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Single-cell transcriptomic analysis of the tumor
ecosystems underlying initiation and progression
of papillary thyroid carcinoma
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Peizhen Han1,3, Yu Wang1,3, Dongmei Ji 3,6,7, Hualei Gan3,8, Wenjun Wei1,3, Zhongwu Lu1,3, Ning Qu1,3,

Jiaqian Hu1,3, Xiaohua Hu2, Zaili Luo9, Huajun Li10, Qinghai Ji1,3, Jiucun Wang 2,11, Xiaoming Zhang 4✉ &

Yu-Long Wang 1,3✉

The tumor ecosystem of papillary thyroid carcinoma (PTC) is poorly characterized. Using

single-cell RNA sequencing, we profile transcriptomes of 158,577 cells from 11 patients’

paratumors, localized/advanced tumors, initially-treated/recurrent lymph nodes and radio-

active iodine (RAI)-refractory distant metastases, covering comprehensive clinical courses of

PTC. Our data identifies a “cancer-primed” premalignant thyrocyte population with normal

morphology but altered transcriptomes. Along the developmental trajectory, we also discover

three phenotypes of malignant thyrocytes (follicular-like, partial-epithelial-mesenchymal-

transition-like, dedifferentiation-like), whose composition shapes bulk molecular subtypes,

tumor characteristics and RAI responses. Furthermore, we uncover a distinct BRAF-like-B

subtype with predominant dedifferentiation-like thyrocytes, enriched cancer-associated

fibroblasts, worse prognosis and promising prospect of immunotherapy. Moreover, potential

vascular-immune crosstalk in PTC provides theoretical basis for combined anti-angiogenic

and immunotherapy. Together, our findings provide insight into the PTC ecosystem that

suggests potential prognostic and therapeutic implications.
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The incidence of thyroid cancer has increased by 3%
annually in the United States over the last four decades,
driven largely by the rise in papillary thyroid cancer

(PTC)1. Although most PTCs present an indolent clinical course,
some of them have developed to locoregional or even distant
metastatic disease at diagnosis. In the recurrent or metastatic
settings, combination of surgery, radioactive iodine (RAI) abla-
tion and thyroid stimulating hormone (TSH) suppression can still
achieve a favorable prognosis for most cases, while a fraction of
patients would ultimately progress into RAI-refractory (RAIR)
status or even succumb to this disease, who may be potential
candidates for alternative treatments including molecular targeted
inhibitors and immunotherapies2,3. The evolving trends of pro-
gressive PTCs have challenged the clinical practice and promoted
researchers to further decipher their biological architectures.

Bulk sequencing of PTC have advanced our understanding of its
genetic characteristics2,4,5. For instance, detection of BRAFV600E and
TERT promoter mutations can help distinguish malignant thyroid
nodules and identify patients with dedifferentiation potential5,6.
However, the biological underpinnings of PTC evolution from early
to advanced stage, or from RAI-avid to RAIR state remain unclar-
ified. Although bulk sequencing can delineate the genetic landscape
of the whole tumor entity, it inevitably averages the expression
profiles of diverse cells and masks the critical differences between
tumor components. This highlights a critical need to elucidate the
compositions, properties and underlying mechanisms in the com-
plex tumor microenvironment (TME). Single-cell RNA sequencing
(scRNA-seq), which enables us to quantify features of individual
cells, is a powerful tool for the investigation of the cellular compo-
nents and their interactions in the TME. Currently, scRNA-seq has
been widely applied in a broad spectrum of cancers7. However,
improved characterization of PTCs at single-cell resolution is still
lacking.

In this work, we perform scRNA-seq to analyze 158,577 cells
from 11 PTC patients’ paratumors, localized or advanced tumors,
initially-treated or recurrent lymph nodes (LNs), and RAIR distant
metastases, covering comprehensive clinical courses of this disease,
filling the current blank of single-cell profiling of human PTC.
Using this unique resource, we analyze cell lineages, transcriptional
states, developmental trajectories and cell-cell crosstalk in PTCs,
thereby shedding light on the tumor ecosystems underlying PTC
initiation and progression.

Results
A single-cell expression atlas of papillary thyroid cancer eco-
systems. To comprehensively resolve the tumor ecosystem het-
erogeneity during PTC initiation and progression, we used scRNA-
seq (10X Genomics) to profile tumor and stromal cells of 23 fresh
samples from 11 patients (Fig. 1a), including six paratumor tissues,
seven primary tumors, eight involved LNs, and two RAIR sub-
cutaneous loci belonging to distant metastases in PTC. In addition
to classical PTCs, three patients were diagnosed with follicular
variant (FV, Case 5 and 7) or tall-cell variant (TCV, Case 6) after
careful pathological review. Detailed clinicopathological informa-
tion is provided in Supplementary Data 1. Moreover, the genomic
mutations for these patients were also assessed by whole-exome
sequencing (WES) and Sanger sequencing, and the status of key
PTC-related mutations (BRAF, RAS, TERT promoter) was pro-
vided (Supplementary Data 2; Supplementary Table 1). Except for
Case 4, 6, and 7 with only recurrent loci, the remaining eight
patients had paired samples collected for scRNA-seq analysis. For
example, for case 11, the involved LNs and subcutaneous distant
loci were identified by computed tomography (CT) scan, clinical
examination and pathological review to assure the correct tissues
for analysis (Supplementary Fig. 1a, b). By this means, our cohort

covered a relatively comprehensive collection of tissues mirroring
tumor progression process, including paratumors, primary lesions,
nodal metastases and RAIR distant metastases.

A total of 158,577 single cells with a median of 1,215 expressed
genes passed the stringent quality filtering and were incorporated in
further analysis (Fig. 1b; Supplementary Table 2). After integrating
the transcriptional data from all acquired cells, we primarily applied
low-resolution t-distributed stochastic neighbor embedding (t-SNE)
clustering and identified six main cell populations, which were
labeled as T/natural killer (NK) cells (CD3D, CD3E, CD3G, CD247),
B cells (CD79A, CD79B, IGHM, IGHD), thyrocytes (TG, EPCAM,
KRT18, KRT19), myeloid cells (LYZ, S100A8, S100A9, CD14),
fibroblasts (COL1A1, COL1A2, COL3A1, ACTA2) and endothelial
cells (PECAM1, CD34, CDH5, VWF) (Fig. 1c; Supplementary
Fig. 1c). Each of these populations was captured from different
tissue types of different patients (Supplementary Fig. 1d, e). In
addition, all these cell types were further validated using another
scRNA-seq study of PTC (Supplementary Fig. 1f, g)8.

Subsequently, we aimed to depict a more detailed immune
landscape through a high-resolution t-SNE analysis. The T, NK,
B, and myeloid cell lineages were demarcated into 22 finer
subclassifications based on their patterns of differentially
expressed genes (DEGs) (Fig. 1d). Specifically, T cells were
dichotomized according to the expression level of CD4 and CD8,
which were further divided into 7 clusters for CD4+ cells and 4
clusters for CD8+ cells, while the NK, B, and myeloid cells were
divided into 2, 3, and 6 subsets, respectively (Fig. 1d). Each cluster
was assigned with a putative identity demonstrating its potential
functional capabilities and demonstrated different tissue enrich-
ment preferences, as quantified by the ratio of observed to
expected cell numbers in each cluster (Ro/e) in previous
reports9,10 (Fig. 1e; Supplementary Table 3).

For example, CD4-c6 and CD8-c4 clusters expressed upregulated
levels of FOXP3 and PDCD1 (encoding programmed cell death
protein-1, PD-1), corresponding to regulatory CD4+ T cells (Treg)
and exhausted CD8+ T cells (Tex), respectively9, both of which
negatively regulated antitumor response (Supplementary Table 3).
In addition, the CD8-c3 cluster was characterized by upregulated
cytotoxic marker gene GNLY (encoding granulysin), which
might act as effector T cells11 (Supplementary Table 3). Compared
with paratumor samples, Tregs, Texes, and effector T cells were all
enriched in tumor tissues, suggesting the coexistence of host
immune response and tumor immune escape in the PTC milieu
(Fig. 1e). Furthermore, the ISG15-expressing CD4+ T cells were
significantly enriched in paratumors. Previous reports suggested
that ISG15 might participate in natural killer (NK) cell proliferation,
dendritic cell maturation, or other innate immune responses12–14.
However, the definite role of this subcluster in PTC needs to be
further examined.

