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The aim of this study was to identify the role of the precursor of the brain-derived neurotrophic factor (pro-BDNF) in
myocardial hypoxia/reoxygenation injury (H/R) and to address the underlying mechanisms. For this purpose, myocardial
microvascular endothelial cells (MMECs) exposed to a high concentration of glucose (30mM) for 48 h were subjected to
4 h of hypoxia followed by 2 h of reoxygenation. Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling
(TUNEL) staining and flow-cytometric analysis were performed to detect apoptosis. Cell scratch and capillary-like-structure
formation assays were employed to evaluate cell function. The levels of apoptosis-related proteins were evaluated by
Western blotting and immunofluorescence assays. Our results showed that H/R resulted in MMEC injury, as indicated by
significant increases in TUNEL-positive cell numbers and a reduction in MMEC migration and in capillary-like-structure
formation coupled with increased pro-BDNF protein expression. In addition, overexpression of pro-BDNF in MMECs via
a viral vector led to increased pro-BDNF expression, and this upregulation induced apoptosis. Mechanistic experiments
revealed that H/R did not influence BDNF, JNK, and caspase 3 expression, but upregulated pro-BDNF, p75NTR, sortilin,
phospho-JNK, and cleaved caspase 3 protein levels. In contrast, neutralization of endogenous pro-BDNF with an antibody
significantly attenuated H/R-induced upregulation of pro-BDNF, p75NTR, sortilin, p-JNK, and cleaved caspase 3 protein levels,
indicating that p75NTR-sortilin signaling and activation of JNK and caspase 3 may be involved in these effects. In conclusion, H/
R-induced injury may be mediated by pro-BDNF, at least in part through the regulation of p75NTR-sortilin signaling and
activation of JNK and caspase 3.

1. Introduction

Diabetes mellitus (DM), a potent and prevalent risk factor of
ischemic heart disease, has received increasing attention
globally. Cardiovascular complications constitute the leading
cause of morbidity and mortality among patients with DM
[1–4]. In addition, DM increased myocardial susceptibility
to ischemia/reperfusion- (I/R-) caused irreversible destruc-
tion, characterized by deficient oxygen supply and subsequent
restoration of blood flow [5–8]. Microvascular disturbances
are a vital feature of myocardial reperfusion injury [9].
Myocardial I/R is associated with cardiomyocyte apoptosis,
infiltration by immune cells, an inflammatory cytokine
release, and angiogenesis [10–12]. Cardiac microvascular

endothelial cells, a basic component of myocardial microcir-
culation, were first harmed by reperfusion injury followed by
damage to cardiomyocytes after restoration of the cardiac
microcirculation and played a vital role in the preservation
of cardiomyocytes after reperfusion injury [9, 13]. Moreover,
numerous studies have shown that endothelial cell (EC)
dysfunction, an important event in virtually all forms of I/R
injury, determines the degree of cellular injury after I/R
[14]. Nevertheless, the potential mechanisms responsible
for the adverse effects caused by apoptosis and endothelial
dysfunction after endothelial injury induced by hyperglyce-
mia with I/R insults remain an enigma.

In recent years, studies on the nerve growth factor (NGF)
family have been focused on the nervous system [15]. Lately,
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a large number of studies confirmed that this family also
has an important role in the cardiovascular system [16].
The brain-derived neurotrophic factor (BDNF), a member
of the NGF family, has been shown to have an antiapop-
totic effect against the toxicity of tumor necrosis factor α
(TNF-α) in human microvascular ECs [17]. Pro-BDNF, a
precursor of BDNF, has been originally described as a
proapoptotic ligand in the nervous system. Thus, it is
believed that pro-BDNF may exert proapoptotic action
on ECs [18, 19].

