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Previous work on the straddle effect in contrast
perception (Foley, 2011; Graham & Wolfson, 2007;
Wolfson & Graham, 2007, 2009) has used visual patterns
and observer tasks of the type known as spatially
second-order. After adaptation of about 1 s to a grid of
Gabor patches all at one contrast, a second-order test
pattern composed of two different test contrasts can be
easy or difficult to perceive correctly. When the two test
contrasts are both a bit less (or both a bit greater) than
the adapt contrast, observers perform very well.
However, when the two test contrasts straddle the adapt
contrast (i.e., one of the test contrasts is greater than the
adapt contrast and the other is less), performance drops
dramatically. To explain this drop in performance—the
straddle effect—we have suggested a contrast-
comparison process. We began to wonder: Are second-
order patterns necessary for the straddle effect? Here
we show that the answer is ‘‘no’’. We demonstrate the
straddle effect using spatially first-order visual patterns
and several different observer tasks. We also see the
effect of contrast normalization using first-order visual
patterns here, analogous to our prior findings with
second-order visual patterns. We did find one difference
between first- and second-order tasks: Performance in
the first-order tasks was slightly lower. This slightly lower
performance may be due to slightly greater memory
load. For many visual scenes, the important quantity in
human contrast processing may not be monotonic with
physical contrast but may be something more like the
unsigned difference between current contrast and recent
average contrast.

Introduction

Humans spend most of their waking hours looking
at regions filled with texture or pattern (regions of
greater than 0% contrast), and very little time looking
at blank, unpatterned areas (0% contrast). Further, this
visual contrast is changing rather rapidly in time, if

only as the result of eye movements. Thus it is
important to know how the contrast at one moment
affects the perception of contrast in the next.

Some years ago we came across an effect of
previous contrast on current perception of contrast in
second-order spatial patterns (Graham & Wolfson,
2007; Wolfson & Graham, 2007) that we now call the
straddle effect. We have continued to study this effect
(Graham, 2011; Graham & Wolfson, 2013; Wolfson &
Graham, 2009). Foley (2011) replicated the straddle
effect and studied it further. Kachinsky, Smith, and
Pokorny (2003) have presented results we think may
be closely related to the straddle effect (see also
Pokorny, 2011). The straddle effect’s relationship to
previously reported effects in adaptation and masking
literature is discussed by Wolfson and Graham (2009)
and Foley (2011).

All the published studies of the straddle effect use
visual stimuli in which the two contrasts to be
discriminated are presented in different spatial loca-
tions of a single pattern; in other words, they are
presented to the visual system simultaneously. Thus the
observer’s performance in all the published straddle-
effect studies could reflect the action of so-called
second-order spatial-vision pathways, and we originally
thought it did. (The term ‘‘second-order’’ as is generally
used in the spatial-vision literature is discussed many
places; e.g., Graham, 2011; Landy, 2013.) The main
point of the studies reported here is to ask whether the
straddle effect in contrast discrimination is limited to
second-order spatial-vision pathways or not.

Replication of the second-order
orientation-identification experiment

In order to provide the necessary background to go
on to the main point of this article, this section will
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briefly describe a replication of the second-order
orientation-identification experiment we have previ-
ously published. The experimental procedure produc-
ing the straddle effect and then the effect itself will be
illustrated using data from two new observers. (These
two observers also took part in almost all the
experiments presented later in this article.) The
processes we hypothesized to explain these results are
then briefly reviewed at the end of this section. All the
explanatory material in this section is presented in
greater depth in our previous publications (see, in
particular, Wolfson & Graham, 2009).

Figure 1 shows the spatial characteristics of the
stimulus at each stage in a typical trial of the second-
order orientation-identification experiment. The test
pattern contains four Gabor patches arranged in a 232
grid; two are at one contrast (C1) and two are at
another (C2). Test contrasts C1 and C2 vary from trial
to trial. The test pattern is presented between the adapt
pattern and the posttest pattern. The adapt and posttest
patterns are entirely identical. The Gabor patches in the
adapt and posttest patterns are always at 50% contrast.
All the Gabor patches throughout a single trial (all the
patches in the adapt, test, and posttest patterns) have

the same spatial frequency and orientation and occupy
the same spatial positions.

The observer is required to say whether the two
different contrasts in the test pattern define horizontal
stripes or vertical stripes (see inset at right of Figure 1
for examples of patterns and the correct response
associated with each). The orientation of the contrast-
defined stripes is technically a second-order orientation;
thus this task is a second-order orientation-identifica-
tion task. One might also describe this task as
identifying the global orientation of contrast differ-
ences (i.e., the orientation of the contrast-defined
stripes) while ignoring as irrelevant the local orienta-
tion (i.e., the orientation of the bars in individual
Gabor patches).

Replacing the posttest pattern with a gray field does
not affect the results materially as far as the questions
and conclusions of the present article go. (Some results
with a gray field as the posttest pattern are shown in the
supplementary material to Wolfson & Graham, 2009.)
Keeping the adapt and posttest patterns identical to
each other has an advantage in that, in many situations,
it allows the hypothesized processes to be disentangled
more easily in interpreting results.

Figure 1. The stages of a typical trial in the second-order orientation-identification experiment. The trial starts with a fixation screen,

followed by a plain gray screen, followed by an adapt pattern and then a test pattern; this is then followed by a posttest pattern and a

final gray screen. The adapt pattern is composed of four Gabor patches all at the same contrast (adapt contrast A). The test pattern is

composed of four Gabor patches with two different contrasts: test contrasts C1 and C2. The posttest pattern is identical to the adapt

pattern. In each of these patterns, the four Gabor patches are arranged in a 2 3 2 grid. The final gray screen remains on until the

observer responds. Auditory feedback as to correctness of the response is given immediately after the response. The observer starts a

new trial with another key press. Between trials, the screen remains gray. Approximate durations are shown in the figure; the exact

values for every experiment are shown in Table A1. (The observer is not allowed to respond until at least 100 ms have passed, hence

the marked duration of 100þms on the diagram for the final gray screen.) Contrast differences in the gray-level images are

exaggerated to increase their salience. The spatial layout and dimensions of the pattern are shown in the left column of Figure 13. The

box on the right-hand side of the figure illustrates the response the observer is instructed to make. The bottom two test patterns are

composed of vertical Gabor patches, and the top two are composed of horizontal Gabor patches. The left-hand two test patterns have

contrast-defined stripes that run vertically, and the right-hand two have contrast-defined stripes that run horizontally. The observer

responds by indicating the orientation of the contrast-defined stripes. The labels ‘‘Vertical’’ and ‘‘Horizontal’’ above the columns give

the correct responses. See Appendix A for more details of the methods and procedures.
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Contrasts are plotted for three kinds of trials in
Figure 2. During the test pattern (labeled ‘‘Test’’ on the
horizontal axis), two Gabor patches have one contrast
(blue line, labeled C1) and the other two Gabor patches
have another contrast (red line, labeled C2). At other
times, all four Gabor patches have the same contrast
(thick black line).

