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Abstract

Background: Intracerebral hemorrhage (ICH) remains a serious clinical problem lacking effective treatment.
Urocortin (UCN), a novel anti-inflammatory neuropeptide, protects injured cardiomyocytes and dopaminergic
neurons. Our preliminary studies indicate UCN alleviates ICH-induced brain injury when administered
intracerebroventricularly (ICV). The present study examines the therapeutic effect of UCN on ICH-induced
neurological deficits and neuroinflammation when administered by the more convenient intraperitoneal (i.p.) route.

Methods: ICH was induced in male Sprague-Dawley rats by intrastriatal infusion of bacterial collagenase VII-S or
autologous blood. UCN (2.5 or 25 μg/kg) was administered i.p. at 60 minutes post-ICH. Penetration of i.p.
administered fluorescently labeled UCN into the striatum was examined by fluorescence microscopy. Neurological
deficits were evaluated by modified neurological severity score (mNSS). Brain edema was assessed using the dry/
wet method. Blood-brain barrier (BBB) disruption was assessed using the Evans blue assay. Hemorrhagic volume
and lesion volume were assessed by Drabkin’s method and morphometric assay, respectively. Pro-inflammatory
cytokine (TNF-a, IL-1b, and IL-6) expression was evaluated by enzyme-linked immunosorbent assay (ELISA).
Microglial activation and neuronal loss were evaluated by immunohistochemistry.

Results: Administration of UCN reduced neurological deficits from 1 to 7 days post-ICH. Surprisingly, although a
higher dose (25 μg/kg, i.p.) also reduced the functional deficits associated with ICH, it is significantly less effective
than the lower dose (2.5 μg/kg, i.p.). Beneficial results with the low dose of UCN included a reduction in
neurological deficits from 1 to 7 days post-ICH, as well as a reduction in brain edema, BBB disruption, lesion
volume, microglial activation and neuronal loss 3 days post-ICH, and suppression of TNF-a, IL-1b, and IL-6
production 1, 3 and 7 days post-ICH.

Conclusion: Systemic post-ICH treatment with UCN reduces striatal injury and neurological deficits, likely via
suppression of microglial activation and inflammatory cytokine production. The low dose of UCN necessary and the
clinically amenable peripheral route make UCN a potential candidate for development into a clinical treatment regimen.
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Background
Spontaneous intracerebral hemorrhage (ICH) accounts
for approximately 15% of stroke incidents in Western
populations and an even higher proportion, up to 20-
30%, in Asian populations [1]. ICH is one of the most

lethal and destructive types of stroke and mortality is
high, at 30%-50% [2]. Despite a number of promising
trials, no medical or surgical therapy has shown any
benefit for ICH patients [3]. No drug increases survival
in ICH patients [4]. Early surgical removal of the blood
clot shows no overall benefit over more conservative
therapy [5-7]. Therefore, the prognosis for ICH patients
is poor.
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Pathological changes in ICH can be divided into pri-
mary and secondary brain injury. Primary injury occurs
rapidly as a result of physical destruction of tissues and
mass expansion of the hematoma [1], and is difficult to
be the therapeutic target. Secondary injury commonly
occurs when the tissue reacts to blood breakdown com-
ponents in the parenchyma adjacent to the hematoma,
initiating a series of inflammatory responses including
the activation of inflammatory cells, brain edema, blood-
brain barrier (BBB) disruption and apoptosis [8]. Sec-
ondary injury often develops hours to days after the
ICH insult [8], making it a practical therapeutic target.
Therefore, there is still hope for using anti-inflammatory
agents in ICH therapy. Urocortin (UCN) may be an
ideal candidate.
UCN, a 40-amino-acid endogenous neuropeptide,

belongs to the corticotrophin releasing hormone (CRH)
family of peptides, which bind two G-protein coupled
receptors, CRH-R1 and CRH-R2 [9,10]. These receptors
are expressed in brain neurons and glial cells [11-14] in
many brain regions [15], involved in the regulation of
anxiety, learning and memory, body temperature, stress
responses [15] and hypotension [9,16]. More impor-
tantly, UCN is considered a powerful anti-inflammatory
agent by the following reports.
Intravenously administered UCN is effective in the

treatment of heart ischemia/reperfusion injury [17-20].
UCN locally administered in the substantia nigra allevi-
ates lipopolysaccharide (LPS)-induced cytotoxicity of
dopaminergic neurons [21]. In our previous in vitro stu-
dies, we showed that UCN alleviates inflammation and
neurotoxicity mediated by endotoxin-activated microglia
[22,23]; while in our in vivo study, intracerebroventricu-
lar (ICV) treatment with UCN post-ICH reduces brain
injury area, brain edema, and BBB permeability. These
reductions are associated with improved neurological
deficits [24]. Considering the safety and convenience of
systemic administration for clinical application, we
further examined the effectiveness of systemic adminis-
tration of UCN in rats with experimentally induced ICH
and elucidated the anti-neuroinflammatory effects of
this treatment.

Materials and methods
Experimental design
All experimental protocols were approved by the Animal
Care and Use Committee of the Tzu Chi University and
National Defense Medical Center, Taiwan in accordance
with guidelines set by the National Institutes of Health
Guide for the Care and Use of Laboratory Animals. Ani-
mals were housed under a 12 hour light/dark cycle with
free access to food and water. Utmost efforts were made
to minimize the suffering and the number of animals
used.

In total, 165 rats were randomly divided into the fol-
lowing six groups:
1. Sham + saline group (n = 17). Rats were infused

with 1 μl saline into the striatum over 10 minutes, to
mimic the collagenase infusion described below. At 60
minutes post-sham-ICH induction, a total of 0.2 ml of
sterile saline was administered i.p. to control for UCN
treatment.
2. ICH + saline group, collagenase model (n = 59).

