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Abstract: The current wastewater treatment method shows low efficiency in treating wastewater with
high concentrations of chemical mechanical pulp (CMP). Therefore, a chlorine dioxide Pretreatment
Anaerobic Treatment (DPAT) was developed and applied to treat the CMP wastewater to obtain
higher efficiency, obtaining the following results: The biodegradability of CMP wastewater improved
after chlorine dioxide pretreatment. The COD of wastewater treated with chlorine dioxide was
reduced from 5634 mg/L to 660 mg/L. The removal rate for chemical oxygen demand (COD) was
88.29%, 29.13% higher than the common anaerobic treatment. The reasons for the high efficiency
of the DPAT treatment were that chlorine dioxide pretreatment removed the toxic substances in
the original wastewater and thereby promoted the proliferation and growth of the anaerobe. The
results show that pretreatment with chlorine dioxide can effectively enhance the biodegradability
of high-concentration CMP wastewater. Therefore, DPAT treatment of high-concentration CMP
wastewater is beneficial to environmental protection.

Keywords: chlorine dioxide; wastewater; treatment; DPAT treatment

1. Introduction

The continuous development of society has led to the constant expansion of the
paper industry. In the paper industry, a chemical mechanical pulp (CMP) is prepared for
wrapping papers, generating a large amount of wastewater. This causes the water to have
a high concentration and color, containing carbohydrates, lignin, and their degradation
products [1,2]. As most of these components are difficult for microorganisms to digest,
anaerobic microbial treatments have little effect [3–5].

Therefore, the problem of effectively treating high-concentration biomass wastewater
has been a significant issue. For example, Tian et al. prepared a new ZnAl2O4/Bi2MoO6
composite material to treat an industrial eucalyptus base CMP wastewater, obtaining a
COD removal rate of 50.88% [6]. Priyadarshinee et al. found that the lignin in eucalyptus-
based CMP wastewater can be treated by microorganisms and, therefore, significantly
reduce the COD value of the CMP wastewater [7]. D. Xing et al. treated a kind of CMP
wastewater with calcification and realized its alkali-recycling applications, saving the costs
needed to bay sodium hydroxide [8]. However, this research has a limited following: the
COD removal rate by the ZnAl2O4/Bi2MoO6 composite material was low, at only 50.88%.
It took a long time to extract lignin from CMP wastewater using microorganisms, which led
to inefficient industrial production. In addition, calcium lignin waste solids were generated
by treating CMP wastewater with calcification.
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In addition to the above studies, Tran, Jung, and Pawar studied wastewater treatment
using microbial fuel cells (MFCs), microbial sediment fuel cells (SMFCs), and microbial
electrolysis cells (MECs), respectively, which are emerging bioenergy-based raw materi-
als [9–11]. Wastewater treatment technology has excellent prospects, but it is not widely
used. Hence, it is necessary to improve the effectiveness of CMP wastewater treatment.

Chlorine dioxide is a strong oxidizer used to treat high-concentration biomass wastew-
ater. For example, Jin et al. studied the oxidative degradation of phenol-containing wastew-
ater using chlorine dioxide, where the COD removal rate was over 90% [12]. Wang et al.
degraded 2-sec-butyl-4,6-dinitrophenol (DNBP) production wastewater using chlorine
dioxide oxidation. Decolorization and COD removal rates of 79.3% and 68.5% were ob-
tained, respectively [13]. These pieces of research demonstrated that chlorine dioxide could
be used to treat high concentrations of organic wastewater. Therefore, it should have the
potential for use as a material to treat CMP wastewater.

However, the removal rate of COD when using only chlorine dioxide is still low. There-
fore, combining this with an anaerobic treatment unit is better to increase the COD removal
rate further. Hence, a DPAT treatment was developed to treat the high concentration of
eucalyptus CMP wastewater in this paper. As a result, a good COD removal effect was
obtained, and DPAT treatment was proposed to have a reaction mechanism. Therefore, this
demonstrates that the developed DPAT treatment is effective for high concentrations of
biomass wastewater. This research benefits the scientific theory of wastewater treatment
for environmental protection.