Both ECs and endothelial progenitor cells express high-
affinity receptors called Trk [20]. NGF and BDNF promoted
the growth and angiogenesis of ECs through their high-
affinity receptors (TrkA and TrkB) [21]. Besides, NGF
promoted the survival and functional recovery of cardiomyo-
cytes after myocardial I/R injury via paracrine pathways [22].
P75NTR, a low-affinity receptor for neurotrophins, is involved
in a diverse array of cellular responses, including apoptosis.
Sortilin is known as a coreceptor of p75NTR, and its deficiency
is reported to reduce apoptosis [23]. The actions of pro-
BDNF are mediated by a receptor complex of p75NTR and
sortilin [24]. Pro-BDNF with high affinity for p75NTR may
be deeply involved in myocardial ischemia/reperfusion
injury (MIRI). c-Jun N-terminal kinase (JNK) is indispens-
able for both cell proliferation and apoptosis. However, the
molecular mechanism that underlies the participation of
pro-BDNF in the process of endothelial I/R-induced apopto-
sis has not been elucidated completely.

JNK, one of the members of the MAP kinase superfamily,
is primarily involved in the induction of death receptor-
initiated exogenous and mitochondrial apoptosis in vivo
after exposure to various chemical or biological agents [25].
JNK activated apoptotic signaling pathways by transactiva-
tion of specific transcription factors or by modulating the
activity of mitochondrial proapoptotic and antiapoptotic
proteins directly through different phosphorylation events,
thereby increasing proapoptotic gene expression [26].
Activated JNK, in turn, phosphorylated c-Jun and proteins
associated with apoptosis such as caspase 3 [27]. Caspase 3
activity is a biochemical hallmark of apoptosis, and imaging
the activity is a part of an assay in an apoptosis-targeted treat-
ment response in cancer [28]. Regulation of the activity of the
JNK signaling pathway is vital for protecting myocardial cells
from I/R injury [29, 30].

Currently, there is no evidence that pro-BDNF partici-
pates in the process of endothelial I/R injury, and the corre-
sponding molecular mechanism is unclear. In the present
study, we investigated the role of pro-BDNF in the regulation
of hypoxia/reoxygenation- (H/R-) induced endothelial apo-
ptosis, migration, and tube formation and next examined
the expression of proteins related to apoptosis. These find-
ings will lead to a novel therapeutic approach for myocardial
I/R injury.

2. Materials and Methods

2.1. Cell Culture. The human myocardial microvascular
endothelial cell (MMEC) line was purchased from the
American Type Culture Collection (ATCC, Rockville, MD,

USA) and maintained in the DMEM high-glucose complete
medium (Gibco, Waltham, MA, USA), supplemented with
10% of fetal bovine serum (HyClone, Logan, UT, USA),
100U/mL penicillin (Sigma, St. Louis, MO, USA), and
100μg/mL streptomycin (Sigma) in a humidified atmosphere
containing 5% of CO2 at 37°C. MMECs (passages 3 to 5),
characterized by typical cobblestone appearance and by
positive CD31 and CD34 immunostaining [31], were used
for the following experimental analysis.

2.2. H/R Injury Induction. To induce H/R injury as described
previously [32], an I/R model was established by means of
MMECs. The cells were incubated in a high-glucose culture
medium (30mM) for 48 h and then exposed to hypoxia
(5% CO2, 1% O2, and 94% N2) for 4 h followed by 2 h of
reoxygenation (5% CO2, 21% O2, and 94% N2).

2.3. Viral-Vector Transduction of MMECs and Antibody
Neutralization. The recombinant adenoviruses expressing
the human pro-BDNF gene (Ad-GFP-pro-BDNF) or GFP
control (Ad-GFP) were purchased from GenePharma
(Shanghai, China) and were used to infect the ECs according
to the manufacturer’s instructions. Transduction efficiency
was verified via GFP expression and Western blotting. The
neutralizing antibody to the recombinant prodomain of
BDNF (10μg/mL), specifically recognizing pro-BDNF but
not mature BDNF or other neurotrophins, was added into
the culture medium prior to induction of H/R [33–36].

2.4. Apoptosis Assay. Apoptosis was detected by the TUNEL
assay (Roche Applied Science) and by corresponding flow-
cytometric analyses according to the instructions of the
manufacturer. For quantification, the TUNEL-positive cells
were counted in at least five randomly chosen visual fields
in three independent samples (500 counted cells in total).
The flow-cytometric assay was then performed on a BD
FACSCalibur instrument (Becton, Dickinson and Company,
Lake Franklin, NJ, USA).