Sterile saline (0.2 ml) was administered i.p. to each ani-
mal at 60 minutes post-ICH induction by intrastriatal
infusion of collagenase VII-S.
3. ICH + L-UCN group, collagenase model (n = 53). A

low dose (2.5 μg/kg in 0.2 ml sterile saline, intraperito-
neally) of UCN was administered to each animal at 60
minutes post-ICH.
4. ICH + H-UCN group, collagenase model (n = 24).

A high dose (25 μg/kg in 0.2 ml sterile saline, i.p.) of
UCN was administered to each animal at 60 minutes
post-ICH.
The UCN doses were chosen according to previous

studies [9,16,25-29].
5. ICH + saline group, blood infusion model (n = 6).

0.2 ml sterile saline was administered i.p. to each animal
at 60 minutes post-ICH induction by intrastriatal infu-
sion of 100 μl of autologous blood.
6. ICH + L-UCN group, blood infusion model (n = 6).

A low dose (2.5 μg/kg in 0.2 ml sterile saline, i.p.) of
UCN was administered to each animal at 60 minutes
post-ICH

ICH models
Male Sprague-Dawley rats (250-300 g) anesthetized with
chloral hydrate (0.4 g/kg, i.p., Sigma-Aldrich, St. Louis,
MO, USA). ICH was induced by stereotaxic infusion of
bacterial collagenase VII-S (0.23 U in 1.0 μl sterile sal-
ine, Sigma-Aldrich) over a period of 10 minutes, or infu-
sion of 100 μl autologous blood from the tail vein over
60 seconds, into the striatum (0.0 mm posterior, 3.0
mm right, 5.0 mm ventral to bregma at the skull sur-
face) [30,31]. The needle was kept in place for another
10 minutes to prevent backflow. The craniotomies were
sealed with bone wax. Rats were allowed to recover in
separate cages at room temperature.

Evaluation of physiological parameters
Another 22 rats were randomly assigned for evaluation
of physiological parameters including mean arterial
blood pressure, blood gases, body weight changes and
body temperature. Under urethane (1.0 g/kg bodyweight,
i.p., Sigma-Aldrich) anesthesia, a femoral artery was can-
nulated with a PE-50 polyethylene tube for supplemen-
tation of fluid and monitoring of arterial blood pressure
and blood gas. Arterial blood pressure was recorded
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through an amplifier (MP35, BIOPAC system, CA, USA)
and stored in a PC computer. Body temperature (rectal
temperature) was automatically maintained at 37.5 ±
0.5°C by a rectal temperature sensor and a heating pad
(CMA-150, Sweden). The physiological parameters were
measured 10 minutes before (baseline), and 0.5, 1 and 3
hours after treatment with UCN or saline.

Evaluation of regional Cerebral Blood Flow (rCBF)
Another 12 rats were randomly assigned for evaluation of
rCBF. The rCBF was monitored with a laser probe (MNP
110XP, Oxford Optronix, UK) inserted during surgery
and connected to a Laser Doppler Blood Flow Perfusion
Monitor 403A (OxyFlo 2000, Oxford Optronix, UK). The
probe was placed in the peri-hematomal region in the
striatum (0.0 mm posterior, 5.0 mm right, 5.0 mm ventral
to bregma skull surface). We collected the baseline rCBF
data before and the rCBF at 0.5, 1 and 3 hours after col-
lagenase administration. The rCBF at each time point
was collected for 10 minutes and averaged. All data were
normalized by the following formula: percentage change
= [(df)/dF] × 100, where df is the mean flow after admin-
istration and dF is the mean flow at baseline.

Assessment of neurological abnormalities
A total of 36 rats were used in the assessment of the
neurological abnormalities by a modified Neurological
Severity Score (mNSS) method [32]. The evaluation was
performed by an investigator blinded to the experimen-
tal treatment scheme. The mNSS is a composite test of
motor, sensory, and balance functions. The assessment
was performed on day 1 before and on days 1, 3 and 7
after ICH. Neurological function was graded on a scale
of 0-18 (normal score, 0; maximal deficit score, 18).

Assessment of brain edema
Brain edema formation peaks at days 3 post-ICH [33,34].
We thus chose this time point to study brain edema, as
indicated by tissue water content. A total of 35 rats were
randomly used in the assessment of brain water content,
using a common wet/dry method as previously described
[35]. Briefly, on days 1 and 3 post-ICH, rats were
anesthetized and decapitated. The brains were removed
and separated into contralateral and ipsilateral hemi-
spheres and cerebellum. The cerebellum was used as an
internal control. The sample was weighed to obtain the
wet weight immediately, and then dried in an oven at
100°C for 24 hours to obtain the dry weight. The water
content was expressed as a percentage of the wet weight:
[(wet weight)-(dry weight)] (wet weight) -1 × 100%.