In the figure’s top row, both test contrasts are above
the adapt contrast. We will refer to this case as an
Above test pattern. In the middle row, the two test
contrasts straddle the adapt contrast; that is, one test
contrast is above and the other is below the adapt
contrast. We refer to this case as a Straddle test pattern.
In the bottom row, both the test contrasts are below the
adapt contrast, and we refer to this case as a Below test
pattern.

Details of the spatial and temporal characteristics of
the stimuli and procedure used in the second-order
orientation-identification experiment (and all the other
experiments presented in this article) are described in
Appendix A, and the values of the parameters are listed
in Table A1.

Aside on terminology

Our experimental procedure might be called short-
term adaptation to visual contrast. Others may prefer
other terms for this procedure—e.g., a masking

procedure (Foley, 2011). See further discussion in
Wolfson and Graham (2009).

Second-order orientation-identification results:
Straddle effect and Weber-law behavior

The five rows in Figure 3 show performance for five
test patterns. The adapt pattern is the same for all rows
and has Gabor patches of 50% contrast. The contrasts
in the test pattern vary from very high (top row) to very
low (bottom row), but the difference between the two
test contrasts is held constant, at jC1� C2j ¼ 10% in
this case. We refer to such a set of patterns as a
constant-difference series.

The third row in Figure 3 shows the test pattern
which has contrasts of 45% and 55%, contrasts that
straddle the adapt contrast of 50%. Performance on
this Straddle test pattern is poor (71% and 59% correct,
where chance is 50%).

Performance on the test patterns in the second and
fourth rows—where both test contrasts are on the same
side of, and quite near, the adapt contrast—is very
close to perfect (98% to 100%). We refer to the low
performance on the Straddle test pattern compared to
its near neighbors in a constant-difference series as the
straddle effect.

Performance on the test patterns in the first and
fifth rows—where both test contrasts are on the same
side of the adapt contrast but far from it; that is, Far-
Below and Far-Above test patterns—is poor (59% to
65%).

Figure 4 shows results from the two observers shown
in Figure 3, but now for many more test-contrast
combinations. Look first at the left-hand panels.
Percentage correct is on the vertical axis and average
test contrast (i.e., the average of the two test contrasts)
is on the horizontal axis. The value of the adapt
contrast is 50%, indicated by the red asterisk at the
middle of the horizontal axis. Each curve shows
performance for a constant-difference series (e.g., the
difference jC1� C2j between the two test contrasts is
always 5% for the lowest curves).

In Figure 4, the right-hand column shows perfor-
mance as d0 values rather than percentage correct. We
show these d0 values here (which we have not done in
our previous publications on the straddle effect) in
order to better compare the results in the second-order
orientation-identification experiment with results from,
for example, the first-order experiments presented later
in this article.

As is generally true in computing d0 values, there is a
problem if performance is 100% or 0% (i.e., the
proportion is either 1 or 0): In these cases, the d0 value
computed straightforwardly from the experimental
results will be infinite. To correct for this problem we

Figure 2. The contrasts throughout three different kinds of trials

are shown here as a function of time (stage in the trial). During

the test pattern, the blue line gives test contrast C1 and the red

line gives test contrast C2. The thick black lines show the single

contrast when all four patches have the same contrast (50%

during the adapt, 50% during the posttest, and 0% during the

gray stages). The three trials (from top to bottom) illustrate an

Above, a Straddle, and a Below test pattern.
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used a rule to truncate the computed infinite values to
finite values that can be plotted. The truncation rule we
used allows sample size (the number of trials entering
into any plotted point) to affect the truncated value.
Truncated data points in this and subsequent figures
are shown as open symbols. See Appendix B for details
of the d0 computations.

In summary, each plotted curve shows that the
results for a constant-difference series of patterns is at
a local minimum at (or near) the perfect Straddle
pattern (where the average test contrast equals the
adapt contrast). Each curve then reaches a local
maximum on either side (at points where the average
test contrast is either above or below the adapt
contrast). Each curve then drops again as the average
test contrast moves further away from the adapt
contrast in either direction, forming two tails on each
curve.

These tails conform quite well to Weber’s law, as we
have shown previously (Graham & Sutter, 2000;
Wolfson & Graham, 2009). The dimension on which
this version of Weber’s law holds is the absolute value
of the difference between the adapt contrast and the
test contrast.

The results for observers LG and MC in Figures 3
and 4 replicate the results of the observers for whom we

have previously published results (see, e.g., the results
in figure 13 of Wolfson & Graham, 2009).

Proposed explanation of the second-order
orientation-identification results: Contrast
comparison and contrast normalization

The curve in Figure 5 is an idealized representation
of the observer performances shown in Figure 4. The
kind of curve in Figure 5 has been called a butterfly
curve (Hochberg, 1978, p. 240, although in a very
different perceptual-adaptation context, involving
bathwater temperature). The terms contrast normali-
zation and contrast comparison that label regions of the
curve are given to the processes discussed in this
subsection.

The straddle effect can be explained by assuming
that the relevant part of the visual system cannot
always discriminate an increase in contrast from a
decrease of the same magnitude. It is as if the contrast
of a new stimulus is always compared to the average
recent contrast at that same location. Then the
magnitude of the change is registered and sent
upstream, but the sign of the contrast change is lost or
at least imperfectly retained.

Figure 3. Performance of observers MC and LG in the second-order orientation-identification experiment for five test patterns that

form a constant-difference series. For further description, see the text. The test patterns in the gray-level images here will not appear

to the reader the way the actual test patterns did to the observers in the experiment because the reader will not have looked at the

50% adapt pattern immediately before the test pattern.
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More specifically, we have proposed a contrast-
comparison process (Graham & Wolfson, 2007; Wolf-
son & Graham, 2007). This is a rapid adaptation
process in which a comparison level is continually
updated at each spatial position:

1. The comparison level equals the recent (much less
than 1 s) weighted average of contrast at that
spatial position.

2. The comparison level is subtracted from the
current input contrast.

3. The magnitude of the difference is sent upstream,
but information about the sign of that difference
is lost or at least degraded—that is, a full-wave or
partial rectification occurs.

To have some intuition into why this hypothesized
contrast-comparison process can explain the straddle
effect, consider a simple numerical example. Here one
stimulus (called the earlier stimulus) is immediately

replaced by a second stimulus (called the later stimulus)
that is identical except for contrast. For simplicity in
this example, assume that the earlier and later stimuli
are single Gabor patches identical in all characteristics
except contrast. Assume also that the earlier stimulus
has been present long enough that the comparison level
equals the contrast of that earlier stimulus. Now
consider two possible contrasts for the later stimulus:

� The later stimulus has a contrast 3 arbitrary units
above that of the earlier stimulus. Then (see Figure
6) the contrast-comparison process’s output to this
later stimulus will be þ3 arbitrary output units.
� The later stimulus has a contrast 3 arbitrary units
below that of the earlier stimulus. Then (see Figure
6), the contrast-comparison process’s output to this
later stimulus will also beþ3 arbitrary output units.

