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Abstract

Pancreatic islet β-cell dysfunction is characterized by defective glucose-stimulated insulin

secretion (GSIS) and is a predominant component of the pathophysiology of diabetes. Ime-

glimin, a novel first-in-class small molecule tetrahydrotriazine drug candidate, improves gly-

cemia and GSIS in preclinical models and clinical trials in patients with Type 2 diabetes;

however, the mechanism by which it restores β-cell function is unknown. Here, we show

that imeglimin acutely and directly amplifies GSIS in islets isolated from rodents with Type 2

diabetes via a mode of action that is distinct from other known therapeutic approaches. The

underlying mechanism involves increases in the cellular nicotinamide adenine dinucleotide

(NAD+) pool—potentially via the salvage pathway and induction of nicotinamide phosphori-

bosyltransferase (NAMPT) along with augmentation of glucose-induced ATP levels. Fur-

ther, additional results suggest that NAD+ conversion to a second messenger, cyclic ADP

ribose (cADPR), via ADP ribosyl cyclase/cADPR hydrolase (CD38) is required for imegli-

min’s effects in islets, thus representing a potential link between increased NAD+ and

enhanced glucose-induced Ca2+ mobilization which—in turn—is known to drive insulin gran-

ule exocytosis. Collectively, these findings implicate a novel mode of action for imeglimin

that explains its ability to effectively restore—β-cell function and provides for a new

approach to treat patients suffering from Type 2 diabetes.

Introduction

Type 2 diabetes (T2DM) is characterized by insulin resistance plus β-cell dysfunction [1].

Existing therapies may only be partially effective or not well tolerated [1]. Glucagon-like pep-

tide receptor (GLP1) agonists act on β-cells to amplify GSIS [2]. However, these agents are

peptides with limited oral bioavailablity and are usually administered parenterally. Therefore,

the pursuit of newer therapies, in particular small molecules which could function to reverse

β-cell dysfunction, is warranted.

Imeglimin is a novel oral antidiabetic drug to treat Type 2 diabetes. Its novel structure and

proposed mechanism of action establishes the first in a new tetrahydrotriazine class called the
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“glimins” [3]. Three Phase III clinical trials were recently completed and strong efficacy was

seen in multiple trials [3–5]. Imeglimin’s mode of action involves dual effects; to ameliorate

insulin resistance and potentiate GSIS [6, 7].

Imeglimin has prominent effects to reverse β-cell dysfunction and amplify GSIS: it amelio-

rates hyperglycemia in models with pancreatic deficient β-cell mass and function including

neonatal streptozotocin (N0STZ) diabetic rats and Goto-Kakizaki (GK) rats and increases

insulinogenic index during glucose tolerance tests [6]); in vivo GSIS is enhanced in both lean

and high-fat fed rats [8]; increased GSIS was seen in hyperglycemic clamps in non-diabetic

and N0STZ-diabetic rats [6]. In addition, a strictly glucose-dependent effect to enhance insulin

secretion was seen with non-diabetic isolated rat islets [8]. Moreover, 7 day administration of

imeglimin to Type 2 diabetes patients substantially amplified net GSIS as assessed by hypergly-

cemic clamp [9].

Given major effects on GSIS, we tested the hypothesis that imeglimin could acutely and

directly impact β-cell dysfunction using islets isolated from Type 2 diabetes animal models

(GK and N0STZ-diabetic rats). As an emerging therapeutic option for patients, it is also

important to elucidate the mechanism of action. Thus, we conducted a series of studies using

islets isolated from GK rats to define effects on pathways leading to GSIS amplification. GK

rats are a non-obese Type 2 diabetes model of “isolated” β-cell dysfunction; many features

resemble human disease including a loss of first phase insulin secretion, reduced β-cell mass,

reduced islet insulin content, inflammation in islets, and impaired islet mitochondrial function

[10]. Here, we determined that the mechanism of action of imeglimin was distinct vs. common

antidiabetic therapies (metformin or sulphonylureas) and independent from mechanisms

mediating the effects of other agents known to affect GSIS (GLP1 receptor agonists or phos-

pholipase C pathway modulators). In contrast, imeglimin increases NAD+ levels in GK rat

islets, potentially via the “salvage pathway” involving NAMPT and also increases cellular ATP

content, suggesting an improvement in mitochondrial function. Further, we provide evidence

suggesting a link, via CD38 and the generation of key NAD+ metabolites, between the

increased NAD+ pool and enhanced intracellular Ca2+ mobilization. These findings implicate

a novel mode of action for imeglimin that could be further leveraged to support the selection

of appropriate patients and enhance its clinical utility or to develop improved agents in this

new therapeutic class.

Methods

Animals, islet isolation, insulin secretion and intracellular Ca2+

Animal studies were conducted at Metabrain Research (Maisons-Alfort, France) according to

European guidelines (2010/63/UE—ETS 123), for duly authorized projects by CNREEA

(National Ethics Committee, APAFIS projects N˚0709, 2796, 4027) and were also approved by

Metabrain Ethics Committee. Rats were housed 4 per cage in controlled room (22˚C; 12 hour

light-dark cycle) with ad libitum access to water and normal chow diet (A113 for GK rats, A04

for Wistar and N0STZ rats; Scientific Animal Food and Engineering, AUGY–France). N0STZ

rats were obtained by intravenous injection of streptozotocin (100 mg/kg) of rat pups (Charles

River, Saint-Germain-Nuelles–France) as described [11]; 11–12 week-old rats with hyperglyce-

mia and defective GSIS were used [12]. Male Wistar rats (11–14 week-old; Charles River) and

male GK rats (14-week old; Metabrain Research) were also used.