Evaluation of brain penetration of labeled UCN
Urocortin was labeled with Alexa Fluor® 488 dye using
a Microscale Protein Labeling Kit (A30006, Invitrogen,

USA), according to the manufacturer’s instructions.
The Alexa Fluor® 488 dye-labeled UCN (2.5 μg), with
fluorescence excitation and emission maxima of
approximately 494 and 519 nm, was administered i.p.
one hour after ICH. Three hours after injection of the
fluorescently labeled UCN, the rats were re-anesthe-
tized with chloral hydrate (0.4 g/kg i.p.), and their
brains were removed immediately and sectioned to 20
μm thickness with a cryostat. To confirm the entrance
of urocortin peptide into the brain, 20 μm thick brain
slices were labeled with anti-UCN antibody. Sections
were incubated overnight at 4°C with UCN primary
antibody (1:100; Catalog No. U4757, Sigma, CA, USA).
The slices were then washed with PBS and incubated
for 1 hour with secondary antibody (anti-rabbit-Rhoda-
mine, Jackson ImmunoResearch, West Grove, PA,
USA) at room temperature. After rinsing with PBS
buffer, the slices were examined under a fluorescence
microscope. After counter-staining the nuclei with
DAPI, the slides were washed and mounted on cover
slips with anti-fading mounting medium (VECTA-
SHIELD®, CA, USA). The presence of the labeled
UCN in the striatum was evaluated under a fluores-
cence microscope.

Assessment of hemorrhagic volume and lesion volume
Hemoglobin content determined by spectrophotometric
measurement is a good indication of the hemorrhagic
volume (bleeding) on day 1 post-ICH. This volume,
however, can be affected by breakdown of the hemoglo-
bin, swelling (edema) of tissue, and production of many
inflammatory mediators immediately following the
bleeding. Therefore, we conducted both a spectrophoto-
metric measurement for hemorrhagic volume and a
morphometric measurement for lesion volume in the
ICH + saline and ICH + L-UCN groups on days 1 and
3 post-ICH.
Assessment of hemorrhagic volume
Rats were randomly used in the assessment of hemor-
rhagic volume on day 1 (n = 6, each group) post-ICH.
The accumulated hemorrhagic volume was quantified by
a spectrophotometric assay as reported by Park et al.,
with minor modifications [36]. Briefly, both contralateral
and ipsilateral hemispheres were removed after transcar-
dial perfusion. PBS was added to the individual hemi-
spheres to make-up a total of 3 ml volume for
homogenization and centrifugation (15000 g, 30 min-
utes). The supernatant (40 μl) was reacted with Drab-
kin’s reagent (160 μl, Sigma) for 15 minutes at room
temperature. Optical density was measured at 540 nm
with a spectrophotometer (Molecular Devices OptiMax,
USA). Equivalent hemorrhage volume (μl) of the super-
natant was calculated from a standard curve obtained
with known amounts of blood.

Liew et al. Journal of Neuroinflammation 2012, 9:13
http://www.jneuroinflammation.com/content/9/1/13

Page 3 of 17



Morphometric measurement of lesion volume
Rat brain sections were captured for morphometric
measurement (image analysis) prior to being used for
the cytokine ELISA assay or the dry/wet method (brain
edema assay). Briefly, rat brains on day 1 (n = 6, each
group) and day 3 (n = 12, each group) post-ICH were
cut coronally through the needle entry plane (identifi-
able on the brain surface), and then serially sliced (2-
mm thickness) anterior and posterior to the needle
entry site. Digital photographs of the serial slices were
taken and lesion volume was computed using an image
analysis program (Image J, NIH). The total lesion
volume (mm3) was computed by multiplying the blood
clot area (for day 1) and lesion area (for day 3) in each
section by the distance between sections [37].

Assessment of BBB disruption with Evans blue
extravasation
A total of 16 rats were randomly selected for assessment
of the vascular permeability of the BBB with a modified
Evans blue extravasation method [38]. Briefly, 70 hours
post-ICH, rats were anesthetized with chloral hydrate
(0.4 g/kg) and infused via the right femoral vein with
37°C Evans blue dye (2% in 0.9% normal saline, 4 ml/
kg) over 5 minutes. Two hours later, the rats were per-
fused with 300 ml normal saline to wash out any
remaining dye in the blood vessels and then the brains
were removed and sectioned to 2 mm thickness with a
rodent brain matrix. Coronal brain sections were taken
starting at +2 mm and ending at -2 mm from bregma.
BBB permeability was evaluated in the striatum, cortex
and cerebellum. The cerebellum was used as an internal
control. Each portion was weighed immediately and
placed in 1 ml of 0.9% normal saline for homogenization
of the sample. For protein precipitation, 1 ml of 60% tri-
chloroacetic acid solution was added and vortexed for 2
minutes. The mixture was subsequently cooled for 30
minutes and centrifuged (1500 g at 4°C) for another 30
minutes. The absorbance of Evans blue in the superna-
tant was then measured with a spectrophotometer
(Molecular Devices OptiMax, USA) at 610 nm. The dye
concentration was expressed as μg/g of tissue weight
and calculated from a standard curve obtained from
known amounts of the dye.

Assessment of cytokines
A total of 16 rats were used for the cytokine assay by
ELISA. The ipsilateral striatal tissues were collected
before ICH and on days 1, 3 and 7 days post-ICH. After
homogenization in lysis buffer (PRO-PREP™, iNtRON
Biotechnology, Korea) and centrifugation at 12,000 g for
30 minutes, the supernatants were collected and stored
frozen at -80°C. During quantification, the cytokines
(TNFa, IL-1b and IL-6) were normalized to 100 μg of

protein in the supernatant using a commercial ELISA
kit from R & D Systems (Minneapolis, MN, USA)
according to the manufacturer’s instructions.