However, the cytotoxic CD8-c3-GNLY cells were not enriched
in the subcutaneous loci, replaced by the abundance of Tregs and
Texes and another two immune cell clusters, CD8-c1 and Mφ-c3
(Fig. 1e). The CD8-c1 cluster had high expression of GZMK,
which was reported to be an intermediate state between effector
and exhausted T cells15, while the Mφ-c3 cluster exhibited high
levels of CCL18 that are upregulated in the pro-tumor M2
macrophages16,17. Meanwhile, the Mφ-c1-RGS1 cluster with
phagocytic potential appeared to be sparse in this region (Fig. 1e;
Supplementary Table 3). These results indicated that formation
and development of subcutaneous metastases in PTC may require
a more immunosuppressive TME than that of primary tumors
and lymphadenopathies.

Single-cell transcriptional profiles of thyrocytes reveal a tissue
origin-related pattern. To explore the single-cell transcriptional
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heterogeneity of thyrocytes, we used Uniform Manifold Approx-
imation and Projection (UMAP), a nonlinear dimensionality-
reduction technique18, to characterize them into 9 different clusters
along the epithelial cell lineages (Fig. 2a). As visualized by cluster
distributions in the UMAP plot, expression programs of thyrocytes

revealed substantial heterogeneities, but appeared to be closely
related with their sample origins (Fig. 2b). Moreover, we found
that c03, c05, c06, and c09 are mainly defined by cells from single
sample. Therefore, we then performed the pathway enrichment
analysis using the DEGs for each cluster and identified distinct up-
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Fig. 1 Expression profiling of 158,577 single cells in PTCs. a Workflow of sample composition, processing and bioinformatic analyses for 23 samples in
the present study. b t-SNE plot of all high-quality cells profiled in the present study colored by major cell lineage. c, Heatmap of the canonical and curated
marker genes for major cell lineages. d t-SNE projection showing the landscape of immune cells, colored by cluster (left) and tissue (right). e Tissue
preference for each immune cell subcluster estimated by Ro/e. Source data are provided in the Source Data file.
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Fig. 2 Identification of malignant thyrocytes and their transcriptional heterogeneity between different tissue types. UMAP projection of 36,265
thyrocytes colored by (a) cluster and (b) tissue. c Heatmap of pair-wise Spearman’s correlations among c01-c09 thyrocyte clusters. Boxplots showing TDS
scores of (d) each thyrocyte cluster and (e) tissue type. The number of cells in each group is shown in Supplementary Table 4. The middle lines of the
boxplots show the median (central line), the lower and upper hinges show the 25–75% interquartile range (IQR), and the whiskers extend from the hinge
to the farthest data point within a maximum of 1.5x IQR. Heatmaps of the top DEGs between (f) malignant versus non-malignant thyrocytes, (g) tumor-
derived versus LN-derived malignant thyrocytes, and (h) tumor-derived versus subcutaneous loci-derived malignant thyrocytes. Source data are provided
in the Source data file.
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regulated and down-regulated pathways for each cluster, suggest-
ing that their differences were attributed to biological diversities
cause by inter-tumor heterogeneities rather than batch effects
(Supplementary Table 4; Supplementary Data 3). Among the 9
clusters, c01 and c02 distributed away from other populations, and
both populations mainly derived from paratumors. In turn, the
vast majority of paratumor cells fell into c01/c02 clusters, while
c03-c09 cells were almost entirely composed of thyrocytes from
primary tumors, LNs and subcutaneous metastatic samples
(Fig. 2b, Supplementary Fig. 2a, b; Supplementary Table 4), sug-
gesting that c01/c02 and c03-c09 populations might represent non-
malignant and malignant thyrocytes, respectively.

To further validate this presumption, we clarified their
differences by three complementary approaches. First, we
calculated the average expression programs of all clusters, in
which c01 and c02 were highly correlated (Pearson’s R= 0.82),
while the remaining seven clusters revealed a closer connection
(Pearson’s R > 0.62), suggesting the diverse transcriptional
profiles of c01/c02 with other populations (Fig. 2c). Second, we
calculated each thyrocyte’s thyroid differentiation score (TDS),
which is a widely used algorithm to evaluate the differentiation
status of PTC4. Consistently, c01/c02 thyrocytes had higher TDS
values and upregulated thyroid differentiation-related genes such
as TFF3, TPO, TG, and DIO2, while c03-c09 clusters had lower
TDS scores and increased expression of PTC-related genes, such
as S100A4, FN1, IGFBP6, and KRT19 (Fig. 2d; Supplementary
Fig. 2c, d). Third, we constructed a machine learning classifier
based on bulk transcriptional profiles from PTC cases in The
Cancer Genome Atlas (TCGA) dataset (“Methods”), which was
successfully validated with 97% sensitivity and 96% specificity in
an additional bulk RNA-seq cohort from Yoo et al.’s study19

(available in EBI European Nucleotide Archive database with
accession number PRJEB11591) (Supplementary Table 5). Sub-
sequently, this classifier was applied in our scRNA-seq profiles
and exhibited a well distinguishable ability, with 95%, 97% and >
98% of c01, c02, and c03–09 cells in accordance with their
putative non-malignant or malignant identities, respectively
(Supplementary Table 6). Together, these data verified the
accuracy of our approach that confidently distinguished malig-
nant (c03-c09) and non-malignant (c01, c02) thyrocytes in PTCs.

For malignant compartments, thyrocytes from metastatic
lesions generally had lower degrees of differentiation than those
from primary tumors (Fig. 2e). Therefore, in addition to the
overall differences between malignant and non-malignant
thyrocytes (Fig. 2f), transcriptional heterogeneities within the
malignant component are also worth further investigation.
Compared with malignant cells from primary tumors, their
nodal metastatic counterparts were characterized by upregulation
of genes (MT1X, MT2A, MT1E, MT1G) in the metallothionein
family (Fig. 2g). On the other hand, consistent with the low TDS
score, post-RAI subcutaneous metastatic thyrocytes lacked TG
while preferentially expressed a set of genes associated with
epithelial-mesenchymal transition (EMT) (CLDN3, CLDN4), cell
cycle (S100A4, HSPB1) and stress responses (FOS, IER2) (Fig. 2h).
In addition, we identified 22 genes to be significantly and
positively associated with TDS score (Pearson’s R > 0.5, P < 0.05)
at single-cell resolution (Supplementary Table 7). Among them,
eight genes (MT1F, SORBS2, MT1G, SORD, SLC26A4-AS1,
PRDX1, FCGBP, MATN2) have not been reported to be involved
in thyroid differentiation. The functions and roles of these genes
in PTC tumorigenesis deserve further exploration.

Among the most dysregulated DEGs (log2 fold-change > 2,
FDR < 0.05) between different origins of thyrocytes, we found
TMSB4X, which has not been reported in PTC, was significantly
upregulated in malignant cells than in non-malignant cells (Fig.2f;
Supplementary Table 8). Furthermore, we also observed an

increasing pattern of TMSB4X expression from primary cancer
cells to LN-metastatic cells (Fig.2g). Consistent with our scRNA-
seq findings, both the TCGA and PRJEB11591 cohorts validated
the incremental trend of TMSB4X expression from paratumor to
N0-stage tumors to N1-stage tumors in bulk profiles (Supple-
mentary Fig. 3a, b). At the protein level, immunohistochemistry
(IHC) staining also revealed an evidently higher expression of
TMSB4X on tumor cells compared with their adjacent normal
thyrocytes in two additional cases (a classical PTC and an FV-
PTC, Supplementary Fig. 3c, d). Taken together, these data
highlighted TMSB4X as a suggestive biomarker that potentially
involves in PTC initiation and progression.

Identification of premalignant thyrocyte population harboring
cancer-primed properties. As shown in Fig. 2d, the inconsistency
in TDS scores between c01 and c02 cells suggested heterogeneous
expression programs within non-malignant compartments. We
then sought to explore the differences in single-cell tran-
scriptomes between the two populations. The t-SNE analysis
indicated that c01 and c02 cells represented two distinct states of
non-malignant thyrocytes (Fig. 3a), in which the c02 cluster was
enriched in pathways associated with cell proliferation (OXI-
DATIVE_PHOSPHORYLATION, MYC_TARGETS_V1) and
stress response (DNA_REPAIR, HYPOXIA) according to the
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
(Supplementary Fig. 4a). Moreover, trajectory analysis further
suggested the potential transitions between c01 and c02 popula-
tion (Fig. 3b). Specifically, from c01 to c02 to malignant (c03–09)
clusters, we observed a descending trend of classical thyroid
epithelial markers including TG, TPO and IYD and an ascending
trend of TMSB4X that increased along with PTC initiation and
progression (Fig. 3c, Supplementary Fig. 4b). Therefore, in terms
of transcriptional profiles, the c02 cluster might not be completely
normal thyrocytes, but instead represented a premalignant state.