2. Methods and Materials
2.1. Material

High-concentration eucalyptus CMP wastewater, ozone-treated CMP wastewater, and
anaerobic granular sludge were all taken from Guangxi Bossco Environmental Protection
Technology Co., Ltd. (Nanning, China). The COD value of the wastewater was 5634 mg/L.
The initial physicochemical properties are shown in Table 1. Drugs A and B for chlorine
dioxide disinfectant were bought from Guangxi Aikening Disinfection Technology Co., Ltd.
(Nanning, China). A is stable chlorine dioxide, B is a supporting activator, and the main
component is acid.

Table 1. Initial physicochemical properties of experimental subjects.

Substance Physical Properties Chemical Properties

CMP wastewater brown–black liquid slightly alkaline

ozone-treated CMP wastewater brown liquid alkaline

anaerobic granular sludge black granular strong stability

2.2. Reactor

The DPAT treatment applied in this research mainly consisted of a reactor, a flask, and
a circulating pump, as shown in Figure 1. The main body of the reactor was made of hard
plastics with a volume of 1.0 L, while the reactor was placed at a constant temperature of
37 ◦C. There was a water inlet with a diameter of 30 mm at the bottom of the reactor and a
water outlet with a diameter of 30 mm above the side wall of the reactor. The circulating
pump pumped out the CMP wastewater sample placed in the flask to enter the bottom of
the reactor through the water inlet. The CMP wastewater was filled into the inside of the
reactor, where the anaerobic granular sludge catalyzed degradation reactions. In this way,
it formed a circulating water system to prevent its thermocatalytic effects.
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Figure 1. Anaerobic reaction device.

2.3. Preparation of Chlorine Dioxide

The chlorine dioxide disinfectant was prepared by two used drugs, A and B, as shown
in Figure 2 [14].
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Figure 2. The preparation process of chlorine dioxide disinfectant.

As shown in Figure 2, drugs A and B were fully dissolved in water. Then, the two
solutions were mixed, covered, and left to stand for 30 min to obtain a mother liquor,
diluted with water at a ratio of 1:10 to obtain a chlorine dioxide disinfectant.

2.4. Investigation of the Concentration of Chlorine Dioxide Disinfectant

Chlorine dioxide was detected by titration by sodium thiosulfate, using iodometry
as an indicator. At the same time, a blank sample was set as a comparison to exclude the
possible interference of chlorine in the water [15].

The concentration of chlorine dioxide was calculated by Equation (1).

X =
(V − V0)× C × 0.01349

m
× 106 (1)
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where V is the volume of sodium thiosulfate standard solution consumed by titration; V0 is
the volume of the standard solution of sodium thiosulfate consumed in the blank titration
experiment; C is the concentration of sodium thiosulfate standard titration solution; m is
the mass of the stock solution; 0.01349 is the mass of chlorine dioxide in grams, equivalent
to 1 mL of standard titration solution of sodium thiosulfate [16].

2.5. Processing Process
2.5.1. Chlorine Dioxide Pretreatment

The 300 mL high-concentration eucalyptus CMP wastewater was placed in a flask
without any pretreatment, and then 20–60 mL of chlorine dioxide disinfectant was added
for pretreatment for 30 min. At the same time, a comparison experiment was carried out
using an ozone oxidizer.

2.5.2. Ozone Pretreatment

The 300 mL high-concentration eucalyptus CMP wastewater was placed in a vented
bottle without any treatment. An oxygen bottle and an ozone generator were connected,
and a certain amount of ozone gas was injected into the ventilation bottle for the reaction.