Immunohistochemistry
A total of 8 rats were used for immunohistochemistry
on day 3 post-ICH. Rats were anesthetized as
described above and transcardially perfused with cold
0.1 M phosphate buffer saline followed by cold 4% par-
aformaldehyde in 0.1 M phosphate-buffered saline.
Brains were removed and immersed in 4% paraformal-
dehyde for 24 hours and 30% sucrose for another 24
hours. Coronal brain slices (20 μm thickness) were cut.
The slices were collected at +1.0, 0.0, and -1.0 mm
(center of the hemorrhagic lesion) anterior and poster-
ior to bregma using a cryostat (Leica CM 1900). Three
serial slices were taken at each plane (total 9 slices),
and processed for the staining and counting of mar-
ker-specific cells [37]. Antibodies against OX-42
(1:100; Catalog No. MCA275EL, Serotec, USA) and
ED-1 (1:100; Catalog No. MCA241R, Serotec, USA)
were used as microglial markers, and NeuN (1:200;
Catalog No. MAB377, Chemicon, USA) was used as
neuron marker. Tissues sections were incubated with
the primary antibodies overnight at 4°C. The bound
primary antibody was visualized by incubation with an
appropriate biotinylated secondary antibody followed
by the Vectastain ABC reagents and color development
with 3,3’-diaminobenzidine.
Negative control slices from each animal were pre-

pared for immunohistochemical staining processed in an
identical manner except the primary antibodies were
omitted. OX-42+ cells with dense immunoreactivity and
showing a rod-like appearance were counted as activated
microglia. Numbers of positive cells were counted in six
squares (1 mm2) randomly located around the lesion in
each slice. An average cell number in each plane (total 6
mm2) was calculated from 54 squares in 9 planes. All
cell counting was done by an independent investigator.

Statistical analysis
Data were statistically analyzed using Prism software for
Student’s t-test and are presented as mean ± standard
deviation (SD). The statistical comparisons among mul-
tiple groups were made using one-way ANOVA, and
multiple time points by two way ANOVA followed by
Bonferroni correction. In all instances, n refers to the
number of animals in a particular group. A p value of <
0.05 is considered statistically significant.

Results
UCN reduces neurological deficits
L/H-UCN improved neurological deficits in a dose- and
time-dependent manner in collagenase-induced ICH
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injury (Figure 1A). In all rats (n = 24), the mNSS was 0
before the ICH, indicating normal neurological function.
In the ICH + saline (control) group (n = 8), the mNSS
peaked at 9.4 ± 1.2 on day 1 and decreased to 7.7 ± 1.2
and 5.0 ± 1.7 on days 3 and 7, respectively. In the ICH
+ L-UCN (2.5 μg/kg) group (n = 8), the mNSS was
reduced from 3.9 ± 2.6 on day 1 to 1.7 ± 2.1 and 1.6 ±
1.3 on days 3 and 7, respectively. In the ICH + H-UCN
(25 μg/kg) group (n = 8), the mNSS was reduced from
6.6 ± 1.2 on day 1 to 4.7 ± 1.3 and 2.0 ± 0.8 on days 3
and 7, respectively. In addition, both L-UCN and H-
UCN significantly reduced neurological deficits on days
1, 3, and 7 (p < 0.001 vs. ICH + saline group). However,
the L-UCN (2.5 μg/kg) group showed a greater reduc-
tion in the neurological deficits than the H-UCN (25
μg/kg) group on days 1 and 3 (p < 0.001 vs. ICH + H-
UCN group).
In the autologous blood infusion model of ICH (n =

12), we selected the dosage of UCN shown to be most
effective in the collagenase model (2.5 μg/kg, i.p., n = 6)
to investigate the drug’s therapeutic effect (Figure 1B).
The mNSS of the ICH + saline (control) group (n = 6)
peaked at 8.0 ± 1.5 on day 1 and decreased to 6.5 ± 1.7
and 3.6 ± 1.1 on days 3 and 7, respectively. Similar to
the findings with the collagenase model, treatment with
UCN (2.5 μg/kg, n = 6) post-ICH significantly reduced
the mNSS in a time-dependent manner to 4.7 ± 1.0, 3.3
± 1.5, and 1.0 ± 1.1 on days 1, 3 and 7 (p < 0.001 vs.
ICH + saline group), respectively. No animals died in
any group during the experiments.

UCN reduces brain edema
On day 1 post-ICH, UCN (ICH + L-UCN group) signifi-
cantly reduced the water content of the ipsilateral hemi-
sphere to 80.7 ± 0.3% compared to the ICH + saline
group (81.4 ± 0.9%) (Figure 2A, p < 0.05). On day 3 post-
ICH, water content of the contralateral hemisphere in
the sham + saline group was 79.5 ± 0.8%, while that in
the ICH + saline group was increased to 80.5 ± 0.6% (p <
0.05); whereas those in the ICH + L-UCN and ICH + H-
UCN were insignificantly reduced to 80.0 ± 0.5% and
79.4 ± 0.3%, respectively. The water content of the ipsi-
lateral hemisphere in the sham + saline group was 79.4 ±
0.7%, while that in the ICH + saline group was markedly
increased to 81.9 ± 0.5% (p < 0.001) (Figure 2B). The
water content of the ipsilateral hemispheres in both ICH
+ L-UCN group and ICH + H-UCN group were signifi-
cantly reduced to 80.6 ± 0.4% (p < 0.001) and 79.9 ± 1.3%
(p < 0.05); but the reduction in brain edema by H-UCN
was not significantly different from that by L-UCN. No
significant differences in water content were seen in the
cerebellum between the groups (Figure 2B). These find-
ings indicate that UCN treatment post-ICH significantly
reduces the cerebral edema on day 1 and day 3.

