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Abstract

Cancer is considered one of the primary diseases that cause morbidity and mortality in mil-

lions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to

discover novel anticancer drugs. However, the traditional process of drug discovery and

development is lengthy and expensive, so the application of in silico techniques and optimi-

zation algorithms in drug discovery projects can provide a solution, saving time and costs. A

set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 nat-

ural products, constituting the inactive domain, were employed to build predictive models

and to index natural products for their anticancer bioactivity. Using the iterative stochastic

elimination optimization technique, we obtained a highly discriminative and robust model,

with an area under the curve of 0.95. Twelve natural products that scored highly as potential

anticancer drug candidates are disclosed. Searching the scientific literature revealed that

few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been

experimentally screened for their anticancer activity and found active. The other phytochem-

icals await evaluation for their anticancerous activity in wet lab.

Introduction

Cancer is one of the primary global diseases that cause morbidity and mortality in millions of

people worldwide [1]. Its incidence is expected to rise by about 70% over the next two decades.

Cancer cells can initiate, spread, lodge, and grow in various tissues and organs throughout the

body, where the five most common sites of cancer among men are in the lungs, prostate, color-

ectum, stomach, and liver, and among women in the breast, colorectum, lungs, cervix, and

stomach [2]. Current cancer therapies often involve surgical removal and radiation treatment

of the large accumulated biomass of cancer, typically followed by systemic chemotherapy treat-

ment used for maintenance treatment. The major disadvantages of chemotherapy are the

recurrence of cancer, associated with drug resistance, and severe side effects that can limit the

use of anticancer drugs and thus impair patients’ quality of life. Despite this, chemotherapy is
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still one of the most widely used treatments in all kinds of cancers and at every stage of cancer

progression.

The molecular basis of cancer cell development among differentiated normal cells is well

studied and has been attributed to two key components, namely oncogenes and tumor sup-

pressor genes [3, 4]. Respective activation and inactivation of these oncogenes and tumor sup-

pressor genes by naturally occurring mutations in either one or both of them can trigger

uncontrolled growth and proliferation ending with transformation of cells acquiring carcino-

genesis properties [4–7]. Similarly, the inactivation of tumor suppressor genes can result in

uncontrolled cell growth [6]. An understanding of the molecular mechanisms underlying can-

cer progression has led to the development of a vast number of anticancer drugs; however, the

use of many chemically synthesized anticancer drugs has caused considerable harm to patients,

mainly in the form of immune system suppression. Therefore, the discovery and development

of new drugs based on natural products have been the focus of much research [8, 9]. Alkaloids,

flavonoids, terpenoids, polysaccharides, saponins and others have been documented as natural

bioactive products with potent anticancer activity [10–12]. Most (> 60%) anticancer drugs

that are in clinical use and have demonstrated significant efficacy for combatting cancer origi-

nate from natural products derived from plants, marine organisms, and microorganisms [13].

The anticancer activity of most natural products often act via regulating immune function,

inducing apoptosis or autophagy, or inhibiting cell proliferation.

Nature is the best source of drugs[14, 15] and due to our interest in the identification of

new anticancer natural products that overcome the limitations of cell toxicity and adverse

reactions, in addition to exhibiting improvements in treatment efficiency, we describe here in
silico model for indexing natural products for their anticancer bioactivity. The in silico studies

and mathematical-/statistical-based modeling presented here provide insights into the physi-

cochemical properties associated with anticancer activity at the molecular level. Structural

based [16–18] and/or Ligand-based techniques [19, 20] are widely used for constructing pre-

dictive models and for the in silico screening of large chemical databases, whose aim is to detect

novel bioactive ligands [21, 22]. Models for constructing predictive models and separating

active from inactive ligands can be developed by selecting sets of active and inactive chemicals

for learning purposes and using certain optimization methods (such as neural networks [23],

genetic algorithms [24], support vector machines [25], the k-nearest neighbor algorithm, [26,

27], or some combination thereof [27–29]). Modelers presume that chemicals with certain bio-

logical properties have common features that are responsible for their bioactivity, but these

cannot be easily recognized if an inadequate number of bioactive ligands are tested. To arrive

at more significant and robust conclusions, we need to consider large and diverse sets of

active/ inactive ligands. As well, the way we select the set of inactive ligands to be used for

modeling purposes is highly significant. It should cover the same range of properties possessed

by the ligands in the screened database.