2.5.3. Anaerobic Biological Treatment

A total of 2.0 g of the wet granular sludge was placed into the anaerobic reaction
device. Then, 30 mL of the eucalyptus CMP wastewater was added by chlorine dioxide
pretreatment. Consequently, the cycling pump started and ran for 2 to 5 days. The treated
wastewater was poured out at a particular time during the treatment process to obtain the
treated wastewater samples for further testing.

2.6. Analysis of Processing Results

The processing results were assessed based on the COD and BOD removal rates. The
samples for COD values were analyzed using the potassium dichromate method, while the
samples for biochemical oxygen demand (BOD) values were tested using the dilution and
inoculation method. Microwave digestion instrument WXJ-III and biochemical incubator
LRH-250 were used.

2.7. Mechanism Analysis
2.7.1. GC–MS Detection

A total of 10 mol·L−1 sulfuric acid was added to 500 mL of CMP wastewater to
acidify the solution for precipitate lignin. Then, the generated mixtures were separated by
filtration to obtain a lignin-free filtrate, while the lignin precipitates were removed. After
that, the obtained lignin-free filtrate was extracted three times with 50 mL of ether each
time to obtain the extracted solution, which was transferred to a stoppered conical flask.
The seldom water contained in the ether extracted solution was removed to obtain its
dry matter using a small amount of anhydrous sodium sulfate. Finally, the dried ether
extracted solution was concentrated to about 1.0 mL, which acted as the sample for the
5973 GC–MS analyzer.

The detection conditions of the instruments: chromatographic column HP5MS quartz
capillary column, with a column length of 30 m, column inner diameter of 0.25 mm, and
film thickness of 0.25 µm. Chromatographic separation conditions: column temperature
40 ◦C inlet temperature from 250 to 300 ◦C; vaporization temperature 280 ◦C; carrier gas
by He gas in the flow rate of 1.0 mL·min−1. Split ratio 50:1, injection volume 1 µL. Mass
detector: EI source, electron energy 70 eV, source temperature 230 ◦C.

2.7.2. Microbiological Analysis

The diversity of microorganisms in the sludge in anaerobic biological treatment sys-
tems was assessed using Alpha diversity. The microorganism adaptation was evaluated by
detecting the abundance of the microbial communities.
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2.7.3. Investigation of the Reaction Mechanisms of COD Removal by DPAT Treatment

The reaction mechanisms of COD removal using DPAT treatment were investigated
based on the organic matter compositions before and after pretreatment by chlorine dioxide,
the organic matter compositions before and after the following anaerobic treatment, and
the abundance and diversity of the microorganism community in anaerobic treatment.

3. Results and Discussion
3.1. Result of Generation of the Chlorine Dioxide Disinfectant

The chlorine dioxide disinfectant was presented at a 465.41 mg/L concentration. The
chlorine dioxide disinfection solution titrated consumed 0.7 mL of sodium thiosulfate stan-
dard solution; the blank titration sample consumed 0.01 mL of sodium thiosulfate standard
solution, namely, V = 0.7 mL, V0 = 0.01 mL, C = 0.1 mol/L, and m = 2 g. Substituting the
concentration of chlorine dioxide disinfectant into Equation (1) obtains 465.41 mg/L.

3.2. Results of Chlorine Dioxide Pretreatment
3.2.1. The Change in COD and BOD5 Values with Chlorine Dioxide Treatment

The COD and BOD5 values of the CMP wastewater that underwent chlorine dioxide
pretreatment were tested, as shown in Figure 3. The COD values of the CMP wastewater
treated with chlorine dioxide were approximately 3500–4400 mg/L. With the increase in
chlorine dioxide dosage, COD gradually decreased. In contrast, the BOD5 values of the
pretreated CMP wastewater were approximately 500–910 mg/L under the condition of
from 20 to 40 mL of the chlorine dioxide disinfectant applied. However, the BOD5 values
sharply decreased to 12–16 mg/L when 50–60 mL of the chlorine dioxide disinfectant was
used. Therefore, based on a COD value of 5634 mg/L for the initial CMP wastewater, the
COD removal rates ranged from 21.5% to 37.3% following chlorine dioxide pretreatment.
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3.2.2. The Change in the Organic Contaminants by Chlorine Dioxide Treatment

A GC–MS system detected the compositions and relative levels of organic contami-
nants. Table 2 shows the results of the GC–MS analysis of eucalyptus CMP wastewater
after chlorine dioxide treatment.