UCN has a hypotensive effect without changing other
physiological parameters
There were no significant differences in baseline read-
ings of mean arterial blood pressure (MABP), heart rate
(HR), rectal temperature, pO2, pCO2 and pH among the
sham + saline, ICH + saline and ICH + L-UCN (2.5 μg/
kg, i.p.) groups (Figure 3A & Table 1).
One hour after ICH, injections of L-UCN (2.5 μg/kg, i.

p.) and H-UCN caused a significant decrease in MABP
to a maximum of 25 mm Hg at 3.0 hours and 40 mm
Hg at 0.5 hour post treatment (Figure 3A), respectively.
The maximum decreases in MABP were accompanied
by maximum increases in HR by 35 beats/min (L-UCN)
and 45 beats/min (H-UCN) (Table 1). The rectal tem-
perature, pO2, pCO2 and pH for the time points studied
(0.5, 1, and 3 hours) were not significantly different
between the groups (Table 1).
Because the low dose of UCN (2.5 μg/kg) showed bet-

ter improvement in the neurological deficits in terms of
reducing mNSS than the high dose (25 μg/kg), the dose
of 2.5 μg/kg UCN was adopted for subsequent
experiments.

A high dose of UCN reduces the perihematomal regional
cerebral blood flow (rCBF)
To clarify whether UCN affected the regional cerebral
blood flow, we demonstrated that ICH alone and ICH +
L-UCN did not affect perihematomal rCBF within 3
hours observation, while H-UCN significantly reduced
rCBF by approximately 20% (p < 0.05, Figure 3B).

Penetration of fluorescently labeled UCN through the
barrier between blood and striatum
To examine whether UCN can be transported into the
striatal parenchyma to exert its function, we adminis-
tered Alexa Fluor® 488-labeled-UCN i.p. one hour post-
ICH. The results showed that, three hours after i.p.
injection of fluorescently labeled UCN (2.5 μg/kg), the
labeled UCN was localized in the striatum on both ipsi-
lateral (Figure 4A to 4F) and contralateral sides (Figure
4G to 4L). The transport of intact UCN into the brain
was confirmed by dual labeling with an anti-UCN anti-
body, which overlaps with the Alexa Fluor® 488 labeled-
UCN (Figure 4M to 4P). The presence of UCN appeared
to be more prominent on the ipsilateral side. These
results indicate that the UCN can be transported from
the systemic circulation into the striatum.

UCN reduces lesion volume but not hemorrhagic volume
The hemorrhagic area peaked on day 1 (24 hours) and
declined on days 3 and 7 post-ICH (Figure 5A). The
hemorrhagic volume on day 1 post-ICH for the ICH +
saline and ICH + L-UCN groups were 20.4 ± 3.7 vs.
20.5 ± 3.2 μl, not significantly different between the
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groups (Figure 5B), indicating UCN did not affect bleed-
ing (hemorrhagic volume). The hemorrhagic volumes
for these two groups (ICH + saline vs. ICH + L-UCN
group) on day 3 post-ICH were 1.3 ± 0.1 vs. 1.3 ± 0.0
μl; however, the levels were close to background,

indicating complete breakdown of the hemoglobin.
Therefore, lesion volume by morphometric measure-
ment (image analysis) was used instead for days 1 and 3
post-ICH. The lesion volume was significantly reduced
in ICH + L-UCN compared to the ICH + saline group
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on day 1 (54.7 ± 14.1 mm3 vs. 70.1 ± 7.0 mm3, p <
0.001) and day 3 (23.7 ± 8.4 mm3 vs. 50.3 ± 10.7 mm3,
p < 0.001) (Figure 5C), suggesting that UCN can reduce
lesion volume.

UCN attenuates BBB disruption
Since BBB disruption is very likely a contributory cause
to the brain edema that peaks on day 3 post-ICH,
changes in BBB disruption were determined by Evans
blue dye assay on this day. Representative brain coro-
nal sections (Figure 6A) show Evans blue extravasation
on day 3 post-ICH was markedly reduced in the ICH
+ L-UCN group compared to the ICH + saline group.
Dye concentration in the ipsilateral cortex and stria-
tum of the ICH + saline group was significantly greater
than that of the sham + saline group (0.8 ± 0.2 μg/g
vs. 0.31 ± 0.1 μg/g, p < 0.01 in cortex; and 4.9 ± 2.4
μg/g vs. 0.6 ± 0.2 μg/g, p < 0.01 in striatum), indicat-
ing ICH causes BBB disruption of the ipsilateral cortex
and striatum (Figure 6B). The ICH + L-UCN group
exhibited a significantly lower dye concentration than
the ICH + saline group in the ipsilateral cortex (0.4 ±
0.1 μg/g vs. 0.8 ± 0.2 μg/g, p < 0.01) and the striatum
(1.7 ± 0.9 μg/g vs. 4.9 ± 2.4 μg/g, p < 0.05), indicating
that UCN significantly reduces the ICH-induced BBB
disruption. Evans blue dye concentrations in other tis-
sues, namely cerebellum and contralateral cerebral cor-
tex and striatum, appeared not to change in all three
groups (Figure 6B).

UCN reduces pro-inflammatory cytokine levels in striatal
tissue
Pro-inflammatory cytokine (TNF-a, IL-1b, and IL-6)
levels in the ipsilateral striatum in the ICH + saline
group were significantly increased on day 1 post-ICH as
compared with day 0 pre-ICH in the sham + saline
group; levels of TNF-a (Figure 7A) and IL-1b (Figure
7B) remained high, albeit getting lower, on days 3 and
7. These high levels of cytokines were significantly
reduced in the ICH + L-UCN group on days 1, 3, and 7
post-ICH, but did not return to control (normal) levels.
The level of IL-6 (Figure 7C) in the ICH + saline group
was also increased on day 1 post-ICH compared to the
pre-ICH (day 0) level in the sham + saline group. This
increase was also reduced in the ICH + L-UCN group
on day 1 post-ICH. The level of IL-6, however, returned
to control level without UCN treatment on days 3 and 7
post-ICH.