2.5. Western Blot Analysis. This analysis was conducted to
determine the protein expression and phosphorylation
levels. Cellular proteins were extracted with RIPA lysis buffer
(Beyotime Institute of Biotechnology). Proteins (lysate
corresponding to 20μg of protein) were loaded onto a gel
and separated in each lane by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE) lasting for 2 h
at 100V in a buffer and were transferred to polyvinylidene
fluoride (PVDF) membranes. After blocking in 5% fat-free
dry milk, antibodies against pro-BDNF (Alomone, 1 : 400),
BDNF (Abcam, 1 : 500), P75 (Santa Cruz Biotechnology,
Santa Cruz, CA, USA; 1 : 100), sortilin (Abcam, 1 : 500),
JNK (Santa Cruz Biotechnology, 1 : 100), cleaved caspase 3
(Asp175, Cell Signaling Technology, 1 : 1000), caspase 3,
and β-actin (Santa Cruz Biotechnology) were employed.
Antibody binding was detected by chemiluminescence with
a Tanon 5500 Imaging System (Tanon Science & Technology
Ltd., Shanghai, China) and quantified in the ImageJ software
(NIH, Bethesda, MD, USA).
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2.6. Immunofluorescence Analysis. Cells were fixed with 4%
paraformaldehyde at room temperature (RT) for 30min
and permeabilized or not permeabilized with 0.5% Triton
X-100 (Sigma-Aldrich), and nonspecific binding was blocked
by incubation with 5% donkey serum (Jackson ImmunoRe-
search Laboratories) at RT for 30min. Coverslips were incu-
bated overnight at 4°C with the following primary antibodies:
rabbit anti-BDNF (Abcam, 1 : 500), rabbit anti-pro-BDNF
(Alomone Labs, 1 : 400), anti-JNK (Santa Cruz Biotechnol-
ogy, 1 : 100), anti-phosphorylated-JNK (p-JNK) (Santa Cruz
Biotechnology, 1 : 100), rabbit anti-p75NTR (Santa Cruz
Biotechnology, 1 : 100), and goat anti-sortilin (Abcam,
1 : 500) antibodies. A secondary antibody conjugated with
Cy3 or fluorescein isothiocyanate was incubated for 2 h at
RT. Nuclei were stained for 5min with 4′,6-diamidino-2-
phenylindole (DAPI). Cells were washed three times in PBST
after each incubation. Pictures were taken using a confocal
microscope (Carl Zeiss, LSM 510).

2.7. Assays of Capillary-Like-Structure Formation and Cell
Scratches In Vitro. We performed a cell scratch assay and
capillary-like-structure formation experiments to evaluate
the functional effects of pro-BDNF on MMECs in groups
control, H/R, H/R+ anti-pro-BDNF, and H/R+vehicle.

The assay of capillary-like-structure formation in vitro
was performed as previously described [37]. Briefly, ECs
(105/well) were cultured in a 24-well plate coated with
200μL of Matrigel (356234; BD Biosciences). Capillary-
like-structure formation was imaged after 12 h in five ran-
dom microscopic visual fields by means of an inverted phase
contrast microscope. The cell scratch assay was conducted to
detect the migration of MMECs [38]. For the scratch assay,
MMECs were cultured until confluence. After serum starva-
tion for 24 h, a linear wound was administered by scratching
the bottom of the dish with a pipette tip. The wound images
were captured 24 h after scratching using a Motic AE31 Pho-
tometry and Dimensioning microscope (Milton, MA, USA).

2.8. Statistical Analysis. All values are presented as means ±
standard error of themean (SEM). Statistical analysis was per-
formed by one-way ANOVA to compare multiple groups and
by Student’s t-test to compare two groups. Data with P < 0 05
were considered statistically significant. Statistical analysis
was performed in the SPSS Statistics software (version 16.0).

3. Results

3.1. H/R Induces Apoptosis with Upregulation of Pro-BDNF in
MMECs Exposed to High Concentration of Glucose. We first
examined the effects of H/R on MMECs after exposure to
high concentration of glucose (HG). Representative photo-
graphs were taken, and quantitative analysis of TUNEL
positivity was performed to evaluate the proapoptotic effects.
After exposure to HG, H/R caused a significant increase in
the proportion of TUNEL-positive cells as compared to
MMECs not subjected to H/R (control group), indicating
that H/R induced MMEC apoptosis (Figures 1(a)–1(c)).

