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Abstract

Altered topological organization of brain structural covariance networks has been

observed in attention deficit hyperactivity disorder (ADHD). However, results have been

inconsistent, potentially related to confounding medication effects. In addition, since

structural networks are traditionally constructed at the group level, variabilities in indi-

vidual structural features remain to be well characterized. Structural brain imaging with

MRI was performed on 84 drug-naïve children with ADHD and 83 age-matched healthy

controls. Single-subject gray matter (GM) networks were obtained based on areal simi-

larities of GM, and network topological properties were analyzed using graph theory.

Group differences in each topological metric were compared using nonparametric per-

mutation testing. Compared with healthy subjects, GM networks in ADHD patients

demonstrated significantly altered topological characteristics, including higher global and

local efficiency and clustering coefficient, and shorter path length. In addition, ADHD

patients exhibited abnormal centrality in corticostriatal circuitry including the superior

frontal gyrus, orbitofrontal gyrus, medial superior frontal gyrus, precentral gyrus, middle

temporal gyrus, and pallidum (all p < .05, false discovery rate [FDR] corrected). Altered

global and nodal topological efficiencies were associated with the severity of hyperactiv-

ity symptoms and the performance on the Stroop andWisconsin Card Sorting Test tests

(all p < .05, FDR corrected). ADHD combined and inattention subtypes were differenti-

ated by nodal attributes of amygdala (p < .05, FDR corrected). Alterations in GM net-

work topologies were observed in drug-naïve ADHD patients, in particular in

frontostriatal loops and amygdala. These alterations may contribute to impaired cogni-

tive functioning and impulsive behavior in ADHD.
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1 | INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is a common neu-

rodevelopmental condition affecting 2–7% of school-age children

(Sayal, Prasad, Daley, Ford, & Coghill, 2018). Psychoradiology stud-

ies have documented structural brain alterations in patients, though

typically at the level of individual regions rather than the whole

brain connectome (Konrad & Eickhoff, 2010; Nakao, Radua,

Rubia, & Mataix-Cols, 2011; Samea et al., 2019; Li et al., 2021;

Gong, 2020; Sun, et al. 2015; Lui, et al. 2016). Further, inconsis-

tencies in prior work may be related to differences in clinical vari-

ables such as comorbidity and medication history. Notably,

evidence from both animal models and human studies has demon-

strated altered synaptic plasticity in prefrontal, hippocampal, and

striatal regions resulting from stimulant medication, as well as mor-

phological deficits associated with psychostimulant use (Crowley,

Cody, Davis, Lovinger, & Mateo, 2014; Jenson et al., 2015; Urban,

Li, & Gao, 2013). Moreover, the gray matter (GM) morphometry of

higher cortical regions crucial for cognitive and emotional

processing is influenced by ADHD comorbidity (Bayard et al., 2020;

Langer, Benjamin, Becker, & Gaab, 2019; Noordermeer et al., 2017;

Yerys et al., 2019). Therefore, medication and comorbidity are

potential confounds for MRI studies of ADHD.

To best control for these confounding factors, we have previ-

ously explored GM volume abnormalities in drug-naïve ADHD

patients with limited comorbidities, and found altered GM volumes

in orbitofrontal cortex and posterior mid-cingulate cortex, which

were correlated with deficits of cognitive flexibility (He

et al., 2015). These and other results provide initial evidence for

morphological abnormalities in untreated ADHD patients. How-

ever, since the brain itself is a complex network of interconnected

regions (Niu et al., 2018; Zhang et al., 2020), it is important to con-

sider the role of regional alterations in brain volumes in the context

of the whole brain network topology. The examination of the large-

scale structural network in ADHD patients may thus provide a more

comprehensive understanding of brain alterations in ADHD and

their relationship to cognitive functioning, as it has in other disor-

ders (Zhang et al., 2020).

To date, only two studies have reported altered GM organization

in ADHD children (Griffiths et al., 2016; Saad et al., 2017). Both of

these studies constructed brain networks at the group level using a

structural covariance approach, which limits understanding of effects

as the individual level such as their relationship with clinical variables.

Moreover, patients in these studies were receiving medication and

had multiple comorbidities, both of which may affect the organization

of brain networks in ADHD patients.

