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Summary Horizontal gene transfer (HGT) was ob-
served by incubation of an amino acid-deficient strain
of Escherichia coli (AB1157) with particles gained from
an oligotrophic environment, when all deficiencies
were restored with frequencies up to 1.94× 10–5 and no
preference for a single marker. Hence, the DNA trans-
fer to the revertant cells was carried out by generalized
transduction. Those particles display structural fea-
tures of outer membrane vesicles (OMVs) but contain
high amounts of DNA. Due to a process called serial
transduction, the revertant’s particles were likewise
transferring genetic information to deficient E. coli
AB1157 cells. These results indicate a new way of HGT,
in which mobilized DNA is transferred in particles
from the donor to the recipient. Extracted OMV-asso-
ciated DNA of known alpha-, and gamma-proteobac-
terials, Ahrensia kielensis and Pseudoalteromonasma-
rina, respectively, was larger than 30kbp with all se-
quences in single copy and identified as prokaryotic
sequences. Inserted viral sequences were not found.

Keywords Serial transduction · Sequence analysis ·
E. Coli AB1157 · Ahrensia kielensis · Pseudoaltero-
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Überraschende Aspekte der Dynamik des
horizontalen Gentransfers bei Prokaryoten: Die
Wirkung von extrazellulären Membranvesikeln

Zusammenfassung Die Inkubation des aminosäure-
defizienten Escherichia-coli-AB1157-Bakteriums mit
aus einem oligotrophen Gewässer gewonnenen Par-
tikeln bewies das Vorhandensein eines horizontalen
Gentransfers (HGT) durch Herstellung aller Funk-
tionen in Revertantenzellen mit Häufigkeiten bis zu
1,94× 10–5. Da hierbei keiner der Marker bevorzugt
übertragen wurde, lag offensichtlich eine genera-
lisierte Transduktion vor. Die entdeckten Partikel
wiesen strukturelle Analogien mit Vesikeln der äuße-
ren Bakterienmembran (OMV) auf, jedoch enthielten
sie große DNA-Mengen. Durch das Phänomen der
seriellen Transduktion waren die aus Revertanten
stammenden Partikel wiederum infektiös und über-
trugen Erbinformation auf defiziente E.-coli-AB1157-
Zellen. Diese Ergebnisse lassen auf einen neuen Me-
chanismus des HGT schließen, bei dem mobilisierte
DNA in Partikeln von Spender- auf Empfängerzellen
übertragen wird. Die extrahierte DNA aus OMV zweier
bekannter α- und γ-Proteobakterien (Ahrensia kielen-
sis und Pseudoalteromonasmarina) war >30kbp lang,
wobei alle Sequenzen als prokaryotisch identifiziert
wurden und nur als Einzelkopie vorlagen. Eingefügte
virale Sequenzen wurden nicht gefunden.

Schlüsselwörter Serielle Transduktion · Sequenzana-
lyse · E. coli AB1157 · Ahrensia kielensis · Pseudoal-
teromonas marina

Introduction

Prokaryotes are unique in reacting to environmental
alterations by a fast acquisition of essential and suit-
able genetic characteristics. Genome comparisons re-
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vealed that small 16S rRNA sequence alterations can
cause huge differences in the complete gene reper-
toire. Moreover, even populations of a single 16S rRNA
species contain numerous genomic varieties [11].

This genetic flexibility of the prokaryotes is based
in an advantage of the horizontal gene transfer among
bacteria as well as between bacteria and other organ-
isms [26, 30]. Obviously, the fate of the transferred
DNA in the recipient cell relies on the nature of the
DNA molecule itself—if it lacks an active vegetative
origin, it must be integrated into the host genome for
stable inheritance. Genetic exchange, therefore, plays
a key role in the evolution of prokaryotes. The mecha-
nisms and vectors responsible for the horizontal DNA
transfer include:

1. the uptake of free DNA from the environment, i. e.
transformation,

2. the transfer of DNA from a bacterial donor cell to
a bacterial recipient cell termed conjugation,

3. the phage-mediated passage of bacterial genes re-
ferred to as transduction,

4. gene shuffling by gene transfer agents (GTA), which
are unusual bacteriophage-like vehicles of genetic
exchange, first discovered in the bacterium Rhodo-
bacter capsulatus [33] containing a random 4.5kb
fragment of bacterial genomic DNA [46] that can be
transferred between cells [3, 22, 23, 45, 47, 51] and
finally

5. the formation of DNA bearing membrane vesicles
(MVs), also referred to as “outermembrane vesicles”
(OMVs) or membrane blebs.