To evaluate histological features of the premalignant c02
cluster, we then reviewed the hematoxylin-eosin (H&E)-stained
slides of Case 5 whose paratumor tissues (P5) donated the
majority of thyrocytes in this cluster. From pathological sections
of the P5 sample, we confirmed the non-malignant nature of c02
cells by their histologically normal follicular architectures,
indicating the aberrant expression programs have yet to bring
about evident changes in cellular morphology (white arrow,
Fig. 3d). However, although preoperative examinations lacked
positive findings in the region where P5 was obtained, we
observed multifocal occult tumor foci (yellow arrow) embedded
in these c02 thyrocytes (white arrow) in H&E-stained sections
(Fig. 3d).

Then we evaluated the differences between P5 and T5 (primary
tumor) malignant cells. Compared with their T5 counterparts, P5
occult cancer cells not only had diverse morphologic features and
higher TDS scores, but also occupied evolutionary positions
closer to the P5 premalignant cells (Fig. 3d, e, f), suggesting they
were more likely to originate from their neighboring premalig-
nant cells rather than from the primary lesion through
intraglandular metastases. In other words, these data supported
the cancer-primed nature of these outwardly normal but
transcriptionally altered premalignant cells (c02), which pre-
sumably provide both seeds and soil for the eruption of malignant
growths.

The most dysregulated genes (|log2 fold-change | > 1, FDR <
0.05) between normal (c01) and premalignant (c02) thyrocytes
reflected the underlying early-onset transcriptional changes
during PTC tumorigenesis (Fig. 3g; Supplementary Fig. 4b), in
which PKHD1L1 was significantly downregulated in premalig-
nant and malignant thyrocytes (Supplementary Fig. 4c;
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Supplementary Table 9). In bulk profiles, we observed a decreased
PKHD1L1 expression in tumor samples compared with that in
normal thyroid tissues (TCGA cohort, Supplementary Fig. 4d).
Meanwhile, we also found a downward PKHD1L1 expression
with the decline of follicular patterns across different histologic
subtypes (PRJEB11591 cohort, Supplementary Fig. 4e). Further-
more, in the TCGA dataset, downregulation of PKHD1L1 not
only predicted a significantly compromised disease-free survival
(DFS, P= 0.0063) in thyroid cancer (Supplementary Fig. 4f), but
also predicted a poorer overall survival (OS) in lung adenocarci-
noma (P= 0.0013) and melanoma (P= 1.2e–6) (Supplementary
Fig. 4g, h), suggesting that PKHD1L1 might function as a tumor
suppressor gene in multiple solid tumors.

Developmental trajectory defines distinct states of malignant
thyrocytes associated with tumor characteristics and response
to RAI treatment. The collection of four types of lesions from
different clinical course of PTCs gave us an opportunity to dissect
the evolutionary dynamics of thyroid epithelial lineages. To
mirror this process, we applied Monocle to perform trajectory
inference of all acquired thyrocytes. We found that the trajectory-
estimated pseudotime fit well with the variation trend of TDS,
BRAF and RAS scores (Fig. 4a; Supplementary Fig. 5a, b), indi-
cating a good correlation between pseudotime progression and an
increased malignant degree. Subsequently, our trajectory analysis
yielded three developmental hierarchies (State 1–3) where the
normal c01 and premalignant c02 clusters located at the top-right
corner, suggesting a clear starting point of cell evolution on this
map (Fig. 4b; Supplementary Table 10). After confirmation of this
starting point, developmental routes were clearly determined
beginning with the normal-cell-initiated State 1 and then bifur-
cating into either State 2 or State 3 branches with metastasis-rich
endpoints (Fig. 4b).

For these three states, (1) almost all paratumor thyrocytes with
normal follicular epithelial features concentrated in State 1, which
appeared to be an indolent state reflected by malignant scores
(Fig. 4c; Supplementary Fig. 5c). Meanwhile, single-cell regulatory
network inference and clustering (SCENIC) analysis also predicted
an increased expression of SOX9, a key transcription factor (TF) in
branching folliculogenesis of normal thyroid gland20 (Fig. 4d).
Therefore, State 1 was termed as the follicular-like thyrocyte
phenotype. (2) On the other hand, State 2 was basically a half-half
mixture of tumor and LN-metastatic thyrocytes, displaying an
intermediate state in malignant programs (Fig. 4c; Supplementary
Fig. 5c). Consistent with the high proportion of LN metastases,
State 2 thyrocytes had several features of EMT, including increased
expression of extracellular matrix-related genes (SDC4, ECM1,
LGALS1), upregulated EMT-related TFs (HMGA2 and EGR1) and
an enriched EMT signaling pathway (Fig. 4d, e; Supplementary
Fig. 5d). Nonetheless, despite the downregulation of certain
thyroid epithelial genes (TPO, TFF3, DIO2), it still maintained
an overall expression of other epithelial markers (TG, KRT18,
EPCAM) (Supplementary Fig. 5e, f). Furthermore, we did not
detect other classical EMT TFs, such as TWIST1/2, ZEB1/2 and
SNAIL1/2. Actually, this type of transcriptomic program did not
support a full EMT, but reflected a biological process called partial
EMT (p-EMT), which has been featured in multiple cancers21–23.
Taken together, State 2 was termed as the p-EMT-like thyrocyte
phenotype. (3) State 3, featured by the lowest TDS score and RAS
score, and highest BRAF score, contained the vast majority of
RAIR subcutaneous metastatic thyrocytes (Fig. 4c; Supplementary
Fig. 5c, g, h). Meanwhile, State 3 thyrocytes had preferentially
upregulated dedifferentiation-related TFs (GATA2, MYC, SOX4)
and pathways (E2F_TARGETS, HYPOXIA, MYC_TARGETS_V1)
(Fig. 4d, e), and simultaneously exhibited the lowest level of

thyroid epithelial markers (TG, TPO, TFF3, DIO2, ID4) (Supple-
mentary Fig. 5e, f). Furthermore, we obtained the scRNA-seq data
of anaplastic thyroid carcinoma (ATC) from the Gene Expression
Omnibus (GEO, accession number: GSE148673) database and
analyzed all the shared genes with our PTC profiles. We found that
the Pearson’s correlation between State 3 thyrocytes and ATC cells
was as high as 0.72. Moreover, TMSB4X, a potential biomarker of
PTC progression as described above, was also expressed at the
highest level in State 3 (Supplementary Fig. 5i, j). Combining these
observations, we termed State 3 as the dedifferentiation (dediff)-
like thyrocyte phenotype.

Beyond the overall landscape, we then separately depicted the
evolutionary paths of individual patients’ thyrocytes. For single
individuals in our scRNA-seq cohort, thyrocyte evolutionary
dynamics well fit the lesion’s clinicopathological characteristics.
For example, (1) in Case 6, the right neck LN metastases (LN6r)
had a low TDS score and were pathologically determined as
TCV, a typical BRAF-like histologic subtype4. Accordingly, the
LN6r cells were enriched in the dediff-like state with augmented
BRAF signaling (Supplementary Fig. 6a). (2) Likewise, in
Case 10, the advanced primary tumor (T10) invading thyroid
cartilage contained more representative papillary architectures
than the matched LN metastatic lesion (LN10r). In line
with this pathological observation, T10 cells were closer to
the evolutionary endpoint than LN10r cells on the trajectory
(Supplementary Fig. 6b).

In addition, thyrocyte evolutionary dynamics of single
individuals could also provide reasonable explanations for their
different responses to RAI therapy. As mentioned above,
thyrocytes from both two RAIR subcutaneous loci (SC4 and
SC11) predominantly located in State 3 and presented very low
TDS scores (Fig. 4f; Supplementary Fig. 6c), leading to a logical
assumption regarding the strong relationship between RAIR
disease and abundance of dediff-like cells. Notably, this hypoth-
esis was backed up by the disease course of two FV-PTC cases
(Case 5 and 7) in our cohort. (1) In Case 7, the right LN
metastases (LN7r) which had prevalent and well-retained
follicular architectures, mostly lay in the follicular-like and
p-EMT-like states (Supplementary Fig. 6d). Despite the extensive
nodal involvement in preoperative CT scans and postoperative
pathological examinations (15/31 metastatic LNs), after two
adjuvant RAI treatments, he had no signs of tumor recurrence
with undetectable serum thyroglobulin (Tg) and negative whole-
body RAI scans throughout the 12-month follow-up period. (2)
Contrastingly, the situation of another FV-PTC patient (Case 5)
seemed to be much tougher. This 15-year-old male, who had a
large primary lesion with extensive neck and lung metastases at
initial surgery, has so far experienced three postoperative RAI
treatments with a cumulative dose of 400 mCi (Supplementary
Fig. 7a, b). Despite a transient reduction in serum Tg after the
first RAI administration, his Tg levels rapidly rebounded and
exceeded the baseline values during the following two RAI
treatments, accompanied by continuous radiographic progression
of lung metastases (Supplementary Fig. 7a–c). On the develop-
mental trajectory, we found this case harbored ample dediff-like
cells (Supplementary Fig. 7d), which might account for his RAIR
clinical course.