Here, we computed single-subject GM networks based on the

similarities of GM between brain regions (Tijms, Seriès, Willshaw, &

Lawrie, 2012), and applied graph theoretical analysis to investigate

the constructed networks in a large sample of drug-naïve ADHD chil-

dren without psychiatric comorbidities. We also examined whether

clinical phenotypes of ADHD were associated with changes in brain

GM networks. The Stroop Color-Word Interference Test and

Wisconsin Card Sorting Test (WCST) were used to assess conflict

monitoring and cognitive flexibility. We hypothesized that the topo-

logical organization of structural brain networks, for example, nodal

centrality in frontostriatal loops, were altered in ADHD, and that alter-

ations relate to symptom severity and cognitive deficits. Second,

based on more impulsive symptoms in ADHD combined subtype

(ADHD-C), we expected more widespread topological alterations in

ADHD-C than ADHD inattentive subtype (ADHD-I).

2 | METHODS

2.1 | Participants

Then, 118 and 104 healthy control (HC) participants were included in

the study. Children with ADHD (age range 7–16 years) who were

drug-naïve and without psychiatric or significant medical com-

orbidities were recruited from the Mental Health Center of West

China Hospital of Sichuan University. Diagnoses of ADHD were con-

firmed by two experienced clinical psychiatrists according to the

DSM-IV criteria. Exclusion criteria included a history of conduct disor-

der, oppositional defiant disorder, Tourette's disorder, any major Axis

I psychiatric disorder, head trauma, neurologic disorders or neurosur-

gery; current or past treatment with stimulants or other medications

for symptoms of ADHD; left-handedness (assessed using Annett's

Hand Preference Questionnaire); the scores of age-appropriate

Wechsler Intelligence Scale for Children (IQ) lower than 90 points and

any systemic illness that might affect brain anatomy and function.

HCs were recruited from local communities and were matched for

age and educational level with the ADHD patients. All HCs were

screened using the Structured Clinical Interview for DSM-IV-Non-

patient Edition to exclude any major Axis I psychiatric diagnosis. Indi-

viduals with a history of receiving psychotropic medications or having

a known history of psychiatric illness in a first-degree relative were

also excluded. Other exclusion criteria were the same as those for the

ADHD group. All participants and their guardians provided written

informed assent or consent as appropriate. The study was approved

by the research ethics committee of West China Hospital of Sichuan

University.

2.2 | Behavioral and cognitive assessments

The revised Conners' Parent Rating Scale and the Child Behavior

Checklist (with ratings provided by participants' parents) were used to

characterize clinical features of ADHD (Achenbach, 1991;

Conners, 1999).

The Stroop Color Word Test was used to assess conflict

processing. Participants were asked to name words presented in color

congruent with word (e.g., word blue in blue print), then words with

incongruent color. The color-word interference time was measured,

which is addition time required to complete incongruent relative to

congruent items.
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The WCST (64-card version) was used to evaluate cognitive flexi-

bility. Perseverative errors, nonperseverative errors, total errors, and

categories achieved were recorded.

2.3 | MRI data acquisition

The scans were acquired using a 3-T MRI system (Trio; Siemens,

Erlangen, Germany) with an eight-channel phased-array head coil.

T1-weighted images were acquired using a magnetization prepared

rapid gradient echo sequence (time of repetition = 1,900 ms; time of

echo = 2.5 ms; flip angle = 9) with 256 � 256 matrix over a field of

view of 256 � 256 mm and 176 sagittal slices of 1 mm thickness.

2.4 | Data preprocessing

Structural image preprocessing was performed using Statistical Para-

metric Mapping (SPM) software (http://www.fil.ion.ucl.ac.uk/spm/

spftware/SPM8). In brief, individual structural images were segmented

into GM, white matter, and cerebrospinal fluid using the unified seg-

mentation model. All automatic segmentations were then visually con-

firmed and spatially normalized to the Montreal Neurological Institute

coordinate space, in which the template was defined using all partici-

pants in our study. Finally, the data were resliced to 2 � 2 � 2 mm3

voxels and spatially smoothed (Gaussian kernel with a full width at

half maximum of 6 mm). Of note, an experienced neuroradiologist

inspected conventional MR imaging examinations of all participants to

exclude individuals with excessive motion artifacts or vibration arti-

facts and gross neuroradiologic abnormalities. Then, 34 patients and

21 HC participants were excluded from statistical analysis due to

excessive head motion artifacts, leaving a total of 84 drug-naïve

ADHD participants (44 subjects with the combined subtype of ADHD

and 40 subjects with the inattentive subtype) and 83 HC who were

included in statistical analyses.