Table 2. The compositions and related levels of organic contaminants in eucalyptus CMP wastewater
before and after a chlorine dioxide pretreatment.

Organic Compound Name Relative Level Relative Level

Before treatment:
Isobutyric acid 9.14% _

Butyric acid 8.15% _
2-Methyl-4-heptanone 0.35% _

5-Methyl-5-propyl-nonane 0.44% _
1-Iododecane 0.45% _

2,6-di-tert-butyl-p-cresol 1.23% _
3,5-Dimethyl-tert-butylbenzene 1.08% _

2,2-Dichloro-1,1-difluoroethyl methyl ether 0.07% _
1-iodooctadecane 0.69% _

3,5-Dimethyl-4-octane 0.24% _
o-Methyl-m-hydroxydiphenylamine 0.41% _

Cyclohexanol 0.39% _
4-Nitro-3-trifluoromethylphenol 0.19% _

3-(2-Aminoethyl)indole 0.21% _
Hexamide 0.82% _

After treatment:
3-octanone _ 0.23%

DL-Lipoamide _ 0.47%
L-lactide _ 2.39%

Almost all the organic compounds in the wastewater were significantly removed and
converted to 3-octanone, DL-lipoamide, L-lactide, and other substances that the GC–MS
analysis system could not detect. Therefore, most toxic substances such as caproamide
were removed entirely, which should benefit the anaerobic treatment in the next step.

3.2.3. The Ratio between the Masses of COD and Chlorine Dioxide Applied

The COD mass can be calculated by Equation (2). and the mass of the applied chlorine
dioxide can be calculated by Equation (3). The ratio between the COD mass and the mass
of the applied chlorine dioxide can be calculated, as shown in Table 2.

MCOD = CCOD × VWW (2)

MCD = CCD × VCD (3)

where MCOD is the COD mass, CCOD is the concentration of COD in the water sample,
VWW is the volume of the water sample, MCD is the mass of chlorine dioxide, CCD is
the concentration of chlorine dioxide disinfectant, and VCD is the volume of the applied
chlorine dioxide disinfectant.

Table 3 shows that the ratio between MCOD and MCD was approximately 142.46–43.19 in
the chlorine dioxide pretreatment stage. This means that 1.0 g of chlorine dioxide should
be used to treat 43.19–142.46 g of COD mass in the wastewater. When 40 mL of chlorine
dioxide disinfectant was applied, the ratio was 60.85, implying that 1.0 g of chlorine dioxide
was needed to treat 60.85 g of COD mass. This ratio resulted in the lowest COD value in
the pretreatment stage.
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Table 3. The ratio between the COD mass and the mass of the applied chlorine dioxide.

CCD (mg/L) VCD (mL) MCD (mg) VWW (mL) CCOD (mg/L) MCOD (mg) MCOD/MCD

465.41

20 9.31

300

4420 1326 142.46
30 13.96 3983 1194.9 85.58
40 18.62 3776 1132.8 60.85
50 23.27 3966 1189.8 51.13
60 27.92 4020 1206 43.19

3.3. The Result of Anaerobic Treatment
3.3.1. The COD Removal Rate

The results of anaerobic treatment were based on the COD values and COD removal
rate, calculated by Equation (4):

r =
(

1 − c0 − c1

c0

)
× 100% (4)

where c0 is the initial COD concentration, and c1 is the COD concentration at a specific
time, mg/L.