Thus, any process subsequent to this contrast-compari-
son process could not tell the difference between the

Figure 4. Performance in the second-order orientation-identification experiment (using a 2 3 2 Gabor-patch grid) plotted as

percentage correct (left panels) or d0 (right panels). Results are shown for observers MC (top row) and LG (bottom row). The

horizontal axis shows the average test contrast. The adapt contrast was 50% and is marked by a red asterisk on the horizontal axis. The

difference jC1� C2j between test contrasts distinguishes the curves. The patterns on a single curve form a constant-difference series.

Results for the smallest test-contrast difference we used (5%) are in the lowest curve (yellow upright triangle symbols); results for the

highest test-contrast difference (20%) are in the upper curve (purple right-pointing triangle symbols). There were about 100 trials per

point. The open symbols in the right panels are cases where the computed d0 values were truncated to correct for the problems in

computing d0 values associated with 0% and 100% performance. (See Appendix B for further description of this truncation method.)

The error bars in the left panels show 61 standard error across blocks. The experiment from which these results came also included

patterns of test-contrast differences larger than 20%, but for the sake of visual clarity those results are not shown here.
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Above and Below later stimuli, since both have an output
ofþ3 arbitrary units. (This hypothesized contrast-
comparison process was originally nicknamed ‘‘Buffy’’
for reasons described in Graham & Wolfson, 2007.
Explanations that will not work to explain the straddle
effect are considered in Wolfson & Graham, 2009.)

The Weber-law behavior, on the other hand, cannot
be explained by the contrast-comparison process, but it is
consistent with a gain-control process of the normaliza-
tion type that has been suggested in many context both
behavioral and physiological (see the earlier references in
Graham, 2011; more recently, see also Carandini &
Heeger, 2011; Solomon & Kohn, 2014).

In our situation it is the rectified signal from the
contrast-comparison process that becomes the input to
the proposed contrast-normalization process. The
labels in Figure 5 identify the region where the
hypothesized contrast-comparison process dominates
and the region where the hypothesized contrast-
normalization process dominates, although both pro-
cesses are assumed to operate over the whole range.
Such a combination model applies to our results
qualitatively (Wolfson & Graham, 2009) and quanti-
tatively (Graham, 2011, figures 16–18).

Foley (2011) has suggested a different model that he
showed worked well in predicting the straddle effect in
his experimental results. His model incorporated two
processes. One, called the V-response, explained the
straddle effect and had effects much like those of the

contrast-comparison process of our model. The second
process, called the S-response, produced a monotonic S-
shaped response like that in many previous models.
While both Foley’s model and ours postulate two
processes and predict the occurrence of the straddle
effect, there are differences between the two models’
predictions. We are not going to attempt to test between
these two models (or any others) in the current article.

Foley also has a very nice discussion of the
phenomenology. He asked two of his observers to
report systematically and in considerable detail the
perceived appearances of the patterns. We have never
done as systematic or thorough a job of collecting
observers’ perceptions; however, our observers’ occa-
sional informal reports—as well as our own experi-
ences—agree with Foley’s descriptions. His work
makes it clear once again that the qualities of perceived
appearance do not necessarily correlate in any simple
way with discrimination performances.

Aim of this article

The straddle effect in contrast discrimination has been
shown only for second-order spatial vision. But nothing
of what we postulated in our model (or Foley in his)
requires that it be limited to second-order pathways: The
straddle effect is happening at every spatial position in
these explanations. It could thus act the same way within
the pathways that process first-order spatial patterns. In
other words, the rectification-like behavior does not

Figure 5. Idealized version of results in second-order orienta-

tion-identification experiments (e.g., Figure 4). We have

suggested that the drop in performance in the center—the

straddle effect—is the result of a shifting, rectifying contrast-

comparison process (a process previously nicknamed ‘‘Buffy’’).
The contrast-comparison level shifts to equal the recently

experienced contrast (which in these experiments is the adapt

contrast). We have also suggested that the drops in perfor-

mance at the two ends (which obey Weber’s law) are the result

of a contrast-normalization process. (Later in this article we

show similar results for first-order experiments.)

Figure 6. Diagram of the action of a shifting, rectifying contrast-

comparison process. The input to this process—on the

horizontal axis—reflects the local contrast at each position in

the visual field, perhaps something like the size of a single

Gabor patch. This input is compared to a comparison level

indicated by the red arrow. The comparison level adapts over

time to equal the recently experienced contrast. The output

from this process is an unsigned measure of the difference

between the current contrast and the recent average contrast.

A more complete picture of the input/output functions from

the contrast-comparison process is published in Graham (2011,

figure 17).
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necessarily require that the two contrasts to be
discriminated occur in the visual field simultaneously.

The current article asks whether the straddle effect in
contrast discrimination and the accompanying Weber-
law behavior occur in first-order spatial vision (when
only one test contrast is present at a time)—and argues
that the answer is ‘‘yes’’.

First-order (same–different, two-
interval) spatial-vision experiment

To ask whether the straddle effect can occur in first-
order spatial vision, we need a task—using only first-
order spatial patterns—that could potentially show a
straddle effect. To be able to see such a straddle effect,
one needs to measure the discrimination between two test
contrasts after adaptation to a third contrast (the adapt
contrast). To be able to see a straddle effect in first-order
vision, the two test contrasts to be discriminated should
not be presented simultaneously. If they are presented
simultaneously, the performance on the task is too likely
to be influenced by second-order spatial vision.

Generalizing from first- and second-order
terminology to comparison across time or space

Instead of framing the questions of this article in
terms of second- versus first-order vision, one can
generalize the terminology. Note that in our second-
order experiments, the two test contrasts to be
discriminated occurred simultaneously at two different
positions in space; in our first-order experiments, the
two tests contrasts to be discriminated occur at two
different times. Thus this article is asking some of the
many possible questions about whether comparison of
contrasts across time behaves the same as comparison
of contrasts across space.

The same–different two-interval task using first-
order spatial patterns

The task we chose to study first-order vision is a
same–different two-interval task, so the two test
contrasts can appear at different points in time by
appearing in two different intervals. The first-order
experiment is illustrated in the top half of Figure 7; in
the bottom half of Figure 7 we have repeated Figure 1,
showing the second-order experiment (in order to
illustrate the relationship between the two experi-
ments). In the top half of the figure, all four Gabor
patches at any moment in time have the same contrast.

On half the trials, the test pattern in Interval 1 has a
different Gabor-patch contrast than the test pattern in
Interval 2 has. On the other half of the trials, the test
patterns in both intervals have the same contrast. The
observer’s task is to indicate whether the two intervals’
test contrasts are the same or different.

To clarify the relationship between the second-order
experiment (bottom half of Figure 7) and the first-order
experiment (upper half of Figure 7), the blue and red
arrows indicate that the two test contrasts in the two
intervals of the first-order experiment are identical to
the two test contrasts at different spatial positions in
the second-order experiment.