Next, we examined the effect of H/R on pro-BDNF
protein levels. The expression of pro-BDNF measured by

immunostaining was observed in the cytoplasm and plasma
membrane of MMECs. Of note, exposure to H/R caused
overlapping signals of pro-BDNF staining and TUNEL stain-
ing among MMECs (Figures 1(d) and 1(e)), together with
higher levels of pro-BDNF as measured by Western blot
analysis in comparison with controls (Figures 1(f) and
1(g)). These results indicate that H/R exerted a proapoptotic
effect and upregulated the pro-BDNF protein.

3.2. Pro-BDNF Overexpression Promotes MMEC Apoptosis.
To test whether an increase in pro-BDNF levels exerted
proapoptotic actions on MMECs under HG conditions, we
transfected MMECs with either Ad-pro-BDNF or with Ad-
GFP as a negative control group (NON). A TUNEL assay
of adenovirus-infected MMECs under HG conditions was
then performed (Figures 2(a)–2(e)). The protein expression
of pro-BDNF significantly increased after transduction with
Ad-pro-BDNF as determined by immunostaining and
Western blot analysis, as compared with that in Ad-GFP-
transfected cells (NON). In addition, Ad-pro-BDNF-trans-
fected MMECs showed a significant increase in the number
of TUNEL-positive cells (Figures 2(f)–2(h)). In short,
MMEC apoptosis was induced by pro-BDNF.

3.3. Pro-BDNF Is Required for H/R-Induced Apoptosis and
Dysfunction. The proapoptotic action of H/R seemed to be
mediated at least in part by upregulation of pro-BDNF. We
next evaluated the relation between pro-BDNF and H/R-
induced apoptosis (Figures 3(a) and 3(d)). Exposure of
MMECs to H/R caused a significant increase in relative apo-
ptosis levels. These effects were abrogated by the exogenous
anti-pro-BDNF antibody. These results indicate that H/R
could induce MMEC apoptosis by upregulating pro-BDNF.

To address the functional effects of pro-BDNF on
MMECs, capillary-like-structure formation experiments
(Figure 3(b)) and a cell scratch assay (Figure 3(c)) were car-
ried out. Exposure of MMECs to H/R decreased capillary-
like-structure formation and EC migration; however, the
exogenous anti-pro-BDNF antibody significantly enhanced
H/R-induced migration of (and capillary-like-structure for-
mation by) MMECs. Taken together, these data indicate that
pro-BDNF was required for H/R effects in MMECs exposed
to HG.

3.4. A Proapoptotic Protein Is Involved in the Regulation of
Pro-BDNF Expression after H/R Injury in MMECs. To
elucidate the molecular mechanisms behind the action of
pro-BDNF under HG and H/R conditions, experiments were
performed on several markers of apoptosis by immunostain-
ing (Figure 4(a)) and Western blotting (Figures 4(b)–4(e)).
Colocalization of p75NTR and sortilin in the cell membrane
was observed in all groups. H/R led to increased p-JNK trans-
location to the nucleus. Exposure of MMECs to H/R caused
significantly higher expression levels of pro-BDNF, p75NTR,
sortilin, p-JNK, and cleaved caspase 3 as compared with
MMECs maintained under normal conditions (P < 0 05).
By contrast, there were no significant differences in BDNF,
JNK, and caspase 3 expression levels after H/R. Of note,
treatment with the anti-pro-BDNF antibody significantly
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Figure 1: Effects of H/R on the apoptosis and pro-BDNF expression among MMECs exposed to HG. (a, b) Representative images
of the TUNEL assay of MMECs exposed to HG without (control) or with (H/R group) H/R. (c) The percentage of TUNEL-positive cells. H/R
significantly increased the percentage of TUNEL-positive cells among MMECs, indicating the induction of apoptosis. (d, e) Immunostaining
results on the pro-BDNF protein expression and a TUNEL assay. (f, g) Representative Western blots and quantitative analysis of pro-BDNF
protein. H/R markedly increased the expression of pro-BDNF. The data were analyzed by the t-test. The error bars represent SEM. ∗P < 0 05
as compared with the control group.
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Figure 2: Overexpression of pro-BDNF in MMECs and its effect on MMEC apoptosis. (a–e) MMECs were transfected with either pro-BDNF
or Ad-GFP. Immunostaining, Western blotting, and quantitative analysis showed that the protein expression of pro-BDNF increased in
MMECs after transduction with pro-BDNF. (f–h) Transfected cells were exposed to HG and then subjected to a TUNEL assay (f, g) and
enumeration of TUNEL-positive cells (h) to evaluate apoptosis. Pro-BDNF overexpression markedly elevated the numbers of TUNEL-
positive cells. The data were analyzed by the t-test. The error bars represent SEM. ∗P < 0 05 as compared with the control group or Ad-
pro-BDNF group.
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reversed the increase in the protein expression of pro-BDNF,
p75NTR, and sortilin and inhibited the activity of JNK and
caspase 3 in MMECs after exposure to HG and H/R. Taken