2.5 | Individual structural network construction

Single-subject GM networks were obtained based on interregional

similarities using a completely automated and data-driven method

that has been previously described in Tijms et al. (2012). Specifically,

the GM segmentation of each individual was divided into a set of

cubes, each containing 3 � 3 � 3 voxels. Each cube was defined as a

node in the network, and edges were computed as the structural mor-

phology similarities between two cubes using Pearson correlation

coefficients. The maximum correlation coefficient over different rota-

tions of the seed cube was identified to estimate cube similarity,

because the angle of orientation of two cubes may reduce similarity

values. Unweighted and undirected graphs were subsequently con-

structed by binarizing the similarity matrices, only keeping significant

correlations after the false discovery rate (FDR) correction (Genovese,

Lazar, & Nichols, 2002). Because the properties of the network vary

with the size of the network, it is crucial to normalize the derived GM

networks in case–control studies to ensure all participants have the

same number of nodes. For this reason, we followed the method pro-

posed by Batalle et al. (2013) to normalize individual GM networks

based on the unified automated anatomical labeling (AAL) atlas includ-

ing a total of 90 nodes. In particular, each cube was assigned to the

AAL region that encompassed the greatest number of the cube's

voxels. The connectivity strength of two AAL regions was defined as

the ratio of actual significant correlations to the total possible connec-

tions between nodes, thereby circumscribing the range between

0 and 1. This process established a 90 � 90 weighted normalized net-

work for each participant.

2.6 | Network properties

Network properties were calculated using GRETNA software

(http://www.nitrc.org/projects/gretna) (Wang et al., 2015). A range

of sparsity (S) thresholds (.10 < S < .34 with an interval of .01) was

applied to the correlation matrices. The sparsity range was selected

to ensure the small-worldness nature of the thresholded networks.

The area under the curve (AUC), which reflects measures across the

sparsity parameter S, was calculated for each network metric to

provide a summary scalar of the topological organization of the

brain networks.

The topological properties of brain networks at both the global

and nodal levels were calculated at each sparsity threshold. Small-

world global parameters included the clustering coefficient (Cp), nor-

malized clustering coefficient (γ), characteristic path length (Lp), nor-

malized characteristic path length (λ), and small-world (σ) parameters.

Network efficiency parameters included global efficiency (Eglob) and

local efficiency (Eloc). The nodal-level properties included nodal effi-

ciency, nodal degree, and betweenness centrality.

2.7 | Statistical analysis

Using SPSS software, a two-sample t test was used to test for group

differences in age, IQ, Stroop test scores and WSCT performance, and

a chi-square test was used to test for sex differences between the

two groups.

The network-based statistics (NBS) method (www.nitrc.org/

projects/nbs/) was used to identify the specific pairs of region pairs

that exhibited between-group differences in nodal characteristics.

First, nodes that exhibited significant between-group differences in at

least one of the three nodal centralities (node degree, efficiency, and

betweenness) were chosen. A subnetwork connection matrix for each

participant was then created. Finally, a set of suprathreshold links

between connected components were identified using NBS metrics

(threshold = 2.5, p < .05) (Zalesky, Fornito, & Bullmore, 2010).

The AUCs of network parameters between the ADHD and con-

trol groups for each metric (small-world, network efficiency and

regional centrality measures) were compared using nonparametric
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permutation tests (Lei et al., 2015). The Benjamin–Hochberg FDR was

used to adjust for multiple comparisons (Genovese et al., 2002).

After significant between-group differences were identified in the

network metrics, exploratory partial correlation analysis was used to

assess associations of these metrics with clinical symptoms and cogni-

tive performance using age and sex as covariates. To further identify

the significant predictors of clinical symptoms and cognitive perfor-

mance, significant correlations with clinical symptoms and cognitive

performance network metrics were substituted subsequently into

multiple stepwise regression analysis (FDR q value selected to main-

tain false positive error rate < .05).

The same statistical approach was applied to identify possible

demographic, clinical characteristic, network metrics differences

between ADHD-C and ADHD-I subtypes.

3 | RESULTS

3.1 | Participant characteristics

Demographic variables, including age sex, and IQ, did not significantly

differ between the ADHD and control groups (both p > .05) (Table 1).

Compared with control participants, children with ADHD had longer

color interference time on the Stroop test (all p < .001). In WCST,

ADHD participants had more total errors, perseverative errors and

nonperseverative errors, and fewer categories achieved than control

participants (all p < .001) (Table 1). The combined (ADHD-C) and inat-

tentive (ADHD-I) subtypes of ADHD were not significantly different

between demographic variables and cognitive variables, but the

ADHD combined subtype has higher hyperactivity index and atten-

tion problem scores than the inattentive subtype (Table 1).