Since the two test contrasts in Figure 7 (upper half)
appear in different intervals, the observer’s response
cannot be mediated by second-order spatial-vision
pathways. In order to make this new first-order
experiment as close as possible to the previous second-
order experiment, the spatial positions, spatial fre-
quencies, and possible orientations of the Gabor
patches are identical in the two experiments. (See
Appendix A for more details about the methods and
procedures.)

Figure 8 shows contrast as it varies across time
(stages) within a trial. The same conventions are used
here as in Figure 2, except here the red and blue stand
for the test contrasts in two different temporal intervals
rather than in two different spatial locations. Figure 8
shows examples of six types of trials—the six that will
need to be distinguished in explaining our results. The
three in the left column contain different test contrasts
in the two intervals, and so the correct response is for
the observer to indicate ‘‘different.’’ The three in the
right column contain the same test contrast in the two
intervals, and so the correct response is for the observer
to indicate ‘‘same.’’ In each row of the figure, the trials
in the left and right columns have identical average test
contrasts.

In the top (bottom) row, both test contrasts are
above (below) the adapt contrast, and therefore the
average test contrast is also above (below) the adapt
contrast. The middle row shows a pure Straddle test
pattern, in which the average test contrast is identical to
the adapt contrast; therefore, for this Same trial
(middle row, right column), both test contrasts are
equal to the adapt contrast. Note also that for this
Same trial, contrast stays constant through the adapt,
test, and posttest stages of each interval. Thus, the only
contrast transitions during the whole Same trial are the
four that occur at the beginning of the adapt and the
end of the posttest in each of the two intervals. In the
other five types of trial in Figure 8, there are eight
contrast transitions. We discuss possible implications
of this fact for observer behavior in Appendix B, where
our d0 computations are discussed.
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A note about the duration of the adapt and posttest

patterns

The duration of the adapt and posttest patterns in
the second-order orientation-identification experiment
was 1 s (e.g., Fig. 1). This duration was chosen to mimic
the dominant duration used in our published results.
However, practical considerations persuaded us to
shorten the adapt and posttest durations to 500 ms in
the two-interval first-order experiment (Figure 7). We
did this to keep individual trials from being so long that
observers complained of tedium. We have shown
previously that any differences between second-order
results using 500-ms versus 1,000-ms adapt and posttest
durations are slight and not relevant to the conclusions
of this article; one observer is published in Graham and
Wolfson (2013), figure 1.8, whereas other observers are
not published. (Also, there is a new kind of second-

order experiment reported later in this article that uses
500-ms adapt and posttest durations.)

A note about a possible alternate response

Rather than asking observers to respond to the
question ‘‘Are the two intervals the same or different?,’’
we might have asked them to respond to the question
‘‘Which of the two intervals has the higher test
contrast?’’ But some pilot work showed us that
observers using the latter kind of response tended to
perform systematically below chance on trials in which
both test contrasts were below the adapt contrast. We
realized that an observer’s wrong answers on such trials
are what is predicted by our proposed contrast-
comparison process for the following reason: The
output of the proposed contrast-comparison process is
only the magnitude of the change from adapt to test

Figure 7. The top half of this figure shows a typical trial in a first-order same–different two-interval experiment. In this experiment the

screen always has four Gabor patches of identical contrast present at any moment in time, but the contrast is different at different

stages in the trial. Sometimes the screen is gray—that is, the contrast is 0%. The adapt contrast A is identical in both intervals, and in the

example shown here, the test contrasts C1 and C2 are different. This first-order experiment in the top of the figure was derived from the

second-order experiment shown in the bottom of the figure. (The second-order experiment shown in the bottom of the figure is the

experiment shown in Figure 1.) The red and blue arrows may help the reader see the relationship between the two experiments.

Feedback as to correctness of the response was provided. See Appendix A for more details about the methods and procedures.
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(and from test to posttest); it keeps little or no track of
whether the change is an increase or decrease. For the
trials in which both tests contrasts are below the adapt
contrast, the magnitude of the change from adapt to
test is greater for the test contrast that is lower. Thus, if
the observers choose the greater magnitude of change
to answer the question of ‘‘Which of the two intervals
has the higher test contrast?,’’ they will choose the
lower test contrast and be systematically wrong.

Foley (2011) found a similar problem when asking
observers which of two simultaneously presented test
patches had the higher contrast. He approached this
problem by continuing to use the question but carefully
instructing the observers. He describes both the
problem and his solution very well, and thus we will not
go into further detail here.

Results from the first-order same–different two-
interval experiment

Figure 9 shows the results for five different observers
(rows) with three different measures of performance
(columns). The first two rows show results for the two
observers who did the replication of the second-order
orientation-identification experiment (MC and LG in
Figure 4).

Throughout Figure 9, the large colored points show
the results for Diff trials—that is, trials in which there

was a nonzero difference between the two test contrasts
and so ‘‘diff’’ was the correct response. Results when
the difference between test contrasts was 10% (20%) are
shown by the green squares (purple triangles). The little
black dots show the results for Same trials (in which the
two test contrasts equaled one another, and so ‘‘same’’
was the correct answer). All the horizontal axes in the
figure give the average test contrast.

In the left column of the figure, the vertical axes
show the percentage of trials on which the observer
responded ‘‘diff.’’ Not surprisingly, since ‘‘diff’’ was an
incorrect answer for the Same trials, the little black dots
lie very low in the panels.

The middle and right columns of the figure show
performance measured as d0 computed in two different
ways. We wanted to use d0 values to compensate for
possible kinds of response bias and thus allow
comparison of this first-order (same–different two-
interval) experiment to the second-order (orientation-
identification) experiment. Any d0 computation is the
application of a detection-process model in order to
calculate from experimental results to a quantity one
might call true sensitivity without contamination by
quantities one might call response biases. One can
never be certain that the detection-process model is
perfect. Indeed, one can usually be sure that it is not.
Fortunately, experience has shown that the detection-
process models do not need to be perfect for the

Figure 8. The contrast-versus-time profiles for six types of trial in the first-order same–different two-interval experiment. The blue

lines indicate test contrast C1 and the red lines indicate test contrast C2. Thick black lines indicate contrasts of 0% (when the screen is

homogeneous gray) and 50% (during the adapt and posttest patterns). The correct response is ‘‘different’’ for the trials in the left

column and ‘‘same’’ for the trials in the right column. The top (bottom) row shows profiles for the cases where the test contrasts are

both above (both below) the adapt contrast. The middle row shows cases where the average of the two test contrasts equals the

adapt contrast. (Thus in the middle row of the right column, the two test contrasts are both equal to the adapt contrast).
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Figure 9. Results from the first-order same–different two-interval experiment (using a 232 Gabor-patch grid) with five observers (five

rows). The three columns show three different measures of the observer’s performance: Percentage ‘‘diff’’ (proportion of trials on

which the observer said ‘‘diff’’) and the two d0 measures (d0-conservative, d0-unconfounded). Each curve gives the results for a

particular constant-difference series (10% in green squares, 20% in purple triangles, 0% in small black dots). The error bars in the

percentage ‘‘diff’’ plots show 61 standard error across blocks. The open symbols in the d0 plots show values that were truncated to

deal with the problems produced by 0% or 100% performance. See Appendix B for more details.
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calculated d0 values to be quite informative and prevent
errors of interpretation.

