which is associated with 
superhydrophobicity due to the orientation of the hydrophobic alkyl chains (see inset).
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of the aromatic thiophene rings, and the lamellar stacking resulting from the disordered alkyl side-chains. Note 
that the third orthogonal direction (along the polymer backbone) does not always yield well-defined GIXRD 
patterns. Moreover, existence of face-on crystals on the hydrophobic or superhydrophobic films are not detected 
by 1D XRD measurements since their scattering vector is parallel to in-plane direction51. The intensity along the 
scattering rings can also be used to quantify the orientation distribution of the material, and thus the fractions of 
materials oriented in different directions. Figure 7a shows the room temperature crystalline state of spray coated 
P3HT film on a bare aluminum surface corresponding to the panel [1] of Fig. 3. X-ray reflections due to the (h00) 
crystal planes are not very clear except (100) plane. The (010) plane along the qz axis is rather broad and is located 
close to the qz axis indicating a face-on orientation. When P3HT is deposited on the polymer/adhesive coating 
(panel [2] in Fig. 3) however, the (h00) crystal planes are better defined although higher order ones such as (300) 
and (400) are very diffuse and of low intensity as seen in Fig. 7b. The (010) crystal plane appears to be located at 
the qz axis but with less diffuse more intense nature indicating that the hydrophobic polymer surfaces induces a 
better and more ordered face-on orientation of P3HT confirming the experimental observation of Kline et al.51 
(see panel next to Fig. 7b). On the superhydrophobic surface, the higher order (h00) crystal planes which cor-
respond to the intermolecular backbone layer and π –π  stacking order are somewhat defined close to the qz axis, 
however an abrupt shift of the (010) plane to the qxy axis (although with lesser intensity, Fig. 7c) indicates some 
P3HT molecules assumed an edge-on chain conformation with side chains oriented in a standing-up configura-
tion on the superhydrophobic surface. Upon heating the surface to force a color change and later cooling down to 
room temperature (Fig. 7d), the resultant crystalline order practically appears similar to the state shown in Fig. 7c, 
with less diffused higher order (h00) crystal planes. The (010) maintains its position near the qxy axis indicating 
the presence of edge-on orientation of the P3HT (see panel next to Fig. 7d). Although a more in-depth crystal-
lographic analysis of these surfaces is beyond the scope of this work both 1D and 2D XRD measurements show 
that on the superhydrophobic surface at least some portion of the P3HT polymer assume an edge on orientation 
evidenced by the disappearance of the (010) plane near the qz axis. However, P3HT coating also conforms to the 
submicron roughness associated with the superhydrophobic surface, rendering data collection and interpretation 
more challenging compared to for instance, a spin coated poly (3-alkylthiophene) crystals on a smooth surface.

As such, long-lasting thermochromic superhydrophobic surfaces which can function reversibly many times 
can find a wide range of applications particularly for metallic surfaces. Some potential and immediate appli-
cations can be in the form of smart non-wetting coatings for heat exchanger surfaces, waterproof temperature 
indicators or sensors for reactors, or outdoor storage enclosures to name a few. Future work can focus on various 
aspects related to use of other thermochromic organic molecules or polymers and also on fundamental aspects 
related to the assembly of the thermochromic polymers on superhydrophobic composite surfaces with submicron 
roughness scales.

Conclusions
In conclusion, regioregular P3HT displays enhanced, long-lasting, and repeatable thermochromic effect when 
deposited on a superhydrophobic polymer nanocomposite comprising PVDF-HFP and hydrophobic SiO2 NPs. 
The first P3HT Bragg peak associated with the d-spacing of interchain directional packing is highly enhanced 
both on the hydrophobic and the superhydrophobic nanocomposites, indicating better crystalline state com-
pared to untreated aluminum surfaces. This does not change when the system is heated to 200 °C. Moreover, 
the nanocomposite surface imposes interconversions within the out-of-plane π –π  interchain stacking of P3HT 
resulting in better packing and reduction in polymorphism. We propose that the perceptional enhancement in 
P3HT thermochromism and most importantly its stability and non-hysteretic repeatability is due to the exist-
ence of π –π  interchain stacking with uniform d-spacing confined into a nanostructured surface texture. It has 
been reported that P3HT does not lose its functionality when it assembles into superhydrophobic structures on 
textured surfaces or in composites as it is also the case in the present study. Previously superhydrophobic P3HT 
surfaces demonstrated effective electrical properties as well as photo-response while preserving self-cleaning 
properties52,53. In this work, we also demonstrated that it can maintain its solid-state thermo-responsive charac-
teristics on superhydrophobic surfaces. This effect could be useful for designing thin film temperature detectors 
particularly for metal surfaces simply by spray coating. Future work will be conducted on better understanding of 
confinement of such thermochromic molecules bioinspired surface textures.
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