Refined bulk molecular subtyping identifies a distinct BRAF-
like subclass with worse prognosis and promising prospect
of immunotherapy. To explore the generality and prognostic
significance of thyrocytes’ scRNA-seq-derived signatures, we
identified 480 pseudotime-associated genes (PAGs) through
the correlations between gene expressions and pseudotime of
each thyrocyte (Supplementary Data 4). As these genes purely
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represented the profiling of thyroid epithelial lineages rather than
miscellaneous tumor components, we thus aimed to refine the
conventional BRAF-/RAS-like molecular subtyping algorithm4

based on PAGs using a cohort integrating two bulk RNA-seq
profiles (TCGA and PRJEB11591, Supplementary Data 5;
“Methods”). In general, our refined molecular classification
changed the BRAF-like or RAS-like assignments of 6.9% (42/613)
patients in the integrated bulk cohort, including RAS-driven
tumors that were previously categorized into the BRAF-like
subtype and vice versa (Fig. 5a; Supplementary Data 5).

Similar to the conventional bulk molecular classifications4,
the refined BRAF-like tumors also had strong heterogeneity in
transcriptional outputs, while activation of thyroid hormone
metabolism-related pathways was largely preserved in the
refined RAS-like tumors (Fig. 5a; Supplementary Fig. 8a).
These findings prompted us to dissect the transcriptional
discrepancies of BRAF-like populations. Furthermore, unsu-
pervised clustering classified the refined BRAF-like PTCs into
two different subgroups (BRAF-like-A and BRAF-like-B), in
which the BRAF-like-B subtype was not only associated with
TCV pathology (P= 1.7e–8), lower TDS scores (P= 2.2e–16)
and advanced staging (P= 0.0008) (Fig. 5b; Supplementary
Fig. 8b, c), but also predicted a significantly compromised DFS
(P= 0.0059) (Fig. 5c).

With regard to gene expression signatures, the BRAF-like-B
subtype was characterized by higher activities of immune-related
signalings, including but not limited to PD-1, interferon gamma
(IFN-γ), major histocompatibility complex (MHC)-II antigen
presenting pathways (Fig. 5d; Supplementary Fig. 8d). These
findings suggested a promising therapeutic potential of immu-
notherapy for this subpopulation. In our scRNA-seq cohort, Case
10 represented a typical example of BRAF-like-B subtype who
demonstrated an advanced primary tumor with prominent immune
infiltration, positive expression of BRAFV600E-mutant protein and
programmed death-ligand 1 (PD-L1) protein (Fig. 5e), and further
studies with more BRAF-like-B samples are required for further
verification. Moreover, the predominant proportion of dediff-like
cells in Case 10 (Supplementary Fig. 6b) raised a hypothesis that
bulk molecular subtypes might be largely determined by the
diversities in malignant thyrocyte phenotypes.

Thyrocyte phenotype composition shapes the refined bulk
classification. To test the hypothesis above, we used the
BisqueRNA approach to quantify the proportions of relevant
cell types by deconvolution of the integrated bulk profiles24.
Interestingly, the refined bulk subtypes (RAS-like, BRAF-like-A,
BRAF-like-B) well corresponded to the abundance of three
thyrocyte phenotypes (follicular-like, p-EMT-like, dediff-like). To
be specific, (1) follicular-like thyrocyte was the preponderant
phenotype in RAS-like tumors (Fig. 5f), which was concordant
with the enrichment of FV-PTCs in this bulk subtype. (2) BRAF-
like-A tumors were mainly composed of p-EMT-like thyrocytes
(Fig. 5g), consistent with their relatively high rate of LN metas-
tases (41.4%, Supplementary Data 5). Meanwhile, heterogeneity
in tumor malignant degree might also be influenced by the pro-
portion of dediff-like cells, as exemplified by Case 8 (17.5%,
T4aN1bM0) and Case 9 (7.3%, T1bN1aM0) in our cohort
(Supplementary Fig. 8e, f). (3) By contrast, BRAF-like-B tumors
revealed an overwhelming dominance of dediff-like thyrocytes
(Fig. 5h), potentially explaining the worse prognosis of this RAIR-
prone subtype, such as Case 4 and Case 11 in our cohort (Fig. 4f;
Supplementary Fig. 1a, 6c). Taken together, thyrocyte phenotype
composition is an important factor that shapes our refined bulk
classifications, and contributes to their clinicopathological and
prognostic diversities.

Cancer-associated fibroblast subtyping and their contributions
to the PTC ecosystem. Next, we turned our focus to stromal cells
in PTC, among which cancer-associated fibroblasts (CAFs) act as
key components in the TME with diverse functions25. In our
scRNA-seq dataset, we found that all fibroblasts, regardless of tissue
types, expressed the canonical CAF biomarkers, including VIM,
S100A4, ACTA2 (α-SMA), and PDGRFA, and were confidently
defined as CAFs (Supplementary Fig. 9a, b). The CAFs were
partitioned into four distinct clusters upon unsupervised t-SNE
clustering, exhibiting either myofibroblastic or inflammatory phe-
notypes based on the mutually exclusive relationship of corre-
sponding transcriptome signatures (Supplementary Fig. 9c–e).
Inductively, cluster 0, 1 and 3 in Supplementary Fig. 9a were
identified as myofibroblastic CAFs (myoCAF) due to the upregu-
lation of canonical myofibroblastic markers including α-smooth
muscle actin (αSMA, also called ACTA2) and contractile proteins
(TAGLN,MYLK,MYL9) (Fig. 6a, b; Supplementary Fig. 9e). On the
other hand, cluster 2 in Supplementary Fig. 9a represented the
inflammatory subtype (iCAF) that preferentially expressed iCAF
signatures such as CFD, PLA2G2A, CCDC80 (Fig. 6a, b; Supple-
mentary Fig. 9e). Of note, albeit to some shared upregulated
immunomodulatory molecules, abundant expression of cytokines
(such as IL6, IL8), which is a hallmark of iCAFs in pancreatic and
breast cancers26,27, was not observed in their counterparts of PTCs,
suggesting heterogeneities in the iCAF-related regulatory mechan-
isms across different cancer types.

Subsequently, we deconvoluted the integrated bulk profiles
(TCGA and PRJEB11591) to dissect the abundance of myoCAFs
and iCAFs in our refined bulk subtypes. Consistent with previous
reports28,29, the BRAF-like subtype revealed a significantly higher
fraction of CAFs than the RAS-like subtype, especially for BRAF-
like-B tumors that were predicted to contain the peak CAF level
regardless of myoCAF or iCAF phenotypes (Fig. 6c, d). To
validate this finding, we reviewed the H&E-stained slides of Case
10, a typical BRAF-like-B PTC in our scRNA-seq cohort. Just in
accordance, we observed significantly dense desmoplasia in
several fields of the primary tumor (Supplementary Fig. 9f),
which from a side confirmed the extensive presence of CAFs in
the TME.

To further clarify the potential function of CAF phenotypes, we
utilized CellPhoneDB30 to infer cell-cell communications between
iCAFs or myoCAFs with other cell types based on the relative
abundance of ligand-receptor (L-R) pairs. Despite a deficiency in
cytokine expressions, chemokine-mediated signalings took its
place to maintain the immunomodulatory capabilities of iCAFs,
implying their important roles of recruiting and crosstalking with
diverse immune cells in the TME (Fig. 6e). For example, iCAFs
were predicted to significantly interact with CD8+ T, NK and
tumor cells via the CCL5-ACKR4 complexes (Fig. 6e), suggesting
that regulation of cellular immunity is an important function for
iCAFs in PTC. Meanwhile, iCAFs might also participate in the
process of innate immunity, supported by a moderate interplay
between iCAFs and myeloid cells via CCL3L3-DPP4 interactions
(Fig. 6e). Contrastingly, given the absence of significantly
enriched L-R pairs, myoCAFs appeared to lack obvious inter-
cellular crosstalk in the TME of PTC (Fig. 6f), indicating that
myoCAFs tends to exert mechanical and chemical influence on
tumor progression rather than through direct cell communica-
tions, as described in other solid tumors31–33.