We have chosen to display two d0 measures: d0-
conservative and d0-unconfounded. Appendix B de-
scribes these measure in detail; here we will describe
them tersely. The middle column of Figure 9 shows the
measure we call d0-conservative because it is conserva-
tive with respect to our major conclusions here. In
particular, d0-conservative underestimates the depth of
the notch corresponding to the straddle effect. The
right column shows a measure we think better, which
we call d0-unconfounded because it corrects for a
substantial confound. The difference between these two
d0 measures is in how the false-alarm rate is estimated
(and indicated cryptically on the vertical axis labels).
For these d0 values—as for the ones in Figure 4—we
had to truncate d0 values to avoid the problems caused
by performances of 0% or 100% correct. Cases where
truncation occurred are shown by open symbols in the
figure.

There are differences in results among observers in
this first-order task, but they are beyond the scope of
this article. We have previously noted individual
differences in the second-order task (Graham & Wolf-
son 2007, 2013.)

Figure 10 shows further results for observers MC
and LG. There is a wider range of average test contrasts

(farther out toward 0% and 100%) and a test contrast

difference of 5% (yellow triangles) in addition to

repeating 10% (green squares) and 0% (little black

dots).

All the results shown from the first-order experiment

(Figures 9 and 10) display the same general shape as

second-order results we have published previously and

replicated here (Figure 3). The next subsection looks

more carefully at the comparison between these first-

and second-order results.

Initial comparison of first- and second-order

spatial-vision results

Figure 11 juxtaposes the first- and second-order

results expressed as d0 values. We used the traditional d0

computation for the second-order orientation-identifi-

cation results (Figure 4), the values shown here as gray

stars. The first-order results are the d0-unconfounded

values shown in Figures 9 and 10 (same symbols as in

the earlier figures). The results for test-contrast

differences jC1 � C2j equal to 5%, 10%, and 20% are

shown in the three columns.

Figure 10. Results from another version of the first-order same–different two-interval experiment (using a 2 3 2 Gabor-patch grid)

with observers MC and LG (two rows). This version used a wider range of average test contrasts and a 5% test-contrast difference

(yellow triangles), as well as repeating 10% (green squares) and 0% (small black dots). Other aspects are the same as in Figure 9.

Journal of Vision (2018) 18(5):15, 1–43 Graham & Wolfson 11



Qualitative comparison

As Figure 11 shows, the first-order results are very
similar in shape to the second-order results. Generally,
the curves from both experiments have a two-peaked
shape, with a notch in the center and decreases at both
ends, as in Figure 5.

Quantitative comparison

While there is no systematic difference between the
shapes of the first- and second-order results, there is a
clear substantial difference in the heights of the curves
(Figure 11). In general, the d0 values from the second-
order experiment (gray stars) are substantially higher
than those from the first-order experiment (colored
symbols).

Note that the different truncation ceilings for these
two experiments (further described in Appendix B) do
not affect this conclusion, because there is almost no
truncation (no open symbols) in the results of the
experiment producing lower performance (the first-
order experiment).

It would be unwise to conclude from this quanti-
tative difference in observers’ performances, however,
that the performance of the underlying second-order
spatial-vision processes is actually superior to that of
the underlying first-order processes. While we tried to
make the first- and second-order experiments as
similar as possible, they differ in many ways. These
differences might affect how well an observer performs
the task even if the underlying systems are equally
sensitive. We will explore this topic further under the

Figure 11. Second-order orientation-identification results (from Figure 4, in gray symbols here) juxtaposed with first-order same–

different two-interval results (from Figures 9 and 10, colored symbols) using d0 values for all. Each experiment used 232 Gabor-patch

grids. The results for the two observers (MC and LG) are shown in the two rows. The results for the three different values of test-

contrast difference (5%, 10%, and 20%) are shown in the three columns. Note that the test-contrast difference of 10% was run twice

(both Figures 9 and 10), which is why there are two curves with green squares in the middle column. The open symbols show cases

where the truncation rule had to be applied. There are a substantial numbers of points showing truncation in the second-order

experiment (gray symbols), but the only instances of truncation in the first-order experiment (colored symbols) are for jC1� C2j ¼
20%. Thus it is not truncation artifacts that explain the lower performance in the first-order same–different two-interval experiment

relative to that in the second-order orientation-identification experiment.
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heading Further comparisons of first- and second-
order spatial vision.

In summary

The straddle effect in contrast perception is not
confined to second-order spatial pathways but also
occurs in first-order pathways. This is the major novel
result of the present article. The accompanying

Weber-law behavior occurs in first-order as well as
second-order pathways. This result is less surprising,
as Weber-law behavior has been shown in many
situations.

For both first and second-order pathways, the
notch in the center of the results curves—the straddle
effect—can be explained by a shifting, rectifying,
contrast-comparison process; the decreases in perfor-
mance at both tails, reflecting Weber-law behavior,
can be explained by a contrast-normalization process.

Figure 12. Results of varying adapt contrast in a first-order same–different two-interval experiment (using a 23 2 Gabor-patch grid)

for observers MC and LG (two columns). The adapt contrast varies from 0% (top row) to 100% (bottom row). Percentage ‘‘diff’’ is
plotted on the vertical axis, and average test contrast on the horizontal axis. Error bars show 61 standard error across blocks. These

results are plotted on alternate vertical and horizontal axes in Figures C1–C3. Note that for adapt contrasts of 0% and 100% it is

impossible to get results where the average test contrast actually equals the adapt contrast.
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The input to the contrast-normalization process is
assumed to be the output from the contrast-compar-
ison process.

About the remaining sections

The next section presents more first-order experi-
ments, continuing to use the same–different two-
interval task (shown in Figures 7 and 8) but with
different adapt contrasts and spatial patterns. The
section following that presents a new second-order task
and further comparisons between the results of first-
and second-order experiments. The final section pre-
sents conclusions.

Further first-order spatial-vision
experiments

This section asks two further questions: Do first-
order results show the same changes with adapt
contrast that second-order results have previously
shown (e.g., Wolfson & Graham, 2009)? And are the
first-order results for two other kinds of spatial patterns
the same as for the 23 2 Gabor-patch patterns used in
the previous section?

Varying adapt contrast in a same–different two-
interval first-order experiment

An important property of the results from previously
published second-order orientation-identification experi-
ments is that the whole curve of performance versus
average test contrast shifts with adapt contrast: No
matter what the adapt contrast, there is a notch in the
curve centered at the point where the average test contrast
equals the adapt contrast (e.g., Wolfson & Graham, 2009,
figure 12). In other words, the straddle effect shifts so that
it is always centered at the adapt contrast.