The iterative stochastic elimination (ISE) optimization technique is a recent development

that has been presented in several research publications[19, 20, 22, 30, 31]. It is an efficient

technique for searching a multi-dimensional space in order to identify the best set of solutions

(termed global minima and local minima). ISE has been used to solve problems such as proton

positioning in proteins [32], the prediction of side-chain conformations [33], the verification

of loop conformations [34], and the conformational space of cyclic peptides [35]. During the

last few years, ISE has been applied to solving several chemoinformatics problems [22]; certain

sets of physicochemical properties are selected from a large set of physicochemical properties,

and the ranges of the selected properties are optimized to produce the best set of solutions

(termed filters) capable of separating active from inactive ligands. The constructed filters are
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jointly applied to index ligands for their bioactivity and to rank and prioritize molecules in

large chemical databases [20, 30, 36].

In this paper, we disclose a novel model for indexing natural products for their potential

anticancer activity, and map the discriminative physicochemical properties of 617 FDA-

approved anticancer drugs through careful analysis of the composition of filters that were pro-

duced by ISE for indexing purposes.

Methods

To construct the predictive model, we used a set of 617 anticancer drugs to constitute the

active domain (all anticancer drugs are presented in SMILES format followed by their com-

mon names in the supporting information S1 Table). This set of drugs was assembled from

CMC (Comprehensive Medicinal Chemistry) database and NCI Drug Dictionary. Another set

of 2,892 natural products was used to constitute the inactive domain. This database of natural

products was prepared by collecting phytochemicals that were isolated from more than eight

hundred diverse plants spread worldwide and are deliverable from AnalytiCon Discovery

(www.ac-discovery.com). To obtain the data set of natural products, go to the link https://ac-

discovery.com/downloads/ and download "Purified Natural Products". At the first time, each

new user need to register and then sign in for file download. We believed that a very small frac-

tion of the 2,892 natural products that were assigned as inactive were actually active ligands.

However, from our experience in previous projects, such assignment was justified and benefi-

cial, since (1) the model used for virtual screening should cover the same range of properties as

those possessed by the chemicals in the screened database (the natural products database used

herein was prepared by collecting phytochemicals isolated from plants, and (2) the effect on

model quality is minor if the portion of really false negatives in the training set is less than

1–2%. The Tanimoto index-based diversities within both databases (anticancer drugs and nat-

ural products) are shown in Fig 1.

The physicochemical properties (descriptors) of all the ligands in both databases (the active/

anticancer drug and inactive/natural product DBs) were calculated using Molecular Operating

Environment (MOE) software, version 2009.10, [http://www.chemcomp.com]. The calculated

1-dimensional (1D)/2-dimensional (2D) descriptors were of physicochemical properties such

as molecular weight, log P, H-bond acceptors/donors, solubility, total charge and charge distri-

bution, the types and numbers of atoms, etc. (http://www.chemcomp.com/journal/descr.htm).

An assessment of the constructed models and validation of their predictability was done by

splitting the datasets of the active/inactive ligands into 66.7% for training and 33.3% for testing.

Both training and test sets were generated by an in-house random picking module.

The ISE algorithm was utilized to build a prediction model capable of indexing natural

products for potential anticancer activity. According to our algorithm [20], the optimal

Fig 1. Diversity within anticancer drugs (A, left side) and diversity within natural products database

(B, right side).

https://doi.org/10.1371/journal.pone.0187925.g001
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model capable of differentiating between active and inactive ligands was obtained by search-

ing multivariable space for the best sets of descriptors (termed variables) and the best range

of each descriptor that separated the active from inactive ligands. The optimization process

was highly complicated, since the physicochemical properties of the ligands interact with

each other, and changes in the range of one property may affect the best range of other

properties that compose the same filter. The optimization process must consider all of the

properties of the filter at the same time. Fig 2 summarizes the main points of the ISE-based

modeling process. More details on the utility of ISE for extracting the best sets of descriptors,

as well as the best ranges, from a certain set of descriptors can be found in our previously

reported studies [20, 30].