3.2 | Difference between ADHD and HC subjects

Compared with controls, children with ADHD exhibited decreased

characteristic path length Lp (p = .004) and increased clustering coef-

ficient Cp (p = .002). No significant differences were observed in nor-

malized clustering coefficient γ, normalized characteristic path length

λ, or small-worldness. With respect to network efficiency, both global

efficiency (p = .004) and local efficiency (p = .001) were higher in the

ADHD group (Figure 1).

For nodal metrics, compared with controls, the ADHD group

exhibited increased nodal degree in the right precentral gyrus, left

superior frontal gyrus and right pallidum, increased nodal efficiency in

the left middle frontal gyrus, left superior frontal gyrus, right pallidum,

and left middle temporal gyrus, increased nodal betweenness central-

ity in the right pallidum, and decreased nodal betweenness centrality

in the left superior frontal gyrus (all p < .05, FDR corrected) (Figure 2,

Table S2).

A network with 6 nodes and 10 edges was identified that was

significantly altered in ADHD using NBS (Figure 3). The nodes

included components of dorsolateral corticostriatal circuitry

(including dorsolateral superior frontal gyrus, medial superior fron-

tal gyrus, middle temporal gyrus, precentral gyrus, and pallidum)

extending to orbitofrontal–striatal circuits. Connectivity between

TABLE 1 Demographic and clinical characteristics of the participants

All participants (n = 187) ADHD participants

ADHD

(n = 84)

Control subjects

(n = 83) p

Combined

(Li et al., 2014)

Inattentive (Cubillo, Halari,

Smith, Taylor, & Rubia, 2012) p

Age (years) 10.01 ± 2.34 10.39 ± 2.18 .293 9.74 ± 2.45 10.06 ± 2.35 .537

Gender 12/72 14/69 .645 7/37 5/35 .66

IQ 103.27 ± 7.7 106.57 ± 7.86 .53 101.67 ± 5.95 102.79 ± 8.19 .659

Revised Conners' Parent Rating

Scale hyperactivity index

13.68 ± 6.13 4.98 ± 4.44 <.001 16.57 ± 5.18 10.18 ± 5.36 <.001

Child behavior checklist

attention problem scores

9.53 ± 3.49 3.69 ± 3.20 <.001 10.37 ± 3.17 8.47 ± 3.64 .017

Color-Word interference time (s)

of Stroop test

168.13 ± 86.73 98.33 ± 35.89 <.001 184.34 ± 100.13 149.37 ± 64.35 .068

WCST

Total correct 29.12 ± 10.06 34.63 ± 6.67 <.001 28.33 ± 9.85 30.05 ± 10.36 .441

Total errors 17.13 ± 11.75 10.34 ± 8.22 <.001 17.67 ± 11.95 16.5 ± 11.64 .654

Perseverative errors 5.36 ± 6.08 2.51 ± 3.17 <.001 4.98 ± 5.31 5.82 ± 6.94 .535

Nonperseverative errors 11.77 ± 7.49 7.84 ± 5.71 <.001 12.69 ± 8.01 10.68 ± 6.78 .227

Categories completed 4.16 ± 1.87 5.16 ± 1.62 <.001 4.04 ± 1.85 4.29 ± 1.92 .555

Abbreviations: ADHD, attention deficit/hyperactivity disorder; IQ, Wechsler Intelligence Scale; WCST, Wisconsin Card Sorting Test.
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these nodes in ADHD was higher than in controls (all p < .001, FDR

corrected).

Stepwise regression models examining relations between topo-

logical structures of structural brain networks and cognitive function

in ADHD revealed that global efficiency was related to Color-Word

interference time on the Stroop test. Clustering coefficient and nodal

degree of left medial superior frontal gyrus were related to persevera-

tive errors of WCST. Nodal efficiency of left orbital cortex was related

to hyperactivity symptoms of ADHD (all p < .05, FDR corrected)

(Table S4, Figure 4).

3.3 | Differences between combined and
inattentive subtypes

ADHD-C children and ADHD-I children were not significantly dif-

ferent in small-world properties. For nodal metrics, ADHD-C chil-

dren exhibited increases in all nodal metrics of left amygdala (all

p < .05, FDR corrected) (Figure 2). When subsequent stepwise

regression analyses were performed in both ADHD-C children and

ADHD-I children separately, we observed no differences in correla-

tions between network metrics and cognitive impairment or symp-

toms of ADHD.