Rats were anesthetized with i.p. sodium pentobarbital and sacrificed by decapitation. Islets

were prepared by injection of collagenase (Sigma) into the pancreatic duct and surgical

removal of the pancreas. The pancreas was digested for 9–11 min at 37˚C, filtered and rinsed

(Hank’s buffer solution containing BSA), and purified with a Ficoll gradient (Sigma) followed
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by several washes. For static incubations, islets were handpicked and distributed into 24 well

plates; 9–16 wells per group with 6–12 islets per well, depending on the experiment. Islets were

incubated for 20–30 min in Krebs Ringer Buffer (KRB) 0.2% BSA at 37˚C, and under 95% O2/

5% CO2, with and without test compounds in low (2.8 mM) or high (16.7 mM) glucose

(DMSO 0.1% for all conditions) followed by removal of supernatant samples (stored at -20˚C

until insulin was measured). Insulin levels were measured with an Elisa kit Alpco 80-INSRTU-

E01 or 80-INSRT-E01 based on a solid phase two-site enzyme immunoassay. It is a direct

sandwich technique in which two monoclonal antibodies are directed against separate anti-

genic determinants on the insulin molecule. During incubation, insulin in the sample reacts

with peroxidase-conjugated anti-insulin antibodies and anti-insulin antibodies bound to a

microtitration well. The bound conjugate is detected by reaction with 3, 3’, 5, 5’-tetramethyl-

benzidine. The reaction is stopped by adding acid, to give a colorimetric endpoint that is read

by a spectrophotometer. Selected test agents included imeglimin (Poxel SA), GLP1 (SIGMA,

ref. G8147), metformin (Merck KGaA), an imidazoline [13] phospholipase C (PLC) pathway

activator (BL11282, Metabrain Research) and a PLC inhibitor (U73122, SIGMA Ref. U6756).

For perifusions, islets were distributed (12 per well; 4 well-plates) in KRB containing 5.5

mM glucose and BSA (5 mg/ml) and maintained at 37˚C under 95% O2/5% CO2. In selected

studies, islets were loaded with Fura-2-AM (7.5 μM) (Thermofisher scientific, ref. F1201)

added to buffer for 1 hr followed by three buffer exchanges. Batches of 8 islets each were plated

on a polylysine coated glass disposed in small perifusion chamber and perifused at 1 ml/min

with Hepes-BSA (1mg/ml) buffer alternately containing glucose 2.8 mM or 16.7 mM with or

without test compounds. Perifusate was collected every minute. For intracellular Ca2+, the

chamber was placed on the stage of a NIKON TE300 microscope (37˚C); individual islets were

imaged via excitation at 340nm and 380nm and fluorescence detection (510nm) with a photo-

multiplier (Photon Technologies International, Princeton, NJ). Intracellular Ca2+ results were

expressed as ratio of F340nm/F380nm. Insulin levels were measured via Elisa (Alpco

80-INSRTU-E01 or 80-INSRT-E01).

Insulin secretion from human diabetic islets

5.000 IEQ (islet equivalents, a standard unit based on average islet diameter of 150μm) from a

single human diabetic cadaveric pancreas were isolated by PRODO LABORATORIES (Cali-

fornia–USA) and were provided by TEBU BIO (Le Perray-en-Yvelines, France). Upon receipt,

islets were stabilized in culture in order to recover from transport. They were placed in a

Prodo Labs islet specific media supplemented with antibiotic and glutamine/glutathione mix-

ture overnight at 37˚C, 95%O2/5% CO2. The following day, islets were dispersed in 24 well

plates at the density of 40 IEQ/well in 1 ml of media (mixture of HAM’S F10 and DMEM) con-

taining 2.8 mM glucose and placed overnight at 37˚C and 95%O2/5% CO2. Prior to the insulin

secretion test, islets were washed and incubated twice in 2.8 mM glucose media 1 hr at 37˚C.

For static incubation, islets were incubated for 30 min in media with 8 mM glucose to induce

insulin secretion with or without added compound. The supernatant was collected after

30min. of incubation. Supernatants were kept at -20˚C until an insulin assay was performed.

Insulin levels were measured with an Elisa kit (Mercodia, ref. 10-1113-10).

Measurement of intracellular analytes

For cAMP, GK islets were incubated 30 min in 2.8 mM glucose and then incubated 15 min in

2.8 or 16.7 mM glucose with or without test compounds plus a phosphodiesterase inhibitor

(IBMX 1 mM) to prevent cAMP degradation. Supernatants were removed by centrifugation
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and islets were maintained at -80˚C in lysis buffer (Amersham RPN225). cAMP levels were

subsequently measured in a pool of 20 islets with an EIA kit (Amersham, ref. RPN225).

Dinucleotide content was determined with 20 islets/well in 96 well filter plates; islets were

placed in KRB with 16.7 mM glucose with or without imeglimin or nicotinamide (Sigma). Gal-

lotannin was also used where noted (Santa Cruz, K2613). After 20 min, supernatants were

removed by centrifugation and islets were stored at -80˚C followed by lysis in PBS-dodecyltri-

methylammonium bromide solution; NAD+ and NADH were determined using the biolumi-

nescent assay from Promega (G9071); NADP+ and NADPH were determined using the

NADP/NADPH-GloTM assay Promega kit (G9081), a bioluminescent assay for detecting total

oxidized and reduced Nicotinamide adenine dinucleotide phosphates.