UCN reduces microglial activation and neuron loss
When examined on day 3 post-ICH, the ICH + L-UCN
group had a significantly lower number of OX-42+

microglial cells (91 ± 8 cells/6 mm2 vs. 168 ± 7 cells/6
mm2, p < 0.05, Figure 8B) and ED-1+ cells (62 ± 31
cells/6 mm2 vs. 140 ± 21 cells/6 mm2, p < 0.05, Figure
8C), as well as a significant reduction in NeuN+ cell loss
(393 ± 78 cells/6 mm2 vs. 217 ± 42 cells/6 mm2, p <
0.05, Figure 8D) compared to the ICH + saline group
(Figure 8E).

Table 1 Comparison of physiological parameters in sham + saline, ICH + saline, and ICH + L-UCN (2.5 μg/kg, i.p.)
groups.

Post-treatment Time (hours)

Parameters Grouping Baseline 0.5 1.0 3.0

HR (beats/min) Sham + Saline (n = 4) 355.7 ± 7.0 378.1 ± 7.9 361.0 ± 29.4 371.3 ± 15.0

ICH + Saline (n = 6) 349.5 ± 48.3 349.5 ± 41.7 348.8 ± 51.4 335.0 ± 15.9

ICH + L-UCN (n = 6) 355.9 ± 38.3 356.6 ± 35.1 376.8 ± 31.9* 389.2 ± 53.7*

RT (°C) Sham + Saline (n = 4) 37.2 ± 0.2 37.1 ± 0.3 37.1 ± 0.2 37.0 ± 0.2

ICH + Saline (n = 6) 36.9 ± 0.2 36.9 ± 0.2 36.9 ± 0.1 35.6 ± 2.4

ICH + L-UCN (n = 6) 36.9 ± 0.1 37.0 ± 0.1 37.0 ± 0.2 37.0 ± 0.1

pO2 (mmHg) Sham + Saline (n = 4) 92.5 ± 2.5 93.6 ± 7.6 95.2 ± 12.6 102.7 ± 9.5

ICH + Saline (n = 6) 95.7 ± 10.2 104.0 ± 14.5 104.8 ± 11.7 126.3 ± 29.7

ICH + L-UCN (n = 6) 100.0 ± 8.8 105.2 ± 12.0 107.3 ± 10.7 107.9 ± 11.2

pCO2 (mmHg) Sham + Saline (n = 4) 50.8 ± 2.9 50.1 ± 3.4 45.3 ± 1.1 44.4 ± 3.7

ICH + Saline (n = 6) 49.7 ± 3.8 45.0 ± 3.5 46.2 ± 4.6 36.2 ± 12.6

ICH + L-UCN (n = 6) 46.7 ± 3.6 45.1 ± 2.1 42.6 ± 4.9 43.3 ± 3.2

pH Sham + Saline (n = 4) 7.39 ± 0.02 7.40 ± 0.03 7.41 ± 0.01 7.42 ± 0.03

ICH + Saline (n = 6) 7.39 ± 0.03 7.40 ± 0.02 7.40 ± 0.01 7.39 ± 0.04

ICH + L-UCN (n = 6) 7.37 ± 0.04 7.39 ± 0.02 7.42 ± 0.02 7.42 ± 0.02

Values are shown as mean ± SD, calculated and analyzed by Student’s t test. *p < 0.05 vs. ICH + saline group. ICH, intracerebral hemorrhage; HR, heart rate; L-
UCN, low dose urocortin; i.p., intraperitoneally; RT, rectal temperature.
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Discussion
This is the first demonstration of a systemically adminis-
tered very low dose of UCN offering beneficial effects in
many aspects of with brain damage caused by ICH,
including overall neurological function. A paradoxical
dose-response was noted in which the higher dose (25
μg/kg) of UCN was less effective than the low dose (2.5
μg/kg) of UCN in attenuating neurological deficits.
Brain edema leads to an increase in intracranial pressure
(ICP), causing severe tissue damage. Our water content
results indicate relief of edema by UCN. However, there
were no significant differences between the two doses of
UCN in effectively reducing brain edema, indicating the

maximum effect on reduction of brain edema is reached
at 2.5 μg/kg of UCN (Figure 2).
An alternative explanation of this discrepancy might

be attributed to a potent hypotensive effect of UCN
[9,16,25-29]. Consistent with these studies, post-treat-
ment with high-dose UCN in our study caused a pro-
foundly lowered MABP by 40 mmHg, which may
reduce the cerebral perfusion pressure (CPP) and result
in a time-dependent reduction of the striatal regional
cerebral blood flow (Figure 3B) at 3 hours. Therefore,
the post-treatment with high-dose UCN results in a
relative hypoperfusion, which may limit the effect in
reducing the brain edema and neurological deficit.
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Alternatively, other effects such as UCN induces the
anxiogenic effect [39,40] and reduces energy expenditure
[9,41] may be also factors contributing to the discre-
pancy of neurological improvement.
Many reports have shown that UCN is a potent

appetite suppressor [9,42]. In our experiments, one
bolus injection of UCN (L-UCN 2.5 μg/kg, i.p. or H-
UCN 25 μg/kg, i.p) did not reduce the body weight of
ICH-injured rats compared to the ICH + saline group
(data not shown). The fact that a low dose is effective
without causing significant untoward effects offers the
advantage of a wide therapeutic safety margin, and
lends support, along with the effectiveness of systemic
administration, to the potential of UCN for possible
clinical applications.
UCN is relatively stable in the circulation [42] and the