The latter mentioned mechanism of DNA transfer was
postulated in the last decade [20, 24, 35, 38, 40, 52] and
was shown to function via formation and shedding of
membrane vesicles during growth of Gram-negative
bacteria, whereby these membrane vesicles are trans-
porters of genetic information between strains. Re-
markably, the phenomenon of generation and detach-
ing of membrane vesicle in Gram-negative bacterial
cells is well documented and frequent. Recently [25],
the formation of similar vesicles was also recorded for
Gram-positive bacteria.

Currently, the interest in OMVs concentrates on the
following topics:

● trafficking of cell-cell signals [17], i. e. interspecies
communication leading to quorum sensing reac-
tion within the microbial community [32, 34, 41];

● traffic vehicles for the delivery of toxins [16, 21, 36];
● transfer of antibiotic resistance determinants [8,

50];
● utilization as diagnostic tools by clinicians [13];
● delivery of antimicrobial substances [1, 2, 28, 29];
● contribution to innate bacterial defence by absorp-

tion of antimicrobial peptides and bacteriophages
[31];

● contribution to the dynamics of biofilm formation
[43, 44];

● inter-kingdom communication [12, 27, 39].

Another line of interest, which was less emphasized
within the frame of the ongoing research, dealt with
the transfer of genetic information, namely, uptake
of free DNA by bacterial cells via transformasomes
[9, 18, 19] and encapsulation of exogenous DNA by
outer membrane vesicles [40] as well as DNA transfer
within and between genera [15, 20, 40, 52]. Currently,
the magnitude of the OMV driven DNA flux has been
rather small, ranging from 3 to 36kbp [10].

In the present review of own investigations, we pro-
vide proof that transferable DNA may be well above
36kbp within OMVs, that OMV infected cells produce
again infectious particles, and we offer information on
the restoration of deficiencies within an amino acid-
deficient strain of E. coli AB1157.

Materials and methods

Details on the various methods concerning sample
collection, CsCl density equilibrium centrifugation,
bacterial cultures, analytical approaches, transmis-
sion electron microscopy and experimental design for
gene transfer assays are available in Chiura et al., [7],
Velimirov and Hagemann, [49], and Hagemann et al.,
[14].

Results

During a number of own ultrastructural pilot stud-
ies designed to investigate the formation and growth
steps of membrane vesicles in transformed E. coli
populations, the appearance of DNA bearing OMVs
was regularly observed [4–6, 48, 49]. Within the frame
of this investigation, we detected OMVs that were of
similar morphological appearance as the OMVs so
far described in the literature [2, 34, 40] but larger in
size (usually above 100nm in diameter) and revealing
a number of surprising features: they were able to
transfer genes to recipient cells with high gene trans-
fer frequencies (Tables 1 and 2), and subsequently
the recipient cells produced new OMVs. The DNA in
newly produced OMVs had increased in length (up
to 350kbp) compared to the initially harvested OMVs
(40–60kbp).

In contrast, previously published information on
DNA containing OMVs indicated DNA lengths ranging
from 3 to 36kbp [10]. In follow-up studies [7, 49] and
during preparatory investigations where we inspected
over 1000 TEM slides and investigated whether OMVs
within the mentioned size fraction (>100nm in diam-
eter) from natural seawater would trigger the above
quoted features in recipient cells, the following traits
were recorded for the produced outer membrane vesi-
cles:

1. The observed vesicles appeared already in har-
vestable quantities before the end of the logarith-
mic phase of the recipient cell culture but reached
their maximum in the stationary phase (Fig. 1).
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Table 1 Gene transfer frequency± standard deviation fromOMVs derived from 0.2μm filtered seawater concentrate to E. coli
AB1157 designated as “reverted” at 4 different MOIs and corresponding control experiments. n= 6

MOI 0.12 1.0 5.1 20 200
Experiment All amino acids reverted 0 0 1.39× 10–7 1.46× 10–5 1.94× 10–5

Leu reverted 4.41± 3.04× 10–6 3.33± 3.22× 10–5 9.04± 2.85× 10–3 1.04± 1.62× 10–3 7.34± 3.04× 10–4

Pro reverted 5.73± 2.82× 10–6 2.22± 2.38× 10–5 8.34± 2.38× 10–3 7.42± 1.12× 10–3 7.15± 0.28× 10–5