For ATP and ADP, islets (50 per dish) were stabilized in 5 ml of KRB, 0.2% BSA with glu-

cose 2.8 mM for 30 min followed by distribution into 24 well plates (20 islets/well) in KRB

0.2% BSA with glucose 16.7 mM with or without test compounds. After 10 min, islets were

transferred to 96 well filter plates and then maintained at -80˚C with ultrapure water. After

lysis (ATP kit buffer), ATP content was measured by luminescence (ATP lite, Perkin Elmer,

6016643); ADP content was measured with a fluorimetric assay (Sigma Aldrich, ref.

MAK033).

NAMPT activity and gene expression

Islets were dispersed for a stabilization period of 60 min in petri dishes at the density of 50

islets per dish containing 5 ml of Krebs Ringer Buffer 0.2% BSA with 2.8 mM glucose. After

this stabilization period, islets were handpicked at a density of 20 islets/well into 24 well-plates

and placed in Krebs Ringer Buffer 0.2% BSA with glucose 16.7 mM with or without test com-

pounds. After 20 min of static incubation, islets were kept at -80˚C until intracellular NAMPT

(iNAMPT) activity was measured. For iNAMPT determination, islets were lysed in 50 mM

Tris-HCl pH 7.5/0.02% BSA, 0.1% Triton X-100; iNAMPT activity was determined in pools of

60 islets with a colorimetric Cyclex assay kit (Clinisciences, ref. CY-1251). Human recombi-

nant (E. coli) NAMPT activity was measured using the same kit after 60 min incubation.

Frozen (-80˚C) islets (pools of 20) were homogenized followed by extraction and purifica-

tion (RNAzol kit). RT-PCR measurements employed the AMV reverse transcriptase system

(Applied Biosystems 4368814) and Q-PCR reactions (7900HT Fast Real-Time PCR, Applied

Biosystems) using primers corresponding to the NAMPT sequence (Table 1). Levels of

NAMPT mRNA were expressed as increases or decreases in cycle time [Ct] numbers com-

pared to control after normalization to β-actin housekeeping genes.

CD38 knockdown in islets

Islets were cultured 24 hours in RPMI medium (11 mM glucose plus inactivated serum, antibi-

otics, glutamine, 10 mM HEPES) and then placed in 10 cm2 plates (100 islets, each), washed in

PBS and incubated 15 min on ice in permeabilization buffer (Lyovec 40μl/100 islets/5ml

medium, Invitrogen) with siRNA from Origen (10 nM scrambled sequence or 10 nM directed

Table 1. RT-PCR primers used to measure NAMPT mRNA expression.

Gene Sequence 5’ 3’ Bases Tm Accession number

rbeta-actin forward GGGAAATCGTGCGTGACATT 20 55 V01217j00691

rbeta-actin reverse CAGGAAGGAAGGCTGGAAGA 20 53

rNAMPT forward CAGAAGCCGAGTTCAACATC 20 60 NM-177928

rNAMPT reverse TTTCACGGCATTCAAAGTAGG 21 60

https://doi.org/10.1371/journal.pone.0241651.t001
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against CD38). Islets were then cultured for 48 hr before further testing; 15 to 20 wells per

group (10 islets/well). Static incubation in 16.7 mM glucose with or without test compounds

was followed by removal of supernatant samples for insulin measurements and transfer of

islets tubes for RNA extraction as above; CD38 mRNA levels were measured as described

above for NAMPT.

Modulation of cADPR and NAADP signaling

Islets were distributed (50 per dish) in 5 mL RPMI medium (11 mM glucose), and cultured at

37˚C in 95% O2 and 5% CO2 for 72 hr. For the last 17 hr, high concentration (200 μM) ryano-

dine (EnzoLife Sciences–Ref. ALX-630-062-M005), was added to selected dishes. After transfer

to fresh dishes and incubation for 30 min (KRB/BSA buffer containing 2.8 mM glucose with

or without ryanodine), islets were distributed (6 per well) in 24-well plates in KRB containing

16.7 mM glucose with and without the indicated stimuli or inhibitors that also included

cADPR (1 mM; Biolog–Ref. C005-025), NAADP (50 nM; SIGMA N5655), or combinations of

two agents. After 20 min. incubation, samples of supernatants were removed and stored at

-20˚C. Insulin levels were measured with an Elisa kit (Alpco 80-INSRTU-E01 or

80-INSRT-E01) based on a solid phase two-site enzyme immunoassay.

Statistics

Statistical analyses were performed using a Kruskall-Wallis non parametric one way ANOVA

test followed by the Dunn’s post test (GraphPad PRISM4). Where noted, comparison between

two conditions was performed using an unpaired Student t-test. A p value of� 0.05 was con-

sidered significant.

Results

Imeglimin amplifies GSIS in diseased rat islets

β-cell function (GSIS) was impaired (-65% p<0.001) in N0STZ rat islets vs. Wistar control

islets (Fig 1A and 1B). GLP1 induced a non-significant trend (+42%) towards increased GSIS

in N0STZ islets (Fig 1C). In low glucose, imeglimin did not modify insulin secretion; in 16.7

mM glucose, increased insulin secretion was observed.