A priori, this need not have been the result. Perhaps
all adapt contrasts (not just the adapt contrast of 50%
that we have used so far in this article) would produce
notches at 50%, and it was just a coincidence that we
chose that adapt-contrast value in our initial experi-
ments. Or perhaps the notch would move continuously
with adapt contrast, but not as far as the adapt contrast
moves. Or perhaps all low adapt contrasts would
produce a notch at 0% (a one-sided curve), all middling
ones at 50%, and all high ones at 100%.

This result of varying adapt contrast that we found
in previously published second-order experiments must
occur if a contrast-comparison process like that we
have hypothesized is occurring. It seems wise, there-
fore, to check that the same result of varying adapt
contrast does occur in first-order experiments; so we
ran a first-order experiment with five different adapt
contrasts using our observers LG and MC.

Figure 13. The three spatial patterns we used in first-order same–different two-interval experiments in this article. The 23 2 Gabor-

patch grid is in the left panel. The one foveal Gabor patch is in the middle panel, and the big disk is in the right panel. The top row

shows the full 168 3 168 area viewed by the observer, and the bottom row shows the central 48 3 48 region expanded to show the

details of the patterns better. Further details of these patterns are given in Appendix A.

Journal of Vision (2018) 18(5):15, 1–43 Graham & Wolfson 14



The procedure and patterns are very similar to those
of the first-order same–different two-interval experi-
ment of the previous section (Figures 7 and 8 and
accompanying text). The differences are that in this
new experiment the adapt contrast changed randomly
from trial to trial and could assume any of the
following values: 0% (gray), 25%, 50%, 75%, or 100%;
and that the difference jC1� C2j between the two test
contrasts was always either 0% (for which the correct
response was ‘‘same’’) or 15% (for which the correct
response was ‘‘different’’). See Appendix A for more
details of the methods and procedures.

Results from this experiment, plotted as percentage
‘‘diff,’’ are shown in Figure 12. (The other performance
measures—d0-conservative and d0-unconfounded—are
shown, along with percentage ‘‘diff,’’ in Figures C1–

C3.) The horizontal axes show average test contrast.
The value of the adapt contrast is indicated by a red
asterisk on each horizontal axis and is labeled at the
right end of the row. The position of the straddle-effect
notch moves as the adapt contrast moves, following the
adapt contrast so that the notch is always centered
where the average test contrast equals the adapt
contrast. The first-order results share this general and
important property with second-order results.

Using a single Gabor patch or a big disk in first-
order experiments

The first-order same–different two-interval paradigm
allows us to use some spatial patterns that were

Figure 14. Results from first-order same–different two-interval experiments using a single Gabor patch (left column) or a big disk

(right column). For the results plotted here, percentage ‘‘diff’’ is on the vertical axis and average test contrast is on the horizontal axis.

Error bars show 61 standard error across blocks. For figures showing results plotted as d0-conservative and d0-unconfounded, see

Figures C6, C10, and C11.
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logically impossible to use in our second-order orien-
tation-identification task. So we tried experiments using
two such patterns: a single Gabor patch (see Figure 13,
middle) and a big uniform disk with soft edges (Figure
13, right).

The single Gabor patch seems of interest for two
reasons. Since the 2 3 2 grid of Gabor patches used
previously was fixated at the center, the individual
patches were somewhat parafoveal. Using a single
fixated Gabor patch allows us to investigate first-order
vision at the fovea. A single Gabor patch is also a
prototypical stimulus used to investigate first-order
spatial vision.

The other new pattern, the big disk, was uniform
throughout its center and had soft edges. We wondered
whether quasiperiodic stimuli like Gabor patches are
necessary to get a straddle effect, or can a straddle
effect be obtained with a stimulus like a big disk?

Further details of the methods and procedures for
these two experiments are given in Appendix A. Figures
showing trial diagrams and contrast-versus-time pro-

files for these two experiments are shown in Appendix
C (Figures C4 and C5 for the single Gabor patch, C8
and C9 for the big disk).

Figure 14 shows results using the single Gabor-patch
pattern (left column) and the big-disk pattern (right
column). The results in this figure are plotted as
percentage ‘‘diff’’ versus average test contrast. The results
plotted using both d0-conservative and d0-unconfounded
are in Appendix C (Figures C6, C10, and C11).

Since only one observer completed the big-disk
experiment before the lab was closed, these results with
the big disk should be treated more cautiously than
others. This observer was, however, very experienced
and one of the two observers that performed all the
other experiments presented in this article. There is no
reason to suspect that there is anything peculiar about
his results here.

Results from the experiment using a single Gabor
patch (Figure 14, left column) and from the experiment
using a big disk (Figure 14, right column) show the
same general shape as those using a 232 grid of Gabor

Figure 15. The stages of a typical trial in the second-order same–different two-position experiment. The test pattern is a 23 2 Gabor-

patch grid. On half the trials, randomly chosen, all four Gabor patches in the test pattern have the same contrast. On the other half of

the trials, the upper two Gabor patches in the test pattern have a different contrast from that of the lower two Gabor patches. (Thus,

the second-order stripes are always horizontal in this experiment.) The adapt and posttest patterns are, as in the previous

experiments, composed of four Gabor patches all at the same contrast. In these experiments, the durations of the adapt and posttest

patterns are 500 ms, as in the first-order same–different experiments. The spatial frequencies, spatial positions, and Gabor-patch

orientations are the same as in the previous experiments. The box in the upper right of the figure illustrates the response the

observer is instructed to make by showing four different test patterns. Feedback as to the correctness of the response was provided.
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patches (Figures 9 and 10). The curves show two peaks
surrounding a center notch, with declining performance
as one goes farther away from the peaks in either
direction. All these results can be explained qualita-
tively by contrast-comparison and contrast-normaliza-
tion processes. (A superimposed plot of results for a
single Gabor patch and 2 3 2 Gabor patches—which
are very similar—is shown in Figure C7.)

If the same contrast-comparison and contrast-
normalization processes underlie all these results, one
can use these results to suggest some likely spatial
characteristics of these processes. In particular, neither
second-order spatial channels nor any other kind of
integration of contrast over a wide area is necessary for
contrast-comparison and contrast-normalization pro-
cesses to operate.

Further comparisons of first- and
second-order spatial vision

As shown earlier (Figure 11) better performance
occurs in the second-order orientation-identification
experiment (gray stars) than in the first-order same–
different two-interval experiment (colored symbols);

however, both show the straddle effect and Weber-law

behavior consistent with contrast-comparison and

contrast-normalization processes. Is the higher perfor-

mance an intrinsic difference between first- and second-

order visual pathways, or are there other differences

due to decision and performance processes outside the

visual pathways?

We try here to remove one difference between the two

experiments that particularly worried us. The first-order

experiment used a same–different task. Same–different

tasks tend to lead to asymmetric response criteria and

may produce substantial criterion variability, which

itself lowers performance. (See Appendix B and Figure

B1 for more about symmetric and asymmetric response

criteria.) The second-order experiment used a two-

alternative forced-choice task, which typically produces

symmetric response criteria. Perhaps, therefore, the

lower performance in our first-order experiment relative

to our second-order experiment (Figure 11) results from

the typical differences between same–different tasks and

two-alternative tasks. To remove this difference between

first- and second-order experiments, we studied the

second-order pathway again, but this time using a same–

different task.