4 | DISCUSSION

The present study investigated changes in GM networks in drug-naïve

ADHD children. Compared with healthy subjects, ADHD patients

demonstrated altered large-scale brain network topologies character-

ized by significantly shorter path length and higher clustering. The

alterations were identified in dorsal and orbital frontal cortex, tempo-

ral cortex and striatum, and were associated with impulsive behaviors

and cognitive impairment. Overall, the individual network-level abnor-

malities identified in the present study highlight clinically relevant

alterations in the brain network organization which provide new neu-

robiological insights into the pathophysiology of ADHD importantly in

patients prior to lifetime ADHD medication exposure.

Our findings of abnormal global organization of the GM network

in ADHD children were partly consistent with previous graph

F IGURE 1 Graphs show differences global metrics between the attention deficit hyperactivity disorder (ADHD) and healthy controls (HCs).

Compared with the controls, ADHD exhibited an increased global efficiency (Eglob) (p = .004), local efficiency (Eloc) (p = .001), and clustering
coefficient (Cp) (p = .002) and a decreased characteristic path length (Lp) (p = .004), but no significant differences in normalized clustering
coefficient (γ), normalized characteristic path length (λ), or small-worldness (σ)
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analytical studies of GM organization in ADHD in medicated patients

(Griffiths et al., 2016; Saad et al., 2017). Notably, while one study

showed increased clustering of GM networks in ADHD patients

(Griffiths et al., 2016), another study failed to find any significant

results (Saad et al., 2017). Medication effects may contribute to the

inconsistency of previous findings. Psychostimulant medication has

been shown to normalize reductions in local GM volume of the ante-

rior cingulate cortex in ADHD (Semrud-Clikeman, Pli�szka, Lancaster, &

Liotti, 2006; Sobel et al., 2010), and the ADHD-associated excess cor-

tical thinning during adolescence may also be moderated by psy-

chostimulant treatment (Nakao et al., 2011; Shaw et al., 2009). The

comorbidity of psychiatric disorders may also influence results of

ADHD case–control studies. Volumetric reductions in GM have been

shown to be more pronounced in ADHD patients with comorbidity,

and abnormalities in brain regions affected by different comorbidities

vary which can confound and weaken brain-illness relations (Mizuno

et al., 2019; Paraskevopoulou et al., 2020). Furthermore, when looking

at group level data, some subtle individual structural differences which

are of particular interest in clinical populations may be underestimated

or unidentified (Tijms et al., 2012).

The findings of shorter path length and higher clustering in drug-

naïve ADHD patients indicate higher integration and segregation of

brain structural networks in patients, consistent with excessive trans-

mission of brain information (Bullmore & Sporns, 2012; Deco, Tononi,

Boly, & Kringelbach, 2015). ADHD is strongly heritable and linked to

mutations that interfere with dopaminergic or noradrenergic signaling

which is crucial in regulating synaptic activity and plasticity (Cortese

et al., 2012). Altered synaptic pruning and neuropil volume, and the

distribution and/or density of cell bodies, may contribute to our find-

ings of altered anatomic network organization. From a functional per-

spective, when dopamine or norepinephrine neurotransmitter

F IGURE 2 Brain regions with abnormal nodal centralities in the brain gray matter network compared between the ADHD patients and
controls, the ADHD-C and ADHD-I groups. ADHD, attention deficit hyperactivity disorder; ADHD-C, ADHD combined subtype; ADHD-I,
inattentive subtype; AMYG, amygdala; L, left; MTG, middle temporal gyrus; ORBmid, orbital middle frontal gyrus; PAL, lenticular nucleus,

pallidum; PreCG, precentral gyrus; R, right; SFGdor, dorsolateral superior frontal gyrus; SFGmed, medial superior frontal gyrus

F IGURE 3 The networks showing abnormal connections in the
brain networks compared between ADHD patients and controls.
Every node denotes a brain region and every line denotes a
connection. Red color represents increased connections in ADHD
groups than controls. ADHD, attention deficit hyperactivity
disorder; L, left; MTG, middle temporal gyrus; ORBmid, orbital middle
frontal gyrus; PAL, lenticular nucleus, pallidum; PreCG, precentral
gyrus; R, right; SFGdor, dorsolateral superior frontal gyrus; SFGmed,
medial superior frontal gyrus

CHEN ET AL. 1261



modulation is excessive, it can result in decreased signal to noise

levels in neural connectivity (Madadi Asl, Vahabie, & Valizadeh, 2019).