GSIS in GK rat islets was markedly impaired vs. a 2-fold response to high glucose in control

Wistar islets (Fig 2A and 2B). Imeglimin potentiated GSIS; similar to the results obtained

using N0STZ rat islets, imeglimin was without any effect at low glucose (S1 Fig). A dose-

related effect was also evident with a magnitude similar to GLP1 (Fig 2C). Under the same

experimental conditions, we confirmed that metformin could not enhance GSIS (Fig 2D). The

effect of 100 μM imeglimin to ampifly insulin secretion in the presence of high glucose was

replicated in 6 additional experiments (S1 Table). Using a perifusion system (Fig 2E), imegli-

min was also shown to augment GSIS. In this context, the response to high glucose in control

GK rat islets was negligible whereas islets from healthy Wistar rats were robustly responsive

(S2 Fig). Imeglimin resulted in a partial restoration of GSIS relative to the response noted in

Wistar rat islets (compare Fig 2E and S2 Fig).

In cadaveric islets derived from a single patient donor with Type 2 diabetes, we also

observed an effect (+129%, p<0.05; n = 8–10) of imeglimin (100 μM) to amplify GSIS (S3 Fig).

Imeglimin’s actions are distinct vs. other glucose-dependent mechanisms

The combination of imeglimin with GLP1 resulted in trends towards greater GSIS (S4 Fig).

These results suggest that imeglimin and GLP1 may be acting via independent pathways to
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amplify insulin release. To confirm this hypothesis, we excluded an effect of imeglimin on

cAMP, the classical mediator of GLP1 action, under the same conditions where GLP1 exerted

a strong effect (Fig 3). In β-cells, phospholipase C (PLC) also mediates the potentiation of insu-

lin secretion in response to molecules that include GPR40 (free fatty acid receptor 1) agonists

that potentiate GSIS [14]. We excluded a role for PLC via use of a specific PLC inhibitor [15]

(S5 Fig). These results suggest that imeglimin and GPR40 agonists act via independent path-

ways to amplify insulin release.

Imeglimin modulates adenine dinucleotide and ATP levels

Adenine dinucleotides are known to modulate insulin secretion; we found that both imeglimin

and exogenous nicotinamide induced increases in islet NAD+ content and the NAD/NADH

ratio under high glucose conditions (Table 2).

As NAD+ is an essential co-factor for mitochondrial function [16], we also measured ATP

levels. The measurement of islet ATP content was validated by assessing the acute (10 min.)

effect of exposure to high (16.7 mM) vs. low (2.8 mM) glucose alone; a +47 + 10% increase in

ATP was measurable in this context (p<0.05; n = 14–16 observations in each group). In the

presence of high glucose, imeglimin significantly increased mean ATP content and the ATP/

ADP ratio (Table 2). The effect of metformin was also characterized; no such effect was

detected with metformin (S6 Fig). To confirm that increases in islet NAD+ are sufficient to

Fig 1. Imeglimin amplifies insulin secretion in islets from N0STZ rats. Wistar Rat Islets (A) vs. N0STZ Rat Islets (B). Islets from N0STZ or healthy Wistar

rats were incubated in the presence of 2.8 mM or 16.7 mM glucose. Insulin levels were measured in supernatants after 30 min of incubation. ��p<0.01,
���p<0.001 vs. respective low glucose values; mean ± SEM; n = 6 wells with 6 islets per well. Effect of imeglimin and GLP1 on Insulin Secretion from N0STZ

Rat Islets (C). Islets from N0STZ rats were incubated in the presence of 2.8 mM or 16.7 mM glucose with or without the tested concentrations of imeglimin or

GLP1 10−7 M. Insulin levels were measured in supernatants after 30 min of incubation. The effect of imeglimin at 100 μM was significant, �p<0.05, vs. high

glucose alone; mean ± SEM; n = 9–10 wells with 6 islets per well (note that when using an unpaired Student t-test, GLP1 also achieved statistical significance,

p = 0.0054).

https://doi.org/10.1371/journal.pone.0241651.g001
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Fig 2. Imeglimin amplifies insulin secretion in islets from GK rats. Control Wistar Rat Islets (A) compared with GK Rat Islets (B). Islets

from GK and Wistar rats were incubated in the presence of glucose 2.8 mM or 16.7 mM. Insulin levels were measured after 20 min of

incubation. ���p<0.001 vs. respective control value; mean ± SEM; n = 6 wells with 6–10 islets per well. Imeglimin (but not Metformin)

Amplifies Insulin Secretion from GK Rat Islets: Islets from GK rats were incubated in the presence of high (16.7 mM) glucose (grey bars) or
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amplify GSIS in diseased islets, we showed that insulin secretion and NAD+ content were

increased by exogenous nicotinamide (S7 Fig).

Increased NAD+ via the salvage pathway—increases in NAMPT expression

and activity

To assess if increases in the NAD+ pool are due to enhanced synthesis, we used Gallotannin,

an inhibitor of nicotinamide mononucleotide adenylyl transferase (NMNAT), a key enzyme in

the NAD+ synthetic pathway [17, 18]. Gallotannin (10μM) alone had no effect on NAD+. As

expected, imeglimin or 15 mM nicotinamide increased NAD+ levels (Fig 4A). With Gallotan-

nin co-administration, NAD+ content in imeglimin treated islets was no longer above control

levels and NAD+ content in nicotinamide treated islets was partially suppressed. These results

suggest that the effect of imeglimin on NAD+ content is mediated by increased synthesis.