Figure 16. The contrast-versus-time profiles for six types of trial in the second-order same–different two-position experiment. The

blue lines indicate test contrast C1 and the red lines indicate test contrast C2. (The upper two patches are at one of the two contrasts

C1 or C2, and the lower two patches are at the other.) Thick black lines indicate contrasts of 0% (when the screen is homogeneous

gray) and 50% (during the adapt and posttest patterns). The correct response is ‘‘different’’ for the trials in the left column and

‘‘same’’ for the trials in the right column. The top (bottom) row shows profiles for the cases where the test contrasts are both above

(both below) the adapt contrast. The middle row shows cases where the average of the two test contrasts equals the adapt contrast.

(Thus in the middle row of the right-hand column, the two test contrasts are both equal to the adapt contrast.)
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A new second-order spatial-vision experiment:
Same–different, two positions

The same–different task we used for this new
second-order experiment is illustrated in Figures 15
(trial diagram) and 16 (plots of contrast versus time).
As shown in these figures, in each trial there is only a
single interval, and the test pattern in that interval has
four patches. On half the trials (randomly selected), all
four patches in the test pattern have the same contrast.
On the other half of the trials, the contrast of the
upper two patches is different from the contrast of the
lower two patches. The observer responds to indicate
whether the contrast of the upper two patches is the
same as or different from that of the lower two
patches. An adapt pattern of 50% contrast was

presented immediately before the test pattern, and a
posttest pattern of 50% contrast followed immediately
after.

The results of this new second-order same–different
two-position experiment are shown in Figures 17 and
18. These two versions of the experiment were the same
except that the version in Figure 18 uses a wider range
of average test contrasts and a lower test-contrast
difference than the version in Figure 17. Qualitatively,
all these results are very similar to the results of the
second-order orientation-identification experiment
(shown in Figure 4) and to the results of the first-order
same–different two-interval experiment (shown in
Figures 9 and 10). In particular, they show the straddle-
effect notch in the middle and decreasing performance
in both tails.

Figure 17. Results from the second-order same–different two-position experiment (using a 2 3 2 Gabor-patch grid) with observers

MC, LG, and WL (three rows). The columns show three different measures of observer performance: percentage ‘‘diff’’, d0-
conservative, and d0-unconfounded. Each curve gives the results for a constant-difference series (20% in dark-blue right-pointing

triangles, 10% in brown diamonds, and 0% in small black dots). The error bars in the percentage ‘‘diff’’ plots show 61 standard error

across blocks. The open symbols in the d0 plots show cases where the truncation rule had to be applied. See text and Appendix B for

more details.
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Figure 19 compares the new second-order same–
different two-position experiment (Figures 17 and 18)
and the second-order orientation-identification experi-
ment (Figure 4). Performance in the same–different
task is somewhat lower than in the orientation-
identification task, as we thought it might be. (There is
some truncation in both experiments, but even paying
attention only to cases where the lower point is not
truncated shows the difference.)

Figure 20 compares the new second-order same–
different two-position experiment (Figures 17 and 18)
and the first-order same–different two-interval experi-
ment (Figures 9 and 10). This figure shows that even
when both second- and first-order experiments use a
same–different procedure, performance in the second-
order experiment (right-pointing triangles and dia-
monds) is somewhat higher than in the first-order
experiment (upright triangles and squares).

Why is performance in the first-order experiment
somewhat poorer than in the second-order experiment
(Figure 20)? This may result from less effective
processes operating in the first-order pathway; how-
ever, we are not convinced of this. The poorer
performance might be due to differences in the details
of the experiments. Even though they are both same–
different tasks, in the second-order experiment the
observer makes a judgment about Gabor patches that
are presented in the same temporal interval, whereas
in the first-order experiment the Gabor patches are
presented in different temporal intervals. It is quite
possible that in the first-order experiment there is
some memory loss between the first and second
temporal intervals. Thus, a memory component—
rather than something different about underlying first-
versus second-order processes—may be causing the
slightly poorer performance.

Figure 18. Results from another version of the second-order same–different two-position experiment (using a 232 Gabor-patch grid)

with the same observers MC, LG, and WL (three rows). This version used a wider range of average test contrasts and a lower test-

contrast difference (5% in pink right-pointing triangles) than did the experiment in Figure 17. Other conventions are the same as in

Figure 17.
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Conclusions

We initially discovered the straddle effect using large
(15 3 15) grids of Gabor patches with a second-order
experimental task (second-order orientation identifica-
tion). We presumed that the effect was second order,
but since then we began to question this notion. In this
article we have shown that the straddle effect is also
found in first-order experiments.

Figure 5 shows idealized data and our current
thoughts on the underlying processes. The straddle
effect—the very poor performance when the two test
contrasts straddle the adapt contrast—is consistent with
a contrast-comparison process. Performance reaches
maxima at average test contrasts somewhat below and

somewhat above the adapt contrast. For average test
contrasts that are even smaller or even larger, perfor-
mance decreases again. These decreases at the tails are
consistent with a contrast-normalization process.

Although in our experiments there is no qualitative
difference between the behaviors in first- and second-
order pathways, there may be a quantitative difference.
We have shown a quantitative difference between first-
and second-order experiments even when both use
same–different tasks (Figure 20). We are not sure,
however, that the better performance in the second-
order experiment results from an intrinsic difference
between first- and second-order pathways; it may result
instead from a greater memory demand in the first-
order experiment.

Figure 19. Direct comparison of results from the second-order same–different two-position experiment and results from the second-

order orientation-identification experiment. Each experiment used a 2 3 2 Gabor-patch grid. The gray stars show d0 values in the

second-order orientation-identification experiment (originally shown in Figure 4 as colored symbols and repeated as gray stars in

Figure 11). The pink, brown, and blue colored symbols (that are either right-pointing triangles or diamonds) show d0-unconfounded in

the second-order same–different two-position experiment. (These d0-unconfounded values were previously shown in the right-hand

columns of Figures 17 and 18.) The open symbols represent cases where truncation was used. There is some truncation in both

experiments in this figure; but if you consider only the average test contrasts at which the colored symbols are solid (i.e., not

truncated), you will see that the performance is generally lower for the colored symbols (second-order same–different two-position

experiment) than for the gray stars (second-order orientation-identification experiment). This difference is particularly clear at the

peaks of the curves.
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Overall, adapting to a particular contrast diminishes

performance for some test patterns but improves it for

many others. For example, after adaptation to 0%
contrast, performance on a pattern with an average test
contrast of about 60% is poor (Figure 12, top row). But

after adaptation to 50% contrast, performance on the

pattern with 60% average test contrast is very high

(Figure 12, middle row). We suspect that the processes

that produce the straddle effect are generally helpful,
not detrimental, in the course of everyday vision.