permeability of UCN across the intact BBB is lower
than other peptides and larger proteins [42]. In our
study, an i.p. administration was proved to be effective.
To examine whether UCN gets into the neural tissues,
we injected fluorescently-labeled UCN and monitored
its presence in the striatum. The results indicated appre-
ciable uptake of intact UCN (confirmed by dual labeling
with an anti-UCN antibody) in striatal tissues, most pro-
minently in the ipsilateral hemisphere. This can be
explained by the fact that several factors including lep-
tin, glucose, insulin, and the proinflammatory cytokine
and adipokine TNF-a facilitate the passage of UCN
across the intact BBB [42-45]. The identification of the
fluorescently labeled UCN in the injured striatum as

early as 3 hours after administration may also explain
the early effects of UCN in reducing the neurological
deficits and inflammatory injuries (as indicated by
reduced proinflammatory cytokine expression) on day 1
post-ICH.
Furthermore, we also found that intact UCN can be

transported into the contralateral and ipsilateral hemi-
spheres even in naïve brain (without sham surgery)
(data not shown). The kinetics of UCN crossing the
BBB into the brain were not appreciably different
between the high dose and the low dose of UCN in
ICH-induced injury brain. This phenomenon may be
due to saturable entry of UCN through the BBB, inhib-
ited by excess UCN [15,46]. Detailed mechanisms of
UCN passage into the brain remain to be elucidated. It
should however be noted that even if UCN can enter
the brain, there is no proof that it functionally protects
the brain at the level of the CNS. The protective effects
could be mediated through peripheral effects, e.g.
changes in MABP, cerebral perfusion pressure (CPP), or
reduction in immune infiltration.
Glial cells (mainly astrocytes and microglia), apart

from providing physical support and insulation, play
important roles in maintenance and repair of neurons as
well as neural transmission [47]. The cell types involved
in injury and repair therefore warrant close examination.
UCN was able to suppress both microglial activation
and neuronal loss. These findings are compatible with
UCN suppressing pro-inflammatory cytokine expression,
thereby limiting inflammation and neuronal loss.

0

10

20

30

40

50

60

70

80
ICH + Saline

ICH + L-UCN 

L
es

io
n

 V
o

lu
m

e 
(m

m
3 )

Day 3Day 1

*

**

Time

0.5 h

1 h

3 h

6 h

1 d

3 d

7 d

A                                              B                C

+4      +2        0          -2         -4        -6 mm

H
em

o
rr

h
ag

ic
 V

o
lu

m
e 

( μμ μμ
l)

0

5

10

15

20

25

Day 1

Figure 5 Effects of post-ICH treatment with UCN on hemorrhagic and lesion volumes. (A) Representative coronal sections (2 mm
thickness) show brain hemorrhagic areas of seven rats killed 0.5, 1, 3, 6 hours and 1, 3, 7 days after ICH. (B) Hemorrhagic volume on day 1 (n =
6, each group) post-ICH was determined by spectrophotometric assay. (C) Lesion volume on days 1 (n = 6, each group) and 3 (n = 12, each
group) post-ICH was determined by morphometric measurement. Data were analyzed as repeated measures by one-way ANOVA followed by
Bonferroni correction. Values are shown as mean ± SD. *p < 0.05, **p < 0.01 vs. ICH + saline group.

Liew et al. Journal of Neuroinflammation 2012, 9:13
http://www.jneuroinflammation.com/content/9/1/13

Page 11 of 17



A

B

+4      +2          0          -2          -4         -6 mm

ICH + Saline

ICH + L-UCN

Sham + Saline

D
ye

 C
o

n
ce

n
tr

at
io

n
 (

μμ μμ
g

/g
)

Cortex          Striatum Cortex         Striatum

Ipsilateral

Sham + Saline (n = 4)

ICH + Saline (n = 6)

ICH + L-UCN (n = 6)

##

##

*

Contralateral

Cerebellum

**
0

1

2

3

4

5

6

7

8

Figure 6 Reduction in BBB disruption in ipsilateral cortex and striatum by post-ICH treatment with UCN. (A) Representative brain coronal
sections (2 mm thickness) show Evans blue extravasation on day 3 post-ICH. (B) Comparisons of dye concentrations in various brain tissues
among sham + saline, ICH + saline, and ICH + L-UCN (2.5 μg/kg, i.p.) groups. The dye concentration is expressed as μg/g of tissue weight and
calculated from a standard curve obtained from known amounts of the dye. Values are shown as mean ± SD, calculated and analyzed by
Student’s t test. *p < 0.05, **p < 0.01, vs. ICH + saline group, ##p < 0.01 vs. sham + saline group.

Liew et al. Journal of Neuroinflammation 2012, 9:13
http://www.jneuroinflammation.com/content/9/1/13

Page 12 of 17



T
N

F
- αα αα

(p
g

/m
g

)
IL

-1
ββ ββ

(p
g

/m
g

)
IL

-6
(p

g
/m

g
)

Post-ICH (Days)

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

0 1 3 7

ICH + Saline (n = 6)
ICH + L-UCN (n = 6)

Sham + Saline (n = 4)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 3 7

ICH + Saline (n = 6)
ICH + L-UCN (n = 6)

Sham + Saline (n = 4)

0

1000

2000

3000

4000

5000

6000

7000

0 1 3 7

ICH + Saline (n = 6)
ICH + L-UCN (n = 6)

Sham + Saline (n = 4)

#

#

#

#

##

##

######

*

*

*

*

*

Figure 7 Levels of TNF-a (A), IL-1b (B) and IL-6 (C) in striatal tissues. After ICH, the ipsilateral striatal tissues were collected at the indicated
times. The content of cytokines in the tissues was determined as described in Materials and Methods. Values are shown as mean ± SD. *p <
0.05 vs. ICH + saline group, #p < 0.05, ##p < 0.01, ###p < 0.001 vs. sham + saline group. Data were analyzed as repeated measures by one way
ANOVA followed by Bonferroni correction.