At a low concentration (2 mM), the NAMPT substrate–nicotinamide—appeared to potenti-

ate the effect of imeglimin on GSIS (+89% vs. +33% with imeglimin alone). Given this result,

the activity of intracellular NAMPT, a key enzyme in the NAD+ salvage synthesis pathway, was

assessed (Fig 4B). As expected, iNAMPT activity was greater with 15 mM nicotinamide

with high glucose plus the indicated concentrations of imeglimin (C; open bars), metformin (D; yellow bars), or GLP1 as a control (blue

bars; panels C and D). Significant increases in mean (± SEM) glucose-stimulated insulin release are noted vs. respective control values;
�p<0.05, ��p<0.01, ���p<0.001; n = 15 to 16 observations per group. Effects of imeglimin on Kinetics of Insulin Secretion from GK Rat

Islets (E). Islets from GK rats were alternately perifused with 2.8 mM glucose for 10 minutes and 16.7 mM glucose with (red curve) or

without (black curve) imeglimin (100μM) for 10 minutes (10 to 20 min) followed by perifusion with 2.8 mM for an additional 10 minutes.

The insulin levels in the perifusate was measured every minute from 0 min to 30 min. Mean ± SEM insulin levels are shown (data are

derived from 4 independent experiments for each group at each time point).

https://doi.org/10.1371/journal.pone.0241651.g002

Fig 3. Imeglimin does not increase cAMP generation in isolated GK rat islets. In the presence of high glucose and

the phosphodiesterase inhibitor IBMX, GLP1 (0.1μM) treatment increased the cAMP content of GK islets (+95%,
���p<0.001; n = 9). However, imeglimin (100 μM), produced no effect to increase cAMP under the same conditions.

Mean ± SEM values are shown (n = 10). An additional independent experiment was also performed; levels of cAMP in

each tested condition were not different between the two experiments.

https://doi.org/10.1371/journal.pone.0241651.g003
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(+117%, p<0.01) and not significantly increased at 2 mM. In the absence of NAMPT substrate

(nicotinamide), imeglimin did not significantly modify iNAMPT activity; however, with 1–2

mM concentrations of nicotinamide, iNAMPT activity was significantly increased by the addi-

tion of imeglimin. Thus, in the presence of low concentrations of added substrate, imeglimin

leads to increased NAMPT activity. The possible effect of imeglimin to directly modulate

human recombinant NAMPT activity was also assessed. Recombinant NAMPT enzyme activ-

ity was not altered by imeglimin at six different concentrations (S8 Fig).

Since glucose rapidly induces NAMPT expression in isolated human islets [19]; the poten-

tial for imeglimin to upregulate NAMPT mRNA was interrogated. High glucose alone mod-

estly induced NAMPT mRNA levels; added exposure to imeglimin further increased NAMPT

mRNA (Fig 4C).

Imeglimin’s effects are distinct vs. sulphonylureas

Diazoxide opens K+-ATP channels to inhibit GSIS [20, 21]; sulphonylureas including tolbutamide

mediate channel closure and glucose-independent insulin secretion [22]. As expected, tolbuta-

mide (and glibenclamide) increased insulin secretion (Fig 5A; S9 Fig); diazoxide was also shown

to inhibit the effect of tolbutamide (Fig 5A). Control experiments also showed that GK rat islets

retain the ability to respond to KCl (S9 Fig). Imeglimin’s effect to augment GSIS was unaffected

by diazoxide (Fig 5B). Taken together with the absence of an imeglimin effect on insulin secretion

in low glucose, these results further suggest that imeglimin’s mode of action is distinct from sul-

phonylureas and may involve a pathway(s) that is independent of K+-ATP channels.

Potential role of a CD38–cADPR-ryanodine receptor pathway in NAD+

mediated mobilization of intracellular Ca2+

As expected, we also observed that imeglimin could induce increases in intracellular Ca2+ in

response to glucose in GK islets (Fig 6A). This effect to induce an increase in intracellular Ca2+

Table 2. Imeglimin and nicotinamide effects on adenine dinucleotide and ATP, ADP content of GK rat islets.

Control 16.7 mM Glucose Imeglimin 25 μM Imeglimin 100 μM Nicotinamide 15 mM

NAD+ 100 ± 5 100 ± 8 155 ± 18� - 123 ± 15 131± 11# 204 ± 30��� 130 ± 14

NADH 100 ± 3 100 ± 1 111 ± 9 - 113 ± 13 100 ± 1 123 ± 12 105 ± 2

NAD/NADH 100 ± 5 100 ± 8 154 ± 26 - 130 ± 18# 131 ± 9# 180 ± 24�# 124 ± 13

NADP+ 100 ± 2 100 ± 4 109 ± 2 - 101 ± 3 114 ± 5 116 ± 5�� 127 ± 7��

NADPH 100 ± 0 100 ± 1 98 ± 1 - 94 ± 3 104 ± 2 94 ± 3 106 ± 3

NADP/NADPH 100 ± 1 100 ± 3 110 ± 2�� 108 ± 3 109 ± 6 125 ± 4��� 121 ± 7�

ATP 100 ± 4 100 ± 11 - 145 ± 5��� 230 + 21� -

ADP 100 ± 8 100 + 9 - 103 ± 8 102 + 9 -

ATP/ADP 100 ± 9 100 + 0 - 142 ± 10�� 220 + 19� -

Islets from GK rats were incubated in the presence of 16.7 mM glucose with or without imeglimin or Nicotinamide. Mean ± SEM values (n = 15 samples per group) are

presented as the percentage of control. For measurements of NAD+, NADH, NADP+, and NADPH, mean values for each of two sets of experiments are shown

separately (one with three experiments—3 batches of islets; a second with two experiments—2 batches of islets). ATP and ADP levels were determined in independent

experiments with two separate batches of islets (n = 10 samples per group). Statistically significant results are noted in bolded text