This may contribute to excessive brain arousal and to symptoms and

cognitive features of ADHD.

This possibility is consistent with the observed associations of

network metrics with poorer performance on the Stroop and WCST

tests in ADHD, indicating that the observed network changes are

associated with impairments in cognition. Consistent with these find-

ings, several investigators have demonstrated that ADHD children

exhibit anomalous patterns of neural connectivity when engaging in

cognitive tasks (Collins & Frank, 2016; Metin, Roeyers, Wiersema, van

der Meere, & Sonuga-Barke, 2012). Our study extends this literature

by showing that cognitive alterations are related to abnormalities in

anatomic network configuration.

In terms of nodal properties, higher nodal degree, efficiency and

betweenness were mainly distributed in the dorsolateral frontal cor-

tex, orbitofrontal cortex, medial superior frontal gyrus, middle tempo-

ral gyrus, precentral gyrus, and pallidum, suggesting greater

connectivity and interactions especially in frontal cortical regions

(Liao, Vasilakos, & He, 2017; Sporns, 2011). Dorsolateral frontal cor-

tex is critical for response selection under conditions of response con-

flict (Carter & van Veen, 2007; Cubillo et al., 2012). Orbitofrontal

alterations have been associated with impulsivity and aggression in

human brain lesion, animal models, and functional imaging studies

(Knutson & Cooper, 2005; Kringelbach, 2005). The globus pallidus, a

core component of the striatum which receives robust neural input

from frontal cortex, is important in modulating behavioral inhibition

and thus is believed to be a contributing factor to the pathophysiology

of ADHD (Li et al., 2014; Tomasi & Volkow, 2012). The present study

demonstrated that increased nodal degree, efficiency, and between-

ness of medial superior frontal gyrus was associated with poorer per-

formance of WCST in ADHD, and increased nodal degree of left

orbitofrontal gyrus in ADHD patients was related to more severe

impulsive behaviors. These findings together support dual-pathway

models of ADHD including dorsolateral prefrontostriatal and

orbitofrontal–striatal circuits in ADHD.

This study also demonstrated that different ADHD subtypes

exhibited some differences in nodal properties. Specifically, we found

that nodal attributes (degree, efficiency, and betweenness) of amyg-

dala were different between the two subtypes. Amygdala is consid-

ered to play a crucial role in the control of emotion and impulsive

behavior (Vazquez-Sanroman, Arlington Wilson, & Bardo, 2021;

Venniro et al., 2018). Previous studies of ADHD have demonstrated

that significantly altered volumes of amygdala, implicating anatomic

disruption of amygdala in the pathogenesis of this disorder (Van

Dessel et al., 2018; Van Dessel et al., 2020). The present findings add

F IGURE 4 The stepwise regression models examining relations between topological structures of gray matter (GM) brain networks and
cognitive function in attention deficit hyperactivity disorder (ADHD) revealed that the global efficiency (Eglob) was independent risk factor for
Color-Word interference time of Stroop test. Clustering coefficient (Cp) and Nodal degree of left medial superior frontal gyrus (SFGmed.L) were
independent risk factors for perseverative errors of Wisconsin Card Sorting Test (WCST). And nodal efficiency of left orbital middle frontal gyrus
(ORBmid.L) was independent risk factor for hyperactivity symptoms of ADHD (all p < .05, false discovery rate [FDR] corrected)
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to this model by demonstrating increased connections between the

amygdala and other brain regions which were associated with hyper-

activity/impulsivity.

The present study has some limitations. First, the brain atlas and

processing pipeline we selected for constructing brain networks may

affect the network analysis results. Second, while the construction of

individual structural networks was based on the similarity of GM, the

physiological correlates of these anatomic network alterations are still

unclear and need to be investigated in the future. Third, this study

excluded ADHD subjects with comorbidities, which generalize the

findings to ADHD patients with more diverse and complicated.

In conclusion, the current study revealed excessive brain con-

nectivity in individual similarity-based GM networks in drug-naïve

ADHD children and adolescents, especially in the frontal striatal

loop and amygdala. These alterations were related to cognitive dys-

function and impulsive behavior in ADHD, pointing to a potential

network-based neural mechanism underlying the pathophysiology

of ADHD.
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