His reverted 3.53± 0.92× 10–6 7.41± 1.76× 10–5 9.04± 3.07× 10–3 9.83± 3.88× 10–3 7.34± 4.13× 10–4

Arg reverted 3.09± 0.88× 10–6 1.48± 0.52× 10–5 9.73± 1.90× 10–3 6.03± 0.92× 10–3 5.83± 1.08× 10–4

Control MVs+ UV± AB1157
MVs aut.+ AB1157
MVs aut./untr.± AB1157

0 0 0 0 0

Davis buffer+ AB1157 or
UC supernat.+ AB1157

0 0 0 0 0

MV membrane vesicle, UV irradiation of OMVs with ultraviolet light, aut. autoclaved OMVs, untr. untreated OMVs, UC supernat. ultracentrifugation supernatant

Table 2 Gene transfer frequency± standard deviation from OMVs derived from transductant colonies (F1) to E. coli AB1157
designated as “reverted” at a MOI of 5.5 and corresponding control experiments

All amino acids
reverted

Leu reverted Pro reverted His reverted Arg reverted

Experiment Transcolonies 2.0 ± 1.3 × 10–6 12.3± 18.1× 10–6 8.77± 8.74× 10–6 3.16± 0.65× 10–6 12.0± 1.9× 10–6

Control MVs+ UV± AB1157
MVs aut.+ AB1157
MVs aut./untr.± AB1157

0 0 0 0 0

Davis buffer+ AB1157 or
UC supernat.+ AB1157

0 0 0 0 0

MV membrane vesicle

2. The investigated particles were DNA carrying
OMVs.

3. The packaged DNA ranged from 50 to 80kbp.
4. First sequencing data pointed out that the vesicle

DNA consisted of bacterial DNA.
5. The number of visible MVs (burst size) within the

cells was low, ranging between 1 and 5 per bacte-
rial cell.

6. The OMVs were released by budding (Fig. 2).
7. The observed vesicles infected other bacterial cells

and repaired genetic deficiencies (Table 1). It
could be repeatedly shown that the incubation of
cells belonging to the amino acid-deficient strain
of E. coli AB1157 with membrane vesicles revealed
evidence of HGT by restoration of all deficien-
cies (markers) in revertant cells with frequencies
between 1.39× 10–7 for a multiplicity of infection
(MOI) of 5.1 to 1.46× 10–5 for aMOI of 20. The high-
est gene transfer frequency was obtained for single
markers with values up to 1.04× 10–2at aMOI of 20.
These obtained gene transfer frequencies belong
to the highest reported frequencies and only the
values recorded byMcDaniel [37] were higher than
those obtained from our investigations.

8. This horizontal gene transfer between species has
all characteristics of a generalized transduction
[42] as none of the markers was preferentially
transferred.

9. Obtained transductants were able to produce new
infective vesicles that were again released via bud-
ding. These vesicles were of larger size than the

primary infecting vesicles. The observed process
of consecutive infection was termed serial trans-
duction and the DNA of the resulting OMVs can
reach a length of about 350kbp.

10. Investigations with the transmission electron mi-
croscope (TEM) of experimentally infected E. coli
cells revealed the appearance of distinct electron
dense structures and bodies (EDB), which had
never been observed until now (Fig. 3a,b,c), con-
sidered as precursors of budding membrane vesi-
cles (Fig. 3d).

11. The OMVs, mostly derived from alpha-proteobac-
teria, were also able to infect phylogenetically dis-
tant bacterial species such as gamma-proteobac-
teria (E. coli AB1157) and induce intergeneric
transduction, thus functioning as gene mediators
for a broad host range.

Using TEM in a different approach, inspected OMVs
from the alpha-proteobacterium Ahrensia kielensis
and from Pseudoalteromonas marina, a gamma-pro-
teobacterium, revealed two kinds of vesicular bodies:
a bilayered form of OMVs with diameters between 30
and 250nm, but also OMVs exhibiting double bilayers
and diameters ranging between 80 and 200nm. While
the bilayered OMVs could be distinguished either
by a large electron-dense structure or were electron
translucent, the double bilayered ones showed the
electron dense substance in contrast in the core re-
gion within the intermembrane space of the first and
second bilayer (Figs. 1 and 3).
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Fig. 1 Membrane vesi-
cles (MVs) produced from
a Pseudoalteromonas ma-
rina and b Ahrensia kielenis
during the stationary phase

Fig. 2 Membrane vesicle
(MV) production: a Nega-
tive stained total view of a
bacterial cell in the process
of budding. b Ultrathin sec-
tion of bacterial cells in the
process of budding