Figure 4 shows the variation trend of COD values and their removal rates using a com-
parison between DPAT treatment and the common anaerobic treatment. The COD removal
rate with DPAT treatment reached a maximum value of 88.29%, which was 21.27% higher
than the 67.02% rate obtained by the common anaerobic treatment system [17]. Anaerobic
efficiency reached 80.10% when using DPAT treatment, while the anaerobic efficiency of the
common anaerobic treatment system only reached 67.02%. Therefore, treating CMP wastew-
ater with DPAT treatment should significantly improve the efficiency of CMP wastewater
treatment and should reduce the work needed in subsequent advanced treatments.
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3.3.2. The Change in Organic Compositions by Anaerobic Treatment

Table 4 shows the chemical species and relative content percentages of organic com-
pounds before and after the anaerobic treatment of eucalyptus CMP wastewater using
chlorine dioxide pretreatment. The relative contents of 3-octanone, DL- lipoamide, and
L-lactide were significantly reduced, by 86.96%, 100.00%, and 96.23%, respectively. At the
same time, 1,2-propanediamine and 2-methyl-2-butanol were present at low levels.
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Table 4. GC–MS results before and after anaerobic DPAT treatment.

Organic Compounds Relative Content
before Reaction

Relative Content
after Reaction

3-octanone 0.23% 0.03%
DL-Lipoamide 0.47% ——

2-Methyl-2-butanol —— 0.61%
L-lactide 2.39% 0.09%

1,2-Propanediamine —— 0.15%

As many organic pollutants were removed in the pretreatment step, the water envi-
ronment was more suitable for the reproduction and growth of microorganisms. Therefore,
the degradation efficiency of the electromechanical slurry was higher in the anaerobic
stage. Hence, it can be concluded that the eucalyptus CMP wastewater treated with DPAT
treatment was more suitable for anaerobic processing and should significantly improve the
anaerobic efficiency.

3.4. Result of Microbiological Analysis
3.4.1. Microbial Abundance

To further analyze the feedback mechanism of DPAT treatment, a high-throughput 16S
rRNA sequencing technology was applied to reveal the microbial abundance evaluated by
the Chao1 index and Ace index, as shown in Figure 5. The Chao1 and Ace indices represent
microbial abundance, the values of which are expected to be high [18]. A richer microbial
abundance implies that the treated wastewater is more fit to bleed and grow and that the
rich microorganisms should quickly degrade the pollutants in the wastewater.Molecules 2022, 26, x FOR PEER REVIEW 9 of 13 
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As shown in Figure 5a,b, the Chao1 index and Aceindex in the DPAT treated wastewa-
ter were higher than those obtained using a common anaerobic treatment and an anaerobic
treatment with ozone pretreatment. This demonstrated that the microbial abundance
obtained by the DPAT method was higher than that of the two control methods.

3.4.2. Microbial Diversities

The microbial diversities activated in sludge after a common anaerobic treatment
were analyzed by a high-throughput 16S rRNA sequencing technology and evaluated by
Shannon and Simpson indices, as shown in Figure 6. The Shannon value should have
a higher value, as a higher Shannon number means more different microorganisms are
present. However, the Simpson index values should be reduced, as a lower Simpson
index implies a low possibility of the same microorganisms being present at two different
testing times. Therefore, a lower Simpson index suggests a more diverse microorganism
community [19,20].
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As shown in Figure 6, the Shannon index was higher than those of the two control
methods, while the Simpson index was significantly lower than those of the two control
methods. This indicated a higher level of community diversity in the sludge activated by
DPAT treatment.