Liew et al. Journal of Neuroinflammation 2012, 9:13
http://www.jneuroinflammation.com/content/9/1/13

Page 13 of 17



Sham          ICH + Saline    ICH + L-UCN     A

B

C

C
el

l N
um

be
r/

6 
m

m
2

D

E

OX- 42+ ED-1+ NeuN+

*

***

O
X

-4
2

E
D

-1
N

eu
N

20 μμμμm 20 μμμμm 20 μμμμm

0

50

100
150

200

250

300

350
400

450

500

ICH + Saline (n = 4)

ICH + UCN (n = 4)

Figure 8 Immunohistochemical analysis of microglial activation and neuronal loss on day 3 post-treatment with UCN. Representative
photomicrographs show: (A) low power images of peri-hematomal regions as indicated by squares; (B) high power images stained with OX-42;
(C) ED-1; and (D) NeuN. (E) Average cell numbers (OX 42+, ED-1+, and NeuN+) in each plane (total 6 mm2) was calculated from 54 squares in 9
planes. Values are shown as mean ± SD, calculated and analyzed by Student’s t test. *p < 0.05 vs. ICH + saline group.

Liew et al. Journal of Neuroinflammation 2012, 9:13
http://www.jneuroinflammation.com/content/9/1/13

Page 14 of 17



Although the main role for microglial activation after
brain injury is to clear cell debris and the hematoma,
neuroinflammation due to over-activated microglia that
release toxic factors plays a major role in further brain
damage in ICH [17,18,48], especially in the early brain
injury [8,48,49].
Several drugs can produce anti-oxidative effects, which

protect microglia from damage, preserving their phago-
cytotic function for faster hematoma clearance and pro-
motion of neuroprotection in ICH [50-52]. However, in
our experiments, UCN reduced over-activated microglia
that release pro-inflammatory cytokines such as TNF-a,
IL-1b and IL-6, suggesting UCN has an anti-inflamma-
tory effect. However, our results indicate no effect of
UCN on hematoma clearance. This discrepancy may be
due to different types of microglial activation and differ-
ent types of anti-inflammatory mechanisms.
Recently, microglial activation inhibitors such as MIF

(microglia/macrophage inhibitory factor, tuftsin frag-
ment 1-3, Thr-Lys-Pro) and minocycline, have shown a
promising reduction in brain edema and tissue damage,
and attenuation of functional deficits in experimental
ICH [49,53]. We infer that UCN is an anti-inflammatory
neuropeptide that inhibits activated microglia and
reduces neuronal loss in vivo.
Whether UCN can attenuate bleeding (hemorrhagic)

volume remains a question. We found that post-ICH
treatment with UCN did not affect the accumulated
hemorrhagic volume at 24 hours (day 1) after UCN treat-
ment, but significantly reduced the lesion volume on day 1
and 3 after ICH. Besides, our in vitro study also demon-
strated that UCN (5 nM-5 μM) did not inhibit collagenase
enzyme activity (data not shown); therefore, UCN may not
reduce collagenase-induced bleeding. These results indi-
cate that the neuroprotective effect of UCN may not be
due to reducing bleeding volume, but most likely due to
reducing brain edema and neuroinflammation.
Clinically, a stroke patient is usually admitted to the

emergency clinic within 1-3 hours. The patient should
be treated as early as possible, so we chose to administer
UCN at one hour post-ICH. The effectiveness of the low
dose of UCN is consistent with our previous in vitro
studies, which demonstrated that femtomolar concentra-
tions of UCN can inhibit TNF-a production in cultured
microglia treated with endotoxin [22,23]. As compared
with other in vivo anti-inflammation studies mentioned
above [49,53], the effective dosage of UCN (0.5 nmol/kg,
or 2.5 μg/kg, i.p.) in the present study is much more
potent than MIF (≈ 1.67 μmol/kg, or 604 μg/kg) or min-
ocycline (≈ 0.1 mmol/kg or 45 mg/kg). Therefore, UCN
is a potential agent for clinically therapeutic purposes.
However, the biological activities of UCN in inflam-

mation remain controversial. Although most studies
agree that UCN is a powerful anti-inflammatory agent

[22-24,54-56], some have found a pro-inflammatory
effect, causing vasculitis and increased pulmonary vascu-
lar permeability [57-59]. This disparity may be due to
the different subtypes of CRF receptors distributed in
the CNS and periphery, and different cells and tissues,
or to different effects of UCN in local and systemic
administration [9,60].
UCN is a cardioprotective agent in ischemia/reperfu-

sion-induced injuries. Activation of the PI3K/Akt and
ERK 1/2 signaling pathways is part of the underlying
mechanism in cardiomyocytes [17-20]. Furthermore,
Abuirmeileh and colleagues infer that UCN can restore
nigrostriatal functions following endotoxin-induced neu-
roinflammation in vivo [21]. We also demonstrated that
the neuroprotective effect of UCN is mediated via inhi-
bition of GSK-3b and HDAC in an in vitro study [22].
This current study extends the beneficial effects of UCN
in the ICH rat model. However, the underlying mechan-
isms by which UCN reduces ICH-induced injury remain
unclear and need further clarification.

Conclusion
UCN is a potent anti-inflammatory agent that is a
potential target for drug design and development for
clinical use. Further investigation of UCN for clinical
treatment of ICH is highly warranted.
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