�p<0.05

��p<0.01

���p<0.001. An unpaired Student t test was used for selected comparisons

#p<0.05

##p<0.01 vs. control.

https://doi.org/10.1371/journal.pone.0241651.t002
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Fig 4. Imeglimin increases the NAD+ pool through increased synthesis. Gallotannin Effect on NAD+ (A). Islets

from GK rats were incubated in the presence of 16.7 mM glucose with or without imeglimin (100 μM), or

nicotinamide (15 mM); compounds were administered alone or in combination with gallotannin (10 μM). NAD+ was
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was also not observed in conditions of continuous low glucose incubation (S11 Fig). We have

also observed that glucose-induced Ca2+ mobilization in GK rat islets is impaired by more

than 85% vs. Wistar rat islets studied in parallel in a perifusion assay (S10 Fig). Interestingly,

the kinetics of imeglimin’s effect on intracellular Ca2+ (more sustained with a lag in returning

towards baseline after switching to low glucose) appeared to differ from that observed with

GLP1 (acute and transient). This difference is consistent with the notion that imeglimin and

GLP1 operate via distinct pathways in augmenting GSIS. The pathway implicated in leading to

increased intracellular Ca2+—via an increase in the cellular NAD+ pool (described below)

might also be expected to result in a delayed return to baseline. Importantly, the lag in intracel-

lular Ca2+ concentrations returning to baseline does not necessarily imply that imeglimin has

glucose-independent effects to stimulate insulin secretion; indeed data shown in Fig 1C and S1

Fig show no effects on insulin secretion under low glucose conditions and insulin secretion

returns to baseline within 3–5 minutes of switching to low glucose as shown in Fig 2E.

measured after 20 min incubation; mean (n = 10 in each group) ± SEM values are shown; �p<0.05, ���p<0.001 vs.

Control; ## p<0.01 vs. nicotinamide alone. iNAMPT Activity (B). Islets from GK rats were incubated in the presence

of 16.7 mM glucose with or without Imeglimin (100 μM), or nicotinamide (2 mM or 15 mM), or the combination of

imeglimin and 2 mM nicotinamide. Intracellular (i) NAMPT activity was then measured; mean ± SEM (n = 5–6 per

group) values are shown. �p<0.05, ��p<0.01 vs. Control. In an independent experiment, iNAMPT activity was

induced by the combination of imeglimin (100 μM) and 1 mM nicotinamide (+42%; p<0.05 vs. both control and

nicotinamide alone). NAMPT mRNA Levels (C). Results from two separate experiments (Right and Left panels) are

shown. NAMPT gene expression was determined by RT-PCR in islets from GK rats that were incubated for 30 min in

the presence of 2.8 mM glucose (hatched bar), 16.7 mM glucose (solid bars) or 16.7 mM glucose plus imeglimin

(100 μM; open bars). Mean (± SEM; n = 9–10 observations per group) levels of NAMPT mRNA are shown as fold vs.

16.7 mM glucose alone; #p<0.05 vs. 2.8 mM glucose; �p<0.05; ���p<0.001 vs. 16.7 mM glucose.

https://doi.org/10.1371/journal.pone.0241651.g004

Fig 5. Imeglimin effect on insulin secretion is resistant to diazoxide. (A) Islets from GK rats were incubated in low (2.8 mM) glucose with or

without diazoxide (400 μM), tolbutamide (500 μM), or a combination of both diazoxide and tolbutamide. (B) GK rat islets were incubated in high

(16.7 mM) glucose with or without diazoxide (400 μM), imeglimin (100 μM), or a combination of both diazoxide and imeglimin. Samples were

obtained after 20 min and subsequently assayed to determine insulin concentrations; �p<0.05, ��p<0.01, vs. respective control value. Mean ± SEM

values are shown.

https://doi.org/10.1371/journal.pone.0241651.g005
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Fig 6. Potential role of CD38 and NAD+ metabolites to enhance insulin secretion via increasing intracellular Ca2+

in response to glucose. Measurement of Intracellular Ca2+ in Perifused GK Rat Islets (A). Islets from GK rats were

perifused alternately with glucose 2.8 mM and 16.7 mM glucose without treatment for Controls (black curve), with
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NAD+ is metabolized to cyclic ADP-ribose (cADPR) and nicotinic acid dinucleotide phos-

phate (NAADP) via CD38 (ADP ribosyl cyclase/cADPR hydrolase). Both metabolites are

implicated in mobilizing internal Ca2+ stores, through activation of ER ryanodine receptors in

the case of cADPR and via two-pore channels (TPCs) in the case of NAADP.

To assess the role of CD38, siRNA-mediated knockdown was employed. CD38 siRNA pro-

duced significant and reproducible decreases in CD38 mRNA (from -40% to -49%, p<0.01–

0.05; S12 Fig) vs. control siRNA. When CD38 mRNA expression was only moderately reduced,

imeglimin’s effect on GSIS was abolished (Fig 6B). In contrast, effects of GLP1 treatment were

unaffected and there was no effect with scrambled (control) siRNA (Fig 6C). These results sug-

gest that CD38 is required for the effect of imeglimin to potentiate GSIS.