Furthermore, 30,094bp of the genome from OMVs
of A. kielensis and 45,981bp of P. marina were se-
quenced. The findings pointed out that the sequences
existed only in single copy and, except for one, had
prokaryotic equivalences. Inserted viral sequences
were not detected. We found no hint in the OMVs
under investigation for any OMV-specific genomes.
Some of the analyzed sequences code for proteins
which are membrane associated like extracellular so-
lute-binding protein family 3, TonB family protein,
TonB-dependent receptor protein, and ABC trans-
porter permease. It should be noted that proteins
involved in defence and survival strategy (e.g. the
putative TetR family transcriptional regulator or the
toxin–antitoxin system, toxin component, RelE family)
were detected.

Discussion

Although the OMV–DNA complex is a subject of great
interest and hence profoundly under investigation,
unexpectedly less is known about sequence informa-
tion. In this short review we show that our investiga-
tion [14] was the first to report that the DNA incorpo-
rated in bacterial OMVs contains a large spectrum of
protein coding sequences. These DNA sequences are
either encapsulated in regular bilayered membrane
vesicles which originate from the outer membrane of

the bacterium or in the more difficult design of the
OMV double bilayer types consisting of a further in-
ner membrane layer being probably derived from the
cytoplasmic cell membrane. Electron dense struc-
tures (EDS) analog to those shown in thin sections
(Figs. 2 and 3) were also monitored in prior studies of
revertant E. coli strains in liquid culture during OMV
production [7]. In these earlier investigations, gold-la-
belled anti-DNA antibodies bound to likewise electron
dense structures were used, which we named electron
dense bodies (EDBs), thereby demonstrating the pres-
ence of DNA in these EDBs. Despite our finding of
a clear analogy in our TEM slides to our previous re-
sults, we decided to refrain from presuming that DNA
is necessarily a fraction or a part of the EDBs in thin
sections of A. kielensis or P. marina while attempting
to find precursor structures for the OMVs. As bacterial
DNA fibers are often but not always associated with
polyphosphate bodies, which have a similar electron
dense appearance as the observed EDBs, we could not
verify that all the detected EDBs were precursor struc-
tures for the DNA to be encapsulated in OMVs prior
to budding. Nonetheless, it was assumed that the ma-
jority of these structures were precursors as a distinct
granulation in the DNA carrying EDBs was regularly
observed, which was absent in polyphosphate bodies.

The described process of horizontal gene transfer
via OMVs leads to a number of assumptions, which
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Fig. 3 Thin sections of
transductants, demonstrat-
ing the structure of elec-
tron dense bodies (EDBs).
a EDBs of different elec-
tron densities and sizes.
b Higher magnification of
an EDB in the vicinity of
an electron dense network
(EDN) within the recipient
cell. c EDB in contact
with the inner layer of the
cell membrane. d Bud-
ding structure displaying
features of a double mem-
braned vesicle

need to be mentioned. The finding of restored func-
tions of all markers in revertant cells at MOIs of 5, 20,
and 200, demonstrates that multiple infections may
have taken place. At the present state of knowledge,
one can only presume the possible effects of the noted
gene transfer strategy on bacterial populations. Burst
size, which can be equated with budding size, indi-
cates that the abundance of OMVs may well be below
that of surrounding bacteriophages. Nonetheless, all
our investigations suggest that OMVs are by far more
efficient in transferring genes than bacteriophages.

A surprising feature of the investigations was that
the result of this HGT are revertants, which produce
themselves anew infectious OMVs with increased
DNA length, reaching a DNA content of >350kbp.

All so far listed features of the investigated OMVs,
namely release via budding, particle-related transfer
of large amounts of DNA to recipient cells and their
potential for serial gene transfer, show that we ob-
served an important and new mechanism for HGT
between prokaryotic cells. Furthermore, the produc-
tion of OMVs may be a strategy to ensure a back-up of
genetic information in case of nutrient shortage lead-
ing to starvation of bacterial populations. Assuming
that transfected bacterial cells produce some 350kbp

per OMV in the stationary phase and that each parti-
cle carries a unique piece of the E. coli chromosome,
then 13–20 of such OMVs would be sufficient to save
the entire bacterial chromosome. To which extent the
knowledge about the functions of OMVs and associ-
ated DNA may be used for medical applications, e.g.
to support DNA repair in preventing carcinogenesis,
remains a matter of debate and experimentation in
the future.
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