Vascular-immune crosstalk in the PTC ecosystem raises the
therapeutic potential of combined anti-angiogenic and
immunotherapy. To gain further insight into tumor stroma, we
next explored the transcriptional programs of another important
stromal element, the endothelial cells (ECs). By integrating the
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Fig. 5 Modified molecular subtypes and deconvolution of bulk RNA-seq profiles. a Heatmap of the top pseudotime-associated genes (n= 480) in 613
PTCs from the integrated bulk cohort (TCGA and PRJEB11591). Hierarchical clustering identifies three molecular subtypes of PTCs. b Differences
in TDS scores of the three PTC molecular subtypes, RAS-like (n= 161), BRAF-like-A (n= 253) and BRAF-like-B (n= 199) defined in our study.
c Kaplan–Meier plot for disease-free survival of patients with BRAF-like-A (n= 191) and BRAF-like-B (n= 171) PTCs in the TCGA cohort. Log-rank test
(two-sided). d GSEA plots showing significantly enriched pathways in the BRAF-like-B subtype compared with the BRAF-like-A subtype. e H&E-stained
or IHC images showing prominent immune infiltration, positive BRAF V600E-mutant protein and PD-L1 protein expressions in the primary tumor (T10)
of Case 10. Three independent experiments were performed and generated similar results. Scale bar= 50 µm. Deconvolution analysis showing
thyrocyte phenotype composition in the (f) RAS-like subtype (n= 161), (g) BRAF-like-A subtype (n= 253) and (h) BRAF-like-B subtype (n= 199).
In (b), (f), (g) and (h), the middle lines of the boxplots show the median (central line), the lower and upper hinges show the 25–75% interquartile
range (IQR), and the whiskers extend from the hinge to the farthest data point within a maximum of 1.5 x IQR. Source data are provided in the
Source data file.
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Fig. 6 Subtyping of cancer-associated fibroblasts and their contributions to the PTC ecosystem. a t-SNE projection of the distinctions between
myoCAFs and iCAFs. b t-SNE plots of key marker genes for myoCAFs and iCAFs in PTC. Deconvolution analysis demonstrating the predicted
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the Source data file.
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function-related gene signatures in a study of lung cancer ECs34,
we classified these ECs into arterial, venous, lymphatic, immature
and tip phenotypes (Fig. 7a). Just as the name implies, arterial
ECs expressed high level of genes associated with arterial devel-
opment and remodeling (FBLN5, GJA5, JAG1) and smooth
muscle contraction (PPP1R14A) (Fig. 7b), while the venous
subtype revealed upregulation of VWF (von Willebrand factor)
and genes associated with leukocyte recruitment (ACKR1)
or adhesion (SELE) (Fig. 7c). Lymphatic ECs were enriched for
a canonical marker LYVE1 and a chemokine ligand CCL21
(Fig. 7d), while immature ECs were characterized by a higher
expression level of Notch signaling and target genes (JAG1, HES1,
ID1, ID2, ID3), and genes involving in barrier integrity (ENG,
PLVAP, HSPG2, APLNR), which may resemble the stalk-like cells
(Fig. 7e).

Remarkably, tip ECs, the key phenotype in sprouting angiogen-
esis, expressed a signature of genes involved in cell migration
(NRP1, ENPP2), adhesion (THY1) and vessel formation (FLT1, also
called VEGFR1; KDR, also called VEGFR2; NRP1, also called
VEGF165R) (Fig. 7f), facilitating their navigating role in the process
of vessel sprouting. In agreement with these signatures, SCENIC
analysis identified several upregulated TF regulons in tip cells that
have been reported to be related with endothelial migration and
sprouting, such as ZEB1, HOXB5 and STAT family (STAT1,
STAT2)35–37 (Fig. 7g), further corroborating the pro-angiogenic
properties of tip phenotype in PTCs. Moreover, with regard to cell
origins, almost all the tip, arterial and immature ECs were found to
be located in primary or metastatic tumor samples, while only
lymphatic ECs were enriched in normal thyroid tissues (Fig. 7h).
Collectively, these observations suggested that vasculogenesis serves
as an important hallmark of PTCs, and the tip EC phenotype is
likely to be a promising target of anti-angiogenic therapy (AAT),
especially anti-vascular endothelial growth factor receptor (VEGFR)
antibodies in this disease.

To dissect the complex activities of tip cells in PTCs, we
subsequently used CellPhoneDB to investigate the molecular
communication networks of this phenotype. In this analysis,
we observed widespread interactions between ECs and immune
cells. For instance, we found that the lymphatic ECs interacted
with immune cells through the atypical chemokine receptor 2
(ACKR2), which has been reported to regulate chemokine
availability (Supplementary Fig. 10)38. Meanwhile, we found that
venous, immature and arterial ECs interacted with immune cells
through the Intercellular Adhesion Molecule 1 (ICAM1) on its
surface, while the ICAM1 expression was significantly reduced in
tip cells and lymphatic ECs (Supplementary Fig. 11). In
particular, we identified that the crosstalks between tip ECs and
immune cells were predominantly achieved through the key
angiogenic VEGF-VEGFR signalings (Fig. 7i; Supplementary
Fig. 12). Taken together, these results supported the presence of
extensive vascular-immune crosstalk in the multicellular tumor
ecosystems39. Therefore, these observations raise the therapeutic
potential for AAT alone or in combination with ICB in thyroid
cancers.

Discussion
Cancer is not a quiescent disease, but it has only recently become
possible to study the evolving patterns of cancer cells and sur-
rounding stromal cells with maturity and extensive application of
single-cell sequencing technologies40,41. However, up to now,
there is still a lack of relevant research in thyroid cancers. In this
study, we carried out scRNA-seq analysis covering paratumor,
localized/advanced tumors, initially-treated/recurrent LNs and
RAIR distant metastases from PTC patients with diverse clinical
courses. Overall, our single-cell data have considerably improved

our understanding of PTC heterogeneity and added dimensions
to prognostic stratification and tailored therapeutics (Fig. 8).

In previous scRNA-seq studies of many other cancers22,42–45,
identification of malignant and normal compartments largely
relies on the inferred large-scale copy-number variation (CNV)
analysis of single cells, provided that cancer cells commonly
harbor chromosomal changes in these malignancies. Nonetheless,
the low frequency of somatic CNVs (27.2%) of PTCs4 precludes
the application of CNV-based classification in thyroid cancers. To
address this challenge, we established a set of integrated
approaches combining tissue origins, transcriptome correlations,
TDS-related transcriptome signatures and a machine learning
classifier to distinguish malignant thyrocytes from their non-
malignant counterparts in PTCs with a high discriminative
power. In this way, our study provides a referable means to
ascertain malignant thyrocytes in future scRNA-seq studies.

One of the key findings in our study is the identification of
premalignant thyrocytes. A growing body of evidence has focused
on the aberrant transcriptional profiles of normal tissues adjacent
to the tumor (NAT) in breast, prostate, colon and liver
cancers46–49. In particular, a recent pan-cancer analysis also
confirmed the intermediate state of NAT between non-tumor-
bearing healthy tissues and tumor samples across various cancer
types50. In this study, we discovered two distinct types of histo-
logically normal thyroid epithelial cells. The major type possibly
represents the truly normal thyrocytes, while the other population
represents the premalignant thyrocytes with normal morphology
but intermediate transcriptomes between normal and cancer cells.
Most importantly, we confirmed the cancer-primed properties of
premalignant cells that independently give birth to cancer cells
with even different histology from the first primary lesion
(Fig. 3d). The existence of premalignant thyrocytes can be
explained by the “field cancerization” theory that genetic altera-
tions of tumor accumulate in a stepwise manner, accompanied by
the occurrence of cancer-primed cells that may show no mor-
phological change before cancer formation51. Although the uni-
versality of the premalignant thyrocytes needs to be further
validated in future studies, these observations and hypotheses, to
some extent at least, provide a mechanistic insight into the
multicenter onset of tumorigenesis in a fraction of PTCs.