together, these data indicate that p75NTR and sortilin and
activation of JNK and caspase 3 are associated with the
H/R-induced cellular injury.
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Figure 3: Effects of the anti-pro-BDNF antibody on apoptosis, migration, and capillary-like-structure formation among MMECs after
exposure to HG and H/R. (a) Effects of pro-BDNF on apoptosis were analyzed by flow cytometry of MMECs after different treatments:
control, H/R, H/R + anti-pro-BDNF, and H/R+ vehicle. (b, c) The functional effects of pro-BDNF on MMECs were assessed by capillary-
like-structure formation and cell scratch assays. (d) Relative apoptosis levels and fold changes are expressed in relation to the control
group. The H/R group showed markedly increased relative apoptosis levels, decreased capillary-like-structure formation, and reduced cell
migration when compared with the control group. These effects were reversed by treatment with the anti-pro-BDNF antibody to the levels
similar to those in the control group. The data were subjected to one-way ANOVA. The error bars represent SEM. ∗P < 0 05 as compared
with the control group; #P < 0 05 as compared with the H/R group or the H/R + vehicle group.
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Figure 4: Continued.
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4. Discussion

Hyperglycemia, a common feature of both type 1 and type 2
diabetes, is a key factor that contributes to the development
of DM-related vascular disease and notably microvascular dis-
ease [39]. EC dysfunction and apoptosis have proved to play a
vital role in the development of MIRI [40]. In the present
study, no changes in cell migration and capillary-like-
structure formation occurred, and no cell apoptosis was
induced inMMECs cultured in DMEM high-glucose complete
medium. However, in response to HG and H/R, MMECs

showed increased levels of apoptosis and reduced migration
and capillary-like-structure formation, suggesting that H/R
resulted in MMEC injury. It is worth noting that pro-BDNF
protein expression increased in the H/R-treated MMECs.
Based on these results, we hypothesized that pro-BDNF might
participate in the H/R-induced EC dysfunction and apoptosis.

One research group [41] reported that BDNF protects
from cardiac dysfunction after myocardial infarction. Other
researchers [17] found that BDNF protects human vascular
ECs from apoptosis. In the present study, overexpression of
pro-BDNF had proapoptotic effects on MMECs, but the

C
on

tro
l

H
/R

H
/R

 +
 an

ti-
pr

o-
BD

N
F

H
/R

 +
 v

eh
ic

le

p-JNK

JNK

�훽-Actin

C
on

tro
l

H
/R

H
/R

 +
 an

ti-
pr

o-
BD

N
F

H
/R

 +
 v

eh
ic

le

p-JNK
JNK

4

3

2

1

0

O
D

 (f
ol

d 
ve

rs
us

 co
nt

ro
l)

#

⁎
⁎

(d)

C
on

tro
l

H
/R

H
/R

 +
 an

ti-
pr

o-
BD

N
F

H
/R

 +
 v

eh
ic

le

Cleaved caspase 3

Cleaved caspase 3

�훽-Actin

C
on

tro
l

H
/R

H
/R

 +
 an

ti-
pr

o-
BD

N
F

H
/R

 +
 v

eh
ic

le
Cleaved caspase 3
Caspase 3

4

3

2

1

0

O
D

 (f
ol

d 
ve

rs
us

 co
nt

ro
l)