Finally, we studied the effects of modulating signaling via cADPR or NAADP on insulin

release (Table 3). GLP1 and imeglimin produced expected GSIS effects and exogenous cADPR

(1.0 μM) also increased GSIS. cADPR’s effects to enhance Ca2+ mobilization (and GSIS) are

reportedly mediated by ryanodine receptors (RyR) [23]; thus, high concentration ryanodine

was used as a RyR inhibitor. In the presence of 200 μM ryanodine, the effects of either cADPR

or imeglimin to augment GSIS appeared to be abrogated (Table 3). However, baseline glucose-

stimulated insulin release was also modestly lower in the presence of 200 μM ryanodine vs.

without ryanodine, thus complicating the interpretation of these data. Overall, these data sug-

gest a role for cADPR in contributing to imeglimin’s effects to amplify glucose-stimulated Ca2

+ mobilization and insulin secretion.

imeglimin 100 μM (red curve) or with GLP1 0.1 μM (green curve) followed by a third period of perifusion with 2.8

mM glucose alone. Intracellular Ca2+ levels were measured from individual islets by successive excitation at 340 nm

and 380 nm and detection of fluorescence emitted at 510 nm every 10 seconds. Results for each of the three groups

(control, imeglimin, GLP1) are derived from 8 experiments with a total of 8 to 10 rats per group (8 rats for control and

GLP1 groups, 10 for the imeglimin group). Insulin Secretion Response to Imeglimin and GLP1 With and Without

CD38 Knockdown: Scrambled sequence siRNA control (SC-Control, solid bars) and CD38 siRNA (open bars)

transfected GK rat islets were incubated for 20 min in high (16.7 mM) glucose with or without 100 μM imeglimin (B)

or 0.1 μM GLP (C). Mean ± SEM (n = 15–20 per group) insulin release values are shown; �p<0.05 vs. respective

control.

https://doi.org/10.1371/journal.pone.0241651.g006

Table 3. Effects of modulating cADPRon glucose-stimulated insulin secretion.

Insulin Secretion

Treatment Group pmol/L.islet.20 min % of 16.7 mM Glucose Control p value(s)

Control 16.7 mM Glucose 5.1 ± 0.8 100 ± 15 -

GLP1 (0.1 μM) 14.1 ± 1.5 274 ± 29 <0.001�

Imeglimin (100 μM) 7.8 ± 0.7 152 ± 13 <0.05�

cADPR (1.0 μM) 7.3 ± 0.5 143 ± 10 <0.05�

Ryanodine (200 μM) 3.2 ± 0.3 63 ± 6 NS

cADPR + Ryanodine 4.3 ± 0.4 84 ± 8 NS�; <0.001#

Imeglimin + Ryanodine 5.4 ± 0.8 105 ± 15 NS�; <0.05#

Islets from GK rats were incubated in the presence of 16.7 mM glucose for 20 min with or without the indicated

compounds as shown; effects pathway inhibition (excess ryanodine)—with or without cADPR or imeglimin

stimulation—are depicted in the lower portion of the table. Mean ± SEM values for insulin released (pmol/L.islet.20

min; also presented as % of 16.7 mM glucose control) are shown (n = 8–13 observations per group). Bolded values

are statistically significant; p values vs. 16.7 mM glucose control (�) or vs. the respective single compound in

combination treatments (#, first agent listed in Column one) are noted.

https://doi.org/10.1371/journal.pone.0241651.t003
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Discussion

The prominant role of β-cell dysfunction in Type 2 diabetes is well established [24–28]. Here,

we elucidated a novel mechanism by which imeglimin, a new potential anti-diabetic medica-

tion, improves β-cell function–an effect that has been clearly demonstrated in vivo in both ani-

mal models [6, 8] and humans [9].

Imeglimin ameliorates hyperglycemia in rodent models characterized by a primary β-cell

defect–STZ-diabetic and GK rats [6]. Here, we determined that imeglimin could acutely and

directly enhance GSIS (without any effect in low glucose conditions) with isolated islets from

these models. Concentrations where imeglimin was effective (25–100 μM) are also aligned

with human exposure levels (estimated� 50 μM, unpublished; Poxel SA).

Several observations indicate that imeglimin’s mechanism is distinct vs. other therapeutic

approaches. It is important to distinguish the effects of imeglimin from metformin since in

liver there is an apparent overlap with respect to inhibition of gluconeogenesis and the poten-

tial to partially inhibit mitochondrial Complex I [6, 7]. We confirmed that metformin fails to

directly potentiate GSIS, consistent with the literature [29, 30]; in addition, metformin had no

effect on GK islet ATP (vs. significant increases with Imeglimin). GLP1 binding to its cognate

G-protein coupled receptor induces rapid activation of plasma membrane associated adenylyl

cyclase leading to clear increases in cAMP [2, 31]; imeglimin had no such effect. Sulphonylur-

eas such as tolbutamide, are secretagogues in both low- and high-glucose; in contrast, the

effects of imeglimin (like GLP1) are only glucose-dependent. We also found that, unlike sul-

phonylureas, imeglimin’s effect on GSIS was retained in the presence of diazoxide, a classical

β-cell K+-ATP channel opener [32]. Together with the observed lack of effect on insulin secre-

tion under low glucose conditions in this and prior [8] studies, these findings are consistent

with the likelihood of a K+-ATP independent mechanism for imeglimin. Importantly, the

GSIS enhancing effects of incretins like GLP1 also involve a diazoxide-resistant K+-ATP inde-

pendent pathway [33]. GPR40 agonists and molecules in the imidazoline class have been pur-

sued as GSIS enhancing therapies; these agents operate through PLC activation [14, 34] which

was also excluded a requirement for imeglimin’s action.