As mentioned above, our study was highlighted by the
collection of a broad spectrum of tissue origins, facilitating us to
delineate comprehensive evolutional paths of thyroid epithelial
cells along with cancer progression. Our study defines three
phenotypes of thyrocytes (follicular-like, p-EMT-like and dediff-
like) at single-cell resolution, and further outlines two divergent
routes from follicular-like to either p-EMT-like or dediff-like
thyrocytes, where the thyrocyte positions on the trajectory fit well
with tumor characteristics and RAI responses for each individual
case in our cohort. Meanwhile, Knauf et al. found that PTC could
further develop into poorly-differentiated thyroid cancer (PDTC)
through MAPK-dependent EMT process. This important finding
is partly consistent with the development of p-EMT/dediff-like
thyrocytes in our study, as KRAS signaling of State 2/3 thyrocytes
was activated, which in turn activated the MAPK pathway52. In
line with other cancers53, almost all tumors in our cohort are
comprised of different thyrocyte phenotypes rather than a single
clone with uniform traits, suggesting that dynamic evolution of
cancer cells is ubiquitous and is largely responsible for intra-
tumor heterogeneities in PTCs.

At the bulk level, the TCGA study represents a landmark of
this field, classifying PTC into either a BRAF-like or a RAS-like
molecular subtype according to the bulk profiles4. On this basis,
we used the unique evolution-related genes of thyroid epithelial
lineage to slightly modify the TCGA subtyping algorithm. More
importantly, we uncovered a strong connection between bulk
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molecular subtypes and abundance of different thyrocyte phe-
notypes, implying that the composition of different thyrocytes
also shapes inter-tumor heterogeneities in PTCs. Among these
bulk classifications, the BRAF-like-B subpopulation merits future

attention. Due to its almost pure composition of dediff-like cells,
this subtype is prone to an aggressive and RAIR clinical course,
thus results in a worse prognosis. Nevertheless, the enriched
inflammatory (IFN-γ, MHC-II, etc.) and immunosuppressive
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Fig. 7 Characterization of endothelial cells in PTCs. a t-SNE projection showing five different subtypes of ECs. Expression levels of marker genes for
arterial (b), venous (c), lymphatic (d), immature (e), and tip ECs (f). g Heatmap showing the TF activities in the five EC subtypes, scored by SCENIC and
AUCell. h Sankey diagram showing assignment of normal EC (NEC) and tumor EC (TEC) to arterial, venous, lymphatic, immature and tip subtypes. i Bubble
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provided in the Source data file.
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(PD-1) signalings may bring hope to advanced BRAF-like-B
patients who are potentially to be promising candidates for ICB.
A few prior studies have reported partial or even complete
regression of PTCs during the administration of PD-1
inhibitors3,54,55, indicating that at least a subset of patients
would really benefit from ICB.

The heterogeneity of stromal cells has been scarcely char-
acterized in PTCs. Despite an abundance of literature supporting
a tumor-promoting role of CAFs, they are now considered to be a
heterogeneous entity that plays a very complex role in cancer56.
In the present study, composition of both CAF phenotypes
increased with the malignant degree of bulk classifications, sug-
gesting that both phenotypes, or at least a substantial proportion,
might be pro-tumorous. It is generally acknowledged that CAFs
confer resistance to anticancer drug therapies including che-
motherapy and tyrosine kinase inhibitors33. However, whether
they mediate resistance to RAI (especially myoCAFs) or immu-
notherapy (especially iCAFs) in PTC remains unclear, and needs
to be clarified by more focused studies.

Among the relevant findings in ECs, the tip phenotype can be a
worthwhile focus. Due to its essential role in angiogenesis and
preferential upregulation of VEGFRs, the anti-VEGFR therapy, to
some extent, refers to anti-tip-cell therapy57. For example, the
efficacy of sorafenib, the first multi-kinase inhibitor (including

VEGFRs) approved to treat RAIR differentiated thyroid cancer,
has been shown to be closely correlated with a tip EC marker
CXCR4 in hepatocellular carcinoma58. In addition, tip ECs were
speculated to have widespread interactions with immunologic
components (including immune cells and iCAFs) in this study. In
line with our finding in PTCs, inhibition of VEGFR is known to
remodel the tumor immune microenvironment59, constituting
the theoretical basis of combined anti-VEGFR therapy and ICB in
the treatment of advanced thyroid cancers60,61.

It is estimated that nearly 50% of the substantial increase in
thyroid cancer incidence is attributed to papillary thyroid
microcarcinoma (PTMC)62,63, which means the maximal PTC
foci measuring 1 cm or less. However, regardless of single-cell or
bulk transcriptome profiles (such as TCGA), PTMC is inevitably
underrepresented due to the limited tissue volume available for
sequencing, especially for those tumors less than 5mm, which
would temper our conclusions to some extent. In the future, with
advances in microsampling sequencing technologies, further
study is needed to better parse the tumor ecosystems in this entity
with a rapid-growing morbidity.

We acknowledge that our study has several limitations. First,
the sample size and cell number in our study is limited, and
further expansion of the study cohort is required to better elu-
cidate the tumor progression and diversity in PTC. In particular,
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the premalignant cells found in our study are primarily deter-
mined by one patient, and this state of thyrocytes should be
verified in further studies. Second, current scRNA-seq must be
performed within a short period of time after sample acquisition
because fresh samples with viable cells are needed in this tech-
nology. It is still a challenge to completely correct the batch effects
while fully retaining the true biological properties caused by inter-
tumor heterogeneities. Though we performed the MNN algo-
rithm for batch effect correction, batch effects may still exist in
our study. Third, our study only examined the mutational
status of bulk samples, while the genetic annotation of different
thyrocyte clusters is lacking. Future studies with integration of
multimodal single-cell sequencing data may delineate the DNA
mutation spectrum, epigenetic modifications and transcriptome
at the single-cell resolution simultaneously for different cell
clusters. At last, our study performed a series of bioinformatic
tools to dissect the TME of PTC, while the functional validation
of these findings is lacking, such as the iodine uptake and
retention in different kinds of thyrocytes and the roles of the
identified TDS-associated genes in PTC tumorigenesis. Further
in vivo and in vitro experiments are awaited to validate these
findings in the future.

In summary, our study illuminates a comprehensive landscape
of PTC ecosystem that suggests potential prognostic and ther-
apeutic implications. Our work not only adds dimensions to the
biological underpinnings of PTC heterogeneity, but also provides
a benchmark dataset for this malignancy. We anticipate our data
will serve as a valuable resource facilitating future studies to
further develop biomarkers or treatment targets for PTC patients.

Methods
Ethical statement. This study was reviewed and approved by the Institutional
Review Board of Fudan University Shanghai Cancer Center. Written informed
consent was obtained from each patient prior to sample collection.

Human specimens. Eleven patients who underwent surgery at Fudan University
Shanghai Cancer Center (FUSCC) were included in our study. In total, 23 fresh
surgical specimens (7 primary tumors, 6 para-tumors, 8 metastatic LNs and
2 subcutaneous metastatic loci) were sequenced and incorporated in further ana-
lyses. Hematoxylin and eosin (HE)-stained sections of each sample were carefully
reviewed by two experienced pathologists to confirm the pathology. Clinical
information including demographics, tumor clinicopathologic characteristics,
treatment history and results of preoperative thyroid function test were summar-
ized in Supplementary Data 1. Single-cell data information of the 23 samples is
shown in Supplementary Table 2.

Sample preparation. Fresh samples were resected and washed twice with 1x PBS
(Gibco). Each sample was cut into ~1 mm3 pieces and enzymatically digested with
10 mL digestion medium containing 1 mg/mL collagenase and 1 U/mL Dispase II
(Gibco). These samples were subsequently incubated at 37 °C for 50 min and were
triturated with pipette per 15 min. The suspended cells were washed with 20% fetal
bovine serum (FBS) in Dulbecco’s Modified Eagle Medium (DMEM) and filtered
through a 40-µm Cell-Strainer nylon mesh (BD) and centrifuged at 700 × g for
10 min. After removing the supernatant, the cell pellet was washed twice with
MACS buffer (PBS containing 1% FBS, 0.5% EDTA, and 0.05% gentamycin) and
then re-suspended in the sorting buffer (PBS supplemented with 1% FBS).

Subsequently, the suspended cells were stained with DRAQ5 and DAPI (Sigma)
to harvest nucleated living cells. After antibody incubation, the cells were washed
twice with cold PBS and reconstituted in DMEM with 20% FBS. Cell sorting was
performed with a MoFlo Astrios EQ Cell Sorter (Beckman Coulter). Unstained
cells were routinely used to define FACS gating parameters and sorted into DMEM
media supplemented with 20% FBS.