#

⁎
⁎

(e)

Figure 4: Effects of the anti-pro-BDNF antibody on the expression of p75NTR and sortilin and apoptosis-related proteins. (a) Representative
immunofluorescent images of pro-BDNF (red, first column), p-JNK (green, second column), BDNF (red, fourth column), JNK (green, fifth
column), sortilin (red, seventh column), and p75NTR (green, eighth column) in groups control, H/R, H/R + anti-pro-BDNF, and H/R
+ vehicle. (b–e) Representative Western blots and quantitative analysis of pro-BDNF, BDNF (b), p75NTR, sortilin (c), JNK, p-JNK (d),
caspase 3 and cleaved-caspase 3 expression (e) in response to different treatments. All the data were normalized to β-actin, and fold
changes are expressed in relation to the control group. Exposure of MMECs to H/R resulted in significantly higher expression levels of
pro-BDNF, p75NTR, and sortilin and in activation of JNK and caspase 3 as compared with MMECs maintained under normal conditions
(control). Nonetheless, there were no significant differences in BDNF, JNK, and caspase 3 expression levels after H/R. Treatment with the
anti-pro-BDNF antibody significantly reversed the increase in the protein expression of pro-BDNF, p75NTR, sortilin, p-JNK, and cleaved
caspase 3 in MMECs after exposure to HG and H/R (H/R+ anti-pro-BDNF). The data were subjected to one-way ANOVA. The error
bars represent SEM. ∗P < 0 05 as compared with the control group; #P < 0 05 as compared with the H/R or H/R + vehicle group.
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neutralizing antibody to pro-BDNF significantly attenuated
this apoptosis and the reduction in EC migration and
capillary-like-structure formation by MMECs after exposure
to HG and H/R. Consistent with the results obtained else-
where [42–44], these data prove that pro-BDNF contributes
to H/R-induced cell injury.

Pro-BDNF shows high-affinity binding to sortilin and per-
forms its biological functions by acting on its receptors: p75NTR

and sortilin [45]. Some studies have indicated that the JNK
pathway contributes to the growth-inhibitory effect and apo-
ptosis of ECs and that inhibition of JNK activation protects car-
diomyocytes from I/R injury [46–49]. Pro-NGF/p75NTR/
sortilin signaling increases JNK signaling [50]. Furthermore,
cleavage-resistant pro-BDNF mutant (CR-pro-BDNF) treat-
ment resulted in a rapid phosphorylation of JNK which are
involved in p75NTR-induced apoptosis and an earlier appear-
ance of active caspase 3 in cerebellar granule neurons [51].
Pro-BDNF has also been proved to be a proapoptotic ligand
for sympathetic neurons and could induce neuronal apoptosis
via activation of a receptor complex of p75NTR and sortilin
[24]. In the present study, the data on MMECs revealed that
H/R, which enhanced pro-BDNF protein expression, induced
P75NTR and sortilin protein expression and increased activation
of JNK and caspase 3. In contrast, the anti-pro-BDNF antibody
significantly reversed these effects. Collectively, our data suggest
that pro-BDNF exerts a proapoptotic effect against myocardial
I/R injury at least in part through the regulation of p75NTR-sor-
tilin signaling and activation of JNK and caspase 3.

Diabetic nephropathy is a serious microvascular complica-
tion of DM; H/R promoted oxidative stress in NRK-52E cells
exposed to HG accompanied by increased levels of Nrf2 and
HO-1 protein expression [32, 46]. High glucose has also been
proved to increase the permeability of cardiac microvascular
endothelial cells. Thus, the question of whether other molecu-
lar mechanisms contribute to the effect of pro-BDNF on H/R
is an intriguing one and merits further investigation.

5. Conclusion

In summary, the major finding of our study is that inhibition
of pro-BDNF may exhibit a beneficial effect against H/R by
promoting MMEC migration and capillary-like-structure
formation. Moreover, these effects are at least in part related
to the decrease in MMEC apoptosis through p75NTR-sortilin-
mediated activation of JNK and caspase 3. Our results may
facilitate future studies on the therapeutic implications of
pro-BDNF in the treatment of MIRI.
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