Results and discussion

The ISE algorithm was applied to construct an in silico prediction system for detecting natural

products with potential anticancer activity. This study was based on a set of 617 anticancer

drugs labeled as active chemicals and 2,892 natural products labeled as inactive phytochemi-

cals. It is worth noting that a few of the 2,892 natural products had the potential to be antican-

cer compounds, but the effect of that assumption on the quality of the prediction model was

negligible, especially since the fraction of active products was expected to be less than 1–2%

(data not shown). From previous projects, we learned that predictive models for virtual screen-

ing purposes should cover the same range of properties as those possessed by the objects in the

screened database. In light of that, we selected, as the inactive set, chemicals with the same

Fig 2. Flowcharts for the modeling process (2a), and the ISE engine (2b).

https://doi.org/10.1371/journal.pone.0187925.g002
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"property range" as the chemicals in the screened database. As well, in order to make sure that

our active set of chemicals would not be biased by having similar structures, we checked the

structural diversity within the 617 anticancer drugs and the 2,892 natural products and found

that both databases were highly diverse. 86 of the anticancer drugs and 53 of the natural prod-

ucts had a Tanimoto index of similarity < 0.7. As shown in Fig 3, it is interesting to note that

83% of the anticancer drugs obeyed Lipinski’s Rule of Five (ROF), and 68% obeyed the Oprea

rules for lead-likeness [37]. Fig 4 presents distribution plots of the Lipinski and Oprea physico-

chemical properties of the set of anticancer drugs.

Fig 3. Physicochemical properties distribution of anticancer drugs (A) Molecular weight distribution, (B) Log P

values, (C) Number of H-bond acceptors [lip_acc], (D) Number of H-bond donors [lip_don], (E) Number of rigid

bonds, (F) number of rotatable bonds, (G) Number of aromatic atoms.

https://doi.org/10.1371/journal.pone.0187925.g003

Fig 4. Violation distribution of anticancer drugs to Lipinski rule of 5 for drug-likeness (left side) and

Oprea rule for lead-likeness (right side).

https://doi.org/10.1371/journal.pone.0187925.g004
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The indexing model was produced by 29 unique filters, which consisted of different sets of

descriptors and/or same set of descriptors with different ranges. Table 1 presents three of the

filters as an example. The Matthews correlation coefficients (MCCs) of the different filters are

very close, but they differ in their true positive percentage and true negative percentage. Filter

number 1, presented in Table 1, has a MCC of 0.568, and with this filter, 53.7% of the antican-

cer drugs were successfully identified as true positives, while only ~2.5% of the natural prod-

ucts database were classified as active. The filter is composed of ranges of four descriptors.

Each molecule that fall within these ranges is considered active; while molecules having as least

one descriptor that fall outside the range is considered inactive. It is worth stating that we pre-

sumed that most of the screened natural products were inactive, and thus, this classification is

considered a false positive, although we are aware that some of those natural products were

active and were correctly classified by our proposed prediction model.

The composition of the output list of best discriminative filters was analyzed. Table 2 lists

the most redundant descriptors of the 29 filters used to produce the anticancer indexing

model. The third column reports how many more times each descriptor was redundant rather

than random. Fig 5 was built using the WORDLE module; it displays the redundancy of the

descriptors in graphical mode.

The efficiency of the anticancer activity-indexing model, which was produced by the 29

range-based filters, is displayed in Fig 6. The true/false positive percentage (left y-axis) and

Matthews’s correlation coefficients (right y-axis) are plotted against the molecular bioactivity

index thresholds (x-axis).

Figs 7 and 8 show the enrichment plot and the receiver operating characteristic (ROC) plot

of the suggested anticancer bioactivity-indexing model, respectively. The enrichment plot (Fig

7) illustrates how the anticancer drug candidates could be predicted if natural products are

Table 1. Three filters out of the 29 filters used for producing the anticancer indexing model. The Matthews correlation coefficients (MCCs), the true

positive (TP) percentages, the true negative (TN) percentages, and the descriptors’ ranges are shown.