3.4.3. The Compositions of Microorganisms in Their Community

Figure 7 shows the changes in the phylum-level microbial diversity during the different
anaerobic treatment conditions. The sludge from the CMP wastewater treated by a common
anaerobic treatment showed Chloroflexi, Firmicutes, and Bacteroidetes proportions of
43.98%, 27.23%, and 10.19%, respectively. These proportions were 47.07%, 17.15%, and
15.16%, respectively, in the sludge from the CMP wastewater that underwent anaerobic
treatment with ozone pretreatment. The dominant flora were Chloroflexi, Firmicutes,
Bacteroidetes, and Proteobacteria, which formed 41.15%, 15.57%, 16.37%, and 10.88% of the
DPAT treatment sludge, respectively. This evidenced a comparative increase in microbial
diversity in the sludge activated by DPAT treatment [21]. An increase in microbial diversity
is conducive to flora growth; hence, this improves the efficiency of anaerobic treatment [22].
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3.5. The Reaction Mechanisms of a DPAT Treatment

According to the oxidation properties of chlorine dioxide and the reaction properties
of the anaerobic treatment, combined with the abundance and diversity of the community
of microorganisms, the reaction mechanisms for the DPAT treatment of high-concentration
eucalyptus CMP wastewater included five steps, as shown in Figure 8.
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1. In the DPAT treatment, ClO2 decomposes to generate peroxide and oxygen and
chlorine oxidant free radicals [23].

2. Then, the generated peroxide further decomposes to generate hydroxyl free radi-
cals [24].

3. The free radical electrophilically attacks the pollutants in the CMP wastewater, leading to
a change in the toxic substances. This generates some new, non-toxic substances [25–27].
The GC–MS detection results supported this adjustment.

4. The generation of non-toxic substances led to the reproduction and growth of the
microorganisms. This adjustment is supported by the abundance and microbial
diversity mentioned in the following.

5. The growing microorganisms further degraded the non-toxic substances, resulting
in a higher COD removal rate. At the same time, the reactions generated CO2, H2,
and water [28]. This adjustment was supported by the final COD removal rate, the
abundance, the microbial diversity, and the improvement in the efficiency during the
anaerobic reaction stage.

Chloroflexi is an anaerobic multicellular filamentous microorganism that can generate
H2 by degrading organic pollutants in water to provide methanogens. Therefore, reducing
the inhibitory effect of organic matter can ensure the stable progress of the anaerobic
reaction [29]. Firmicutes have high-strength cell walls, which can stably provide proteases,
cellulases, lipases, and other extracellular enzymes for the anaerobic system. They are
closely related to the degradation of organic matter [30]. In an anaerobic system, various
microorganisms act synergistically and promote each other to achieve the degradation
effect of pollutants.

In summary, due to the oxidant reaction caused by chlorine dioxide, the original
toxic pollutants in CMP wastewater are changed into some non-toxic substances. This
improves the reproduction and growth of microorganisms, resulting in increased microbial
abundance and community diversity. Furthermore, the high microbial abundance and
diversity can significantly improve the anaerobic efficiency.
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3.6. The Advance and Shortage of This Research

The advantages and shortcomings of the DPAT treatment can be summarized as
follows: (1) DPAT treatment was developed to treat high concentrations of eucalyptus CMP
wastewater. It presented a higher COD removal rate than common anaerobic treatment
and anaerobic treatment with ozone pretreatment. (2) This treatment is more suitable for
increasing plant processing efficiency than the existing methods. (3) The mechanisms of
DPAT treatment were revealed. According to the oxidation properties of chlorine dioxide,
the reaction properties of the anaerobic treatment, and the abundance and diversity of the
community of microorganisms. (4) Although the COD removal rate was high, a relatively
high COD value remained in the residue wastewater. Therefore, follow-up treatments are
required to further remove the remaining COD values and meet the standard discharge
revels [31]. (5) In addition, some toxic gas is generated in the chlorine dioxide preparation
process, which is harmful to health [32].

4. Conclusions

The following conclusions were drawn through experiments and analysis: A DPAT
treatment was successfully developed to treat high concentrations of eucalyptus CMP
wastewater, obtaining the maximum COD removal rate of 88.29%. COD removal rates
were 29.13% higher than those obtained with common anaerobic treatment. As the original
toxic pollutants in the CMP wastewater charged to some non-toxic substance, the microbial
abundance and diversity increased in the anaerobic treatment, significantly improving the
anaerobic efficiency.
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