Whole-exome sequencing and Sanger sequencing. Genomic DNA samples were
extracted by GeneRead DNA FFPE Kit (QIAGEN,. Hilden, Germany) from for-
malin-fixed, paraffin-embedded (FFPE) tumor tissues from all 11 PTC patients
included in our study. Then the DNA libraries were prepared and captured using
Agilent SureSelect Human All Exon v6 kit following the manufacturer’s protocol
(Agilent Technologies, USA). The libraries were then sequenced on an Illumina
NovaSeq 6000 sequencing platform (Illumina, Inc., San Diego, USA) and 150 bp
paired-end reads were generated.

In brief, the raw reads were pre-processed with fastp (version: 0.19.5)64. After
that, clean reads were aligned to the reference human genome (GRCh37) utilizing
the BWA (version 0.7.12), which were then sorted and indexed by SAMtools
(version 1.4)65. The final BAM files were used as input files for variant calling. The
GATK (version 4.1.0.0) was used for recalibration of the base quality score and for
single nucleotide polymorphism (SNP) and insertion/deletion (INDEL)
realignment66.

Regular PCR procedures were used to amplify BRAF and RAS, and nest-PCR
for TERT promoter region. The following conditions were used for amplification: 1
cycle at 94 °C for 3 min, 35 cycles at 94 °C for 30 s, 59 °C (for TERT promoter) or
55 °C (for BRAF and RAS) for 30 s and 72 °C for 30 s, 1 cycle at 72 °C for 10 min67.
The Sanger sequencing was performed using an ABI 3730XL analyzer. The
sequences of the primers used were presented in Supplementary Table 12. Samples
with mutation rates above 15% were deemed to have undergone mutation.

Single-cell RNA-seq and reads processing. The cell suspension of each sample
was subjected to the Gel Bead Kit V3 (10x Genomics, Pleasanton, CA) for library
preparation according to the standard protocols. The single cell libraries were
sequenced on Illumina NovaSeq 6000 Systems using paired-end sequencing (150
nt). The gene-barcode matrices were generated by Cell Ranger toolkit (v3.1), which
aligned the droplet-based sequencing data against GRCh38 human reference
genome and counted the unique molecular identifiers (UMIs) for each cell.

Quality control and batch effect correction of scRNA-seq data. The “Seurat” R
package (v3.1.4) was primarily applied for quality control procedures and down-
stream bioinformatic analyses68. We first filtered out cells with low quality that fit
any of the following criteria: the proportion of mitochondrial genes counts (>10%),
UMIs < 500 or UMIs > 5000. The DoubletFinder (v2.0) package was utilized to
remove the potential doublets with the default settings69. After these quality control
procedures, we conducted a series of preprocessing procedures for downstream
analysis. In detail, we employed a global-scaling normalization method “Log-
Normalize” that normalized the feature expression for each cell by the total
expression and multiplied this by a scale factor (10,000 by default), and log-
transformed the result using the NormalizeData() function in Seurat. After that, the
normalized expression profiles of all samples were merged together using the
merge() function in R v3.6.3. To correct batch effects, we conducted the matching
mutual nearest neighbors (MNN) correction70, and used its faster implementation
in Python (mnnpy, v0.1.9.3). The top 5000 highly variable genes (HVGs) of the
merged dataset identified by the FindVariableFeatures() function were utilized as
input for batch effect correction. Finally, we obtained the scaled and batch effect-
corrected expression profiles of all samples for downstream analyses.

Unsupervised clustering and dimensional reduction. The top principal com-
ponents (PCs) were computed based on the gene expression profiles of the top
5000 HVGs after batch effect correction. The PCElbowPlot() function in Seurat
was utilized to select the optimal number of PCs for further analysis as recom-
mended by Seurat (v3.1.4). The FindNeighbors() and FindClusters() functions in
Seurat were both applied for cell clustering. To find the optimal cluster resolution, a
visualization-based method “clustering tree” was applied when required71. The
RunTSNE() and RunUMAP() function were both performed for visualization
when appropriate. The cell identity of each cluster was defined based on the
expression of known marker genes. In the first round of “low-resolution” clus-
tering, we identified myeloid cells (LYZ, FCER1G, LYZ, TYROBP), T and NK cells
(CD3D, CD3E, IL7R, IL32, TRAC), B cells (CD79A, CD79B, MS4A1, IGKC, CD74),
thyroid epithelial cells (also called thyrocyte, TG, CLU, FN1, MGST1, S100A13),
fibroblasts (RGS5, IGFBP7, TAGLN, COL1A2, ACTA2) and endothelial cells
(TIMP3, RAMP2, CLDN5, TFPI, MGP). Due to the transcriptional similarities
between NK and T cells, we conducted the second round of clustering to distin-
guish T and NK cells. After that, we conducted the third round of “high-resolution”
clustering to identify the finer subclusters within each major cell types. Procedures
of the second and third round of clustering were identical to the first one, all
starting from the computation of PCs and then clustering cells with the optimal
resolution obtained from the “clustering tree” method to seek the identity for each
subcluster.

Identification of signature genes for cell clusters. The differential expressed
genes (DEGs) in each subcluster were identified through the FindAllMarkers()
function in Seurat. Significance levels of these signature genes were determined
using the Wilcoxon rank-sum test along with Bonferroni correction. The signature
genes of each cluster were determined based on the following criteria: (1) expressed
in more than 20% of the cells within either or both two groups; (2) |log2FC | > 0.5;
(3) Wilcoxon rank-sum test adjusted P value < 0.01.

Immunohistochemical staining. Formalin-fixed, paraffin-embedded (FFPE)
tumor and paratumor tissues of two additional cases (classical PTC and FV-PTC)
were separately sliced into 4-μm sections and mounted on glass slides. The slides
were baked at 65 °C overnight. After deparaffinization and hydration, these slides
were boiled in citrate buffer at 100 °C for 15 min. Subsequently, a 3% H2O2 solution
was used to block endogenous peroxidase activities for 20 min. To prevent
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nonspecific antibody binding, the slides were then incubated with 5% normal goat
serum for 1 h at room temperature. Then these slides were incubated at 4 °C
overnight with anti-TMSB4X primary antibody (Proteintech, 19850-1-AP), 1:100,
which was validated for IHC by the manufacturer on mouse skeletal muscle tissue
and colon tissue. Following washes with TBST for 3 times, the slides were then
incubated with HRP-conjugated goat anti-rabbit/mouse secondary antibody
(GeneTech, GK500705) for 1 h at room temperature. Sections were stained by DAB
and then counterstained with hematoxylin according to the manufacturer’s
instructions.

For the primary tumor of Case 10 (T10), IHC staining of BRAFV600E-mutated
protein (Ventana BRAF V600E [VE1] antibody, 0786227000) and PD-L1 protein
(Dako 22C3 pharmDx assay, SK006) was conducted by the Department of
Pathology at FUSCC on a Dako Autostainer Link 48 system (Agilent). Both of
these two assays are in vitro diagnostic products approved by the US Food and
Drug Administration (FDA). The subsequent procedures were identical to that of
TMSB4X staining.

Inference of cell state by trajectory analysis. The trajectory analysis was per-
formed using the Monocle2 package (v2.14.0) to reveal the cell-state transitions72. The
ordering genes in the trajectory analysis were determined according to each gene’s
expression (mean expression > 1) and variance level (dispersion_empirical > 2 ×
dispersion_fit) as recommended by Monocle2. The DDRTree() function in Monocle2
was applied to reduce the dimensions with default settings. As the para-tumor thyr-
ocytes have been separated and clearly defined in our study, we set these cells as the
root state and performed the “order” function in Monocle2. The DEGs changed along
with the pseudotime were identified using the differentialGeneTest() function in
Monocle2.

Analysis of bulk RNA-seq data. The bulk RNA-seq profiles were integrated from
both the TCGA dataset and the PRJEB11591 dataset (available in EBI European
Nucleotide Archive database with accession number PRJEB11591)19, in which the
transcript reads were processed and quantified by kallisto (v0.46.1) against the
annotated transcripts (Gencode v24)73. The gene-level expression of each sample
was calculated by aggregating transcript expression (calculated by Transcripts Per
Million, TPM) belonging to the same gene with the “tximport” package (v1.14.0).
The DEGs between tumors and para-tumors were calculated by DESeq274. To
refine the bulk molecular subtyping of PTCs, we selected the top candidate genes
(n= 480) which changed along with the pseudotime of the thyrocytes in the tra-
jectory analysis. The heatmap was then plotted by the “pheatmap” package
(v1.0.12) in R for visualization. The Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses were completed using the
“clusterProfiler” package (v3.14.2) in R75. Survival analysis was performed using
the “survival” package (v2.44) in R and the GEPIA2 web-based tool (http://
gepia2.cancer-pku.cn/)76.