Mitochondrial dysfunction is a key feature of β-cell dysfunction [35–37]; decreases in ATP

generation have been described in islets from GK rats and patients with Type 2 diabetes [35,

38–40]. We previously showed that imeglimin can modulate mitochondrial function in liver

[7]. In islets from healthy rats, imeglimin was also shown to amplify insulin secretion in

response to obligate mitochondrial fuels [8]. Here, we showed that imeglimin increased islet

ATP levels, an effect that may be consistent with the potential to enhance mitochondrial

metabolism. The lack of diazoxide inhibition of Imeglimin’s effect is still compatible with

enhanced mitochondrial function since it is well known that additional anaplerotic mitochon-

drial metabolic cycles also mediate GSIS without requiring downstream K+-ATP channel clo-

sure [41].

Given its known roles in mitochondrial function, we measured NAD+ and demonstrated

an increase with imeglimin, and with nicotinamide, a substrate for NAD+ production. Impor-

tantly, exogenous nicotinamide was previously shown to enhance GSIS in rodent and human

islets [42–44]. We confirmed this effect and showed that providing additional substrate for

NAD+ synthesis–low nicotinamide concentrations–appeared to act in concert with imeglimin

to augment GSIS. These results suggest that pathways emanating from NAD+ remain compe-

tent in GK islets and may be involved in mediating imeglimin’s efficacy. NAD+ biogenesis

occurs via de novo synthesis from tryptophan or the salvage pathway from nicotinamide via

NAMPT [16, 45]. Gallotannin, which inhibits NAD+ synthesis via both pathways [17, 18], was

used to provide further results suggesting that imeglimin’s effect to increase the NAD+ pool
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involves new synthesis of NAD+. We also excluded a direct effect of imeglimin on NAMPT

activity in vitro. The effect of imeglimin to induce NAMPT gene expression and activity is

intriguing but it is uncertain if this fully accounts for the net increase in NAD+ given the short

time frame within which these effects were seen. Relevance of the potential role of NAMPT is

underscored by studies showing NAMPT expression in β-cells (including human) and that

NAMPT haplodeficiency impairs GSIS in mice [19, 46].

Increased intracellular Ca2+ is critical for insulin granule exocytosis; Ca2+ sources include

both extracellular (via voltage-gated channels in response to K+-ATP closure) and intracellular

pools [31, 47, 48]. Having observed that imeglimin can augment Ca2+ mobilization, we

assessed a potential link to NAD+ generation. In addition to other roles [45, 49], metabolism

of NAD+ by CD38 generates key second messengers–cADPR and NAADP—that are impli-

cated in Ca2+ signaling [45, 50]. Increases in cADPR, in turn, can activate ryanodine receptors

resulting in mobilization of Ca2+ stores from ER [23, 48, 51] and this pathway is reportedly

operative in pancreatic β-cells [50, 52]. Our results suggest that imeglimin ‘s mechanism is

dependent on components of this pathway. However, the efficiency of CD38 knockdown was

limited and additional studies will be required to confirm and extend these findings. In partic-

ular, future studies would benefit from also including a genetic knockout rodent model(s)

such as that described by Kato et al. [53]. Additional support for the potential role of cADPR

and/or NAADP in imeglimin’s actions could also be derived from the use of specific antago-

nists that have been developed as tools, such as 8-Br-cADPR [54]. Although CD38 is described

as an ectoenzyme [17], it also exists in an inward orientation and can consume intracellular

NAD+ [17, 55]. This pathway is highlighted by increases in islet cADPR and GSIS resulting

from β-cell-specific CD38 overexpression in mice [56]. However, we acknowledge cADPR’s

role in islet function is controversial; especially given an inability to consistently show that

cADPR drives Ca2+ release [57, 58]. Some of these discrepancies may have resulted from dif-

ferences in species and methodologies [50].

In assessing the potential role of an NAD+ mediated effect to enhance Ca2+ mobilization,

our experiments were limited by an inability to measure levels of cADPR in islets from this

diabetic rat model, not further interrogating the possible role of NAADP or showing a direct

correlation between changes in Ca2+ and the apparent effects of modulating CD38 or RyR.

Our studies were also restricted to short time points and may have missed additional, later,

effects. There is also a clear need to more precisely define a direct molecular target(s) for ime-

glimin including mechanism(s) that may be responsible for induction of NAMPT gene

expression.

In summary, we have demonstrated an effect of imeglimin to acutely and directly restore

GSIS in diseased islets from a rat model that closely resembles human Type 2 diabetes. Impor-

tantly, mechanisms employed by other classes of antidiabetic medications including incretin

mimetics, sulphonylureas, and metformin were excluded. The results described here are also

consistent with a potential proposed mode of action (Fig 7) that involves a pathway leading to

increased NAD+ content which has been implicated in the regulation of intracellular Ca2+.

This pathway is quite distinct and does not appear to overlap with mechanisms employed with

other classes of antidiabetic therapies. Additional studies will be required to assess the extent

to which pathways implicated in the present studies are also modulated by imeglimin in

human islets. Although prior literature has shown that a predominant effect of imeglimin in

animals and humans involves amplification of GSIS, the aforementioned findings from the

current experiments are novel and not previously described. The results reported here are also

consistent with existing clinical data where imeglimin has been shown to effectively treat

hyperglycemia without any additional risk of hypoglycemia.
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S8 Fig. Imeglimin does not modulate the activity of recombinant NAMPT.
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Fig 7. Proposed model for mechanism of imeglimin action in islet β-cells. The effects of imeglimin in the context of

glucose stimulation are highlighted in red (text and arrows).
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