Filter 1 Filter 2 Filter 3

MCC = 0.568 MCC = 0.554 MCC = 0.551

TP = 53.64% TP = 63.37% TP = 50.57%

TN = 97.48% TN = 90.04% TN = 97.99%

GCUT_SLOGP_0 (-2.28−-0.89) a_ICM (1.47–2.21) chiral_u (0.– 2.0)

BCUT_SLOGP_3 (-0002. - 2.97) PEOE_VSA-5 (0. - 393.44) b_rotR (0. - 0.80)

vsa_don (0.24–247.82) PEOE_VSA_FPNEG (0. - 0.516) vsa_don (0.24–247.82)

PEOE_VSA+0 (0. - 672.01) PEOE_VSA+4 (0. - 51.58) b_1rotR (0. - 0.80)

https://doi.org/10.1371/journal.pone.0187925.t001

Table 2. Descriptors’ redundancy.

Descriptor name Redundancy Redundant more times than random

GCUT_SLOGP_0 15 24.1

a_ICM 10 16.0

PEOE_VSA+4 7 11.2

SMR_VSA1 5 8.0

logS 5 8.0

Nmol 5 8.0

lip_druglike 4 6.4

chi1_C 4 6.4

https://doi.org/10.1371/journal.pone.0187925.t002
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ranked according to their scores as predicted by the ISE-based model, rather than based on

random selection. An enrichment plot where the ISE-based model overlaid with the perfect

model at the one percent highest fraction indicates the high prioritization power of the con-

structed model. By applying this proposed anticancer bioactivity indexing model at a mix ratio

of 1:100 (active/ inactive), 42% of the anticancer drugs could be captured in the top one per-

cent of the screened compounds, compared with 100% in the perfect model and 1% in the ran-

dom model.

The attained area under the curve (AUC) of the proposed ISE-based model is 0.95, indicat-

ing the effectiveness of the model. As well, the ISE-based model and the perfect model overlap

somewhere in the range of molecular bioactivity index (MBI)� 4.0; thus, the model is consid-

ered highly discriminative and effective for classifying anticancer drug candidates and inactive

natural products. Fig 9 shows twelve natural products that were highly indexed as potential

anticancer drug candidates by our ISE-based anticancer indexing model. Searching the scien-

tific literature revealed that few of those molecules (Neoechinulin[38], Colchicine[39], and

Piperolactam[40]) have already been experimentally screened for their anticancer activity and

found active. The other phytochemicals await evaluation for their anticancerous activity in wet

lab.

Fig 5. Redundancy of descriptors in the 29 filters used to produce the anticancer indexing model. The

picture was constructed by using WORDLE module.

https://doi.org/10.1371/journal.pone.0187925.g005

Fig 6. Indexing model for anticancer potential activity: True/false positives percentage (left Y-axis)

and Matthews’s correlation coefficient (MCC, right Y-axis) illustrated against molecular bioactivity

index threshold (MBI, X-axis).

https://doi.org/10.1371/journal.pone.0187925.g006
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Fig 7. Enrichment plot of the anticancer potential activity-indexing model of natural products.

https://doi.org/10.1371/journal.pone.0187925.g007

Fig 8. A receiver operating characteristic (ROC) curve showing the performance of the anticancer

bioactivity-indexing model.

https://doi.org/10.1371/journal.pone.0187925.g008
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Fig 9. Twelve of the natural products that are scored highly as potential anticancer drug candidates according to our

ISE-based anticancer indexing model.

https://doi.org/10.1371/journal.pone.0187925.g009
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Conclusions

A highly efficient and robust model for indexing natural products for their anticancer bioactiv-

ity has been built using the ISE algorithm. We believe that the use of such an in silico model to

screen large databases of natural products could undoubtedly save time and costs and aid in

detecting novel natural-based anticancer drug candidates. We have disclosed some highly

indexed phytochemicals that could serve as potential anticancer drug candidates. A literature

search shows that few of those molecules have already been experimentally screened for their

anti-cancerous activity and found active. The other phytochemicals await evaluation for their

anti-cancerous activity in wet lab. As well, this study provides important insights into discrimi-

native properties of natural products having anti-cancerous activity.

Supporting information

S1 Table. 617 anticancer drugs are presented below in SMILES format followed by their

common names.

(PDF)
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