The previous TCGA study has developed a continuous thyroid differentiation
score (TDS) using the expression profiles of 16 thyroid function-related genes to
quantify relationships between thyroid differentiation and diverse genetic or
epigenetic events4. Among the 16 genes, three genes encoding microRNAs were
unavailable in the PRJEB11591 dataset, and thus were removed in our further
analysis. Collectively, we first log-normalized and scaled the expression levels of the 13
mRNA genes (TG, TPO, SLC26A4, DIO2, TSHR, PAX8, DUOX1, DUOX2, NKX2-1,
GLIS3, FOXE1, TFF3, FHL1) by centering them at the median expression value. The
TDS score was calculated as the sum of log2 (fold change) across these 13 genes.

In addition, the TCGA study has investigated transcriptional diversities and
separated PTCs into BRAF-like and RAS-like4. In accordance with this study, we
used the expression profiles of 71 DEGs between BRAFV600E and RAS mutated
samples, and quantified whether a given tumor resembled either the BRAF-like or
RAS-like group. In detail, we first computed the centroids of the 71-gene signature
in BRAFV600E-mutated samples as c(B), and the RAS-mutated samples as c(R). The
71-gene signature of each tumor (t) was represented as v(t). The BRAFV600E-RAS
score (BRS) of each tumor (t) was then defined as the difference between the
normalized Euclidean distance of v(t) from c(B) and c(R):

BRSðtÞ ¼ jvðtÞ � cðBÞj2 � jvðtÞ � cðRÞj2 ð1Þ
Tumors with negative BRS were considered as BRAF-like, while those with

positive BRS were defined as RAS-like.

Construction of TDS, BRAF and RAS scores of thyrocytes in the scRNA-seq
dataset. Seurat’s AddModuleScore function was applied to quantify differentiation
status of each thyrocyte in our scRNA-seq dataset. We calculated the mean
abundance levels of the abovementioned 13 thyroid function-related mRNA genes
against the aggregated abundance of random control gene sets as the TDS score of
each thyrocyte. Similarly, the BRAF and RAS score of each thyrocyte were quan-
tified with AddModuleScore() function based on the upregulated signature genes in
the BRAFV600E-mutated and RAS-mutated samples from the bulk TCGA profiles
(Supplementary Data 6).

Prediction of malignant thyrocyte identity based on bulk profiles. To distin-
guish malignant compartments from the acquired thyrocytes, we proposed the

K-nearest neighbors (KNN) classification method in conjunction with Spearman’s
correlation coefficient as distance measurement. In detail, we first labeled the
TCGA tumor/para-tumor samples as malignant/non-malignant. Next, we com-
puted Spearman’s correlation between each thyrocyte and each sample in the
TCGA dataset using highly variable genes (n= 2000) in our scRNA-seq dataset.
After that, we obtained the 9 nearest samples from the TCGA dataset for each cell
according to their Spearman’s correlation coefficients. The identity (malignant or
non-malignant) for each thyrocyte was determined by the label which is most
frequent among their nearest neighbors. To validate the efficiency of our classifi-
cation, we utilized the PRJEB11591 dataset as the validation cohort and applied our
algorithm to this bulk profile. It turned out that our method could well distinguish
tumors and para-tumors with 97% sensitivity and 96% specificity, supporting the
robustness of our malignant/non-malignant identification of thyrocytes in scRNA-
seq data.

Deconvolution analysis of the bulk RNA-seq profiles. Deconvolution analysis of
the integrated bulk RNA-seq data (combining both TCGA and PRJEB11591 pro-
files) against our scRNA-seq dataset was conducted using the BisqueRNA package
with default settings24. We labeled our cells into 11 categories, including CD4+

T cells, CD8+ T cells, myeloid cells, B cells, NK cells, myoCAFs, iCAFs, ECs and
three phenotypes of malignant thyrocytes found in trajectory analysis (follicular-
like, p-EMT-like and dediff-like). The deconvoluted cell-type composition of each
bulk sample was then utilized for group comparisons.

Construction of myoCAF and iCAF scores for fibroblasts in the scRNA-seq
dataset. The myoCAFs and iCAFs are two distinct types of CAFs. Previous studies
have identified their transcriptional distinctions in several cancer types, such as
pancreatic ductal adenocarcinoma (PDAC) and bladder urothelial carcinoma77,78.
To assess the potential transcriptional diversity of fibroblasts in PTCs, we con-
structed an myoCAF module and an iCAF module with the myoCAFs and iCAFs
signature genes from the PDAC study78. Their module scores were computed by
Seurat’s AddModuleScore() function for each fibroblast. The detailed markers for
myoCAFs and iCAFs were shown in Supplementary Table 11.

Classification of ECs through label transfer method. To characterize the het-
erogeneity of EC phenotypes in PTCs, we referred to another scRNA-seq dataset,
which defined several types of ECs at single-cell resolution for lung cancer34. In
detail, we first performed unsupervised clustering for ECs in our study. Next, the
standard workflow of label transfer method was performed in Seurat by identifying
the “anchors” between the two datasets and transferring the information into our
dataset. In this way, the predicted phenotype for each EC in our scRNA-seq data
was yielded.

Cell-cell interaction analysis. To investigate the potential interactions between
different cell types in the TME of PTCs, we performed cell-cell interaction analysis
using CellPhoneDB (python package, v2.1.4), which integrates a publicly available
repository of curated ligand-receptor (L-R) pairs and a statistical framework30. As
described above, our ~158,000 cells were grouped into 22 immune cells clusters, 2
fibroblasts clusters, 5 ECs clusters and malignant or non-malignant thyrocytes.
Interaction networks between all these cell clusters were investigated. The P value
and average expression level for each L-R pair were obtained through the statistical
framework of CellPhoneDB. The significant cell type-specific interactions between
L-R pairs (P < 0.05, mainly cytokines, chemokines and growth factors) were
selected for evaluation and visualization.

SCENIC analysis. Single-Cell rEgulatory Network Inference and Clustering
(SCENIC) analysis was performed to reveal the gene regulatory network (GRN) in
different cell types and clusters79. We performed the SCENIC analysis using the
latest version of pySCENIC (v0.10.2), a lightning-fast python implementation of
the SCENIC pipeline. The gene-motif rankings (500 bp upstream or 100 bp
downstream of the transcription start site [TSS]) were used to determine the search
space around the TSS. The motif database (mc9nr) including 24,453 motifs was
used for RcisTarget and GENIE3 algorithms to infer the GRNs, respectively.

Quantification and statistical analysis. All the statistical analyses were per-
formed using R (version 3.6.1). Student’s t test, Wilcoxon rank-sum test, Pearson’s
chi-square test, log-rank test, Pearson’s correlation coefficient and Spearman’s rank
correlation coefficient were utilized in this study.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The processed scRNA-seq data generated in this study have been deposited in the Gene
Expression Omnibus (GEO) database under accession code GSE184362. The raw
scRNA-seq and whole-exome sequencing reads generated in this paper are deposited in
Genome Sequence Archive (GSA) with the accession number HRA001107. Access to the
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raw data may be requested by completing the application form via GSA-Human System
and is granted by the corresponding Data Access Committee. The approximate response
time for accession requests is about 10 working days. Additional guidance can be found
at the GSA-Human website [https://ngdc.cncb.ac.cn/gsa-human/document/GSA-
Human_Request_Guide_for_Users_us.pdf]. PTC and ATC scRNA-seq datasets
(GSE158291 and GSE148673) were obtained from GEO for validation. Bulk RNA-
sequencing dataset, including PRJEB11591 from Sequence Read Archive (SRA), and
TCGA THCA datasets from Google Cloud Pilot RNA-Sequencing for CCLE and TCGA
[https://osf.io/gqrz9/] were used in this study. Endothelial cell annotation was performed
using the scRNA-seq dataset from the lung tumor endothelial cell taxonomy database
[https://www.vibcancer.be/software-tools/lungTumor_ECTax]. The remaining data are
available within the article, supplementary information and Source data. Source data are
provided with this paper.

Code availability
Experimental protocols and the data analysis pipelines used in our work followed the
10X Genomics and Seurat official websites. The analysis steps, functions and parameters
used are described in detail in the Methods section. The scripts of key steps can be found
at the GitHub repository: https://github.com/puweilin/scRNAseq_PTC.
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