It might be that for all abrupt changes in contrast,
there is a rectification process whose result is that
increases and decreases in contrast act similarly and are
confusable. We suspect now that there is a shifting,
rectifying contrast-comparison process acting on all
visual patterns, not just gratings and textures.

Figure 20. Direct comparison of results from the second-order same–different two-position experiment and the first-order same–

different two-interval experiment, each using a 23 2 Gabor-patch grid. The vertical axis shows d0-unconfounded, and the horizontal

axis shows average test contrast. The pink, brown, and dark-blue symbols (which are either right-pointing triangles or diamonds) show

results from the second-order same–different two-position experiment and are identical to the colored symbols in Figure 19. The

yellow, green, and light-blue symbols (which are either upright triangles or squares) show results from the first-order same–different

two-interval experiment and are identical to the colored symbols in Figure 11. The open symbols represent cases where truncation

was used. Performance is generally—but only slightly—higher in the second-order same–different two-position experiment than in

the first-order same–different two-interval experiment. We suspect that this difference is due to the greater memory demands of the

two-interval experiment than of the two-position experiment.
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Appendix A: Detailed description of
methods and procedures

The first phrase in each item in the following list
gives the observer’s task. We used three different tasks
in the experiments in this article: second-order orien-
tation identification, same–different two positions, and
same–different two intervals.
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The middle phrase in each item in the list gives the
spatial pattern used in each experiment. Three different
patterns were used in these experiments: a 23 2 grid of
Gabor patches, a single Gabor patch, and a single big
disk. Only one of these patterns (the 2 3 2 grid of
Gabor patches) was used with all three tasks. The other
two patterns were used to investigate secondary points.

The last phrase in each item in the list identifies the
figures illustrating that experiment. Table A1 summa-
rizes the details of all the experiments.

List of five experiments

Second order

� Orientation identification—2 3 2 Gabor patches—
Figures 1 and 2
� Same–different two positions—2 3 2 Gabor
patches—Figures 15 and 16

First order

� Same–different two intervals—2 3 2 Gabor
patches—Figures 7 and 8
� Same–different two intervals—single Gabor
patch—Figures C4 and C5
� Same–different two intervals—single big disk—
Figures C8 and C9

Patterns

In the experiments described in this article, three
spatial patterns were used. Figure 13 shows each of
these spatial patterns, all at the same scale:

� A 2 3 2 grid of horizontal or vertical Gabor
patches (all of the same orientation; horizontal is
shown in Figure 13), with fixation at the center of
the four patches.
� A single horizontal or vertical Gabor patch
(horizontal is shown in Figure 13), with fixation at
the center of the patch.
� A single big disk, with fixation at the center of the
disk.

Details of the Gabor patches

AGabor patch is a sinusoidal grating windowed by a
two-dimensional Gaussian function. The sinusoidal
grating in our Gabor patches had a period of 0.58 (32
pixels), which corresponded to a spatial frequency of 2
c/8. The Gaussian window had a full width at half
height of 0.58 (32 pixels). Each Gabor patch was

truncated at 18 3 18 (64 3 64 pixels) at the viewing
distance of 90 cm. (Viewing distance and therefore
spatial dimensions are approximate because observer
head movements were not constrained.)

The orientation of a single-Gabor-patch pattern
and of all four patches in a 2 3 2 grid pattern was
either vertical or horizontal throughout an individual
trial but could vary between trials. The positive zero
crossing of the sinusoid was always at the center of
each patch; the ‘‘dark bar’’ of the sinusoid was to the
left of center for vertical patches and on top for
horizontal patches.

The contrast of a Gabor patch was computed by
taking the difference between the luminance at the peak
of the Gaussian and the mean luminance of the pattern,
and then dividing that difference by the mean
luminance. All Gabor patches had a mean luminance of
55 cd/m2. The single Gabor patch or the 2 3 2 grid of
Gabor patches was centered within a 168 3 168 (1,0243
1,024 pixel) gray square at 55 cd/m2. Therefore, the
mean luminance of the whole pattern was also 55 cd/
m2. (Further details of the Gabor-patch patterns
appear in the subsection More about the adapt, test,
and posttest patterns, and their relation to one
another.)

Details of the big-disk pattern

The uniform center of the disk was 128 in diameter
and there was a soft edge of a half-cosine shape forming
a 18 wide annulus around the center. Thus the total disk
subtended 148.

The disk itself was centered within a 168 3 168 (1,024
3 1,024 pixel) gray square at 55 cd/m2. This 55 cd/m2

will be referred to as the background luminance for the
big-disk pattern, as the luminance of the disk was in
general greater than 55 cd/m2 and thus the mean
luminance of the full big-disk pattern was in general
greater than 55 cd/m2.

The contrast of the big disk was computed by taking
the difference between the luminance in the central area
of the disk and the background luminance, and then
dividing that difference by the background luminance.

When the big disk was an adapt or posttest pattern,
it was always an increment on the background. A test
pattern, however, might be either an increment or a
decrement from the adapt pattern.

More about the adapt, test, and posttest patterns, and their
relation to one another

The adapt, test, and posttest patterns on a given trial
all had identical spatial characteristics. The contrasts in
the adapt and posttest patterns were also identical, but
the contrast (or contrasts in some cases) in the test
pattern was generally different.
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Table A1. Details of the experiments. All the figures listed in the column labeled ‘‘Fig. #’’ are figures showing experimental results. The
adapt pattern’s Gabor-patch orientation was always 08 or 908. The test pattern’s Gabor-patch orientation was the same as the adapt
pattern’s. The position of the test pattern’s Gabor patches was the same as that of the adapt pattern’s. The posttest pattern was
identical to the adapt pattern. Feedback as to the correctness of the response was provided. Note that for the big-disk experiment
(rows 8 and 9), relative luminance values are given in addition to contrast values; see Figure C9 for the relationship between relative
luminance and contrast. Note that for the first-order same–different two-interval experiment varying adapt contrast (row 5), all adapt
contrasts were intermixed in every block; the 21 different average test contrasts used in this experiment were 7.5%, 12.5%, 17.5%,
21.25%, 25%, 28.75%, 32.5%, 37.5%, 42.5%, 46.25%, 50%, 53.75%, 57.5%, 62.5%, 67.5%, 71.25%, 75%, 78.75%, 82.5%, 87.5%, and
92.5%. Further details of the methods and procedures are described in the text of Appendix A.
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Only two Gabor-patch orientations were used in
these experiments: vertical and horizontal. When the
pattern was a 2 3 2 grid of Gabor patches, all
individual Gabor patches in the grid were identical in
orientation. Although fixed within any individual trial,
the Gabor-patch orientation varied randomly from
trial to trial.

In every trial of these experiments there were two test
contrasts, C1 and C2, either in the one test pattern of a
single-interval trial or in two different intervals of a
two-interval trial.

In the second-order orientation-identification experi-
ment, the test pattern could have either horizontally or
vertically defined stripes. However, in the second-order
same–different two-position experiment, the test pattern
always had horizontally defined contrast stripes. (The
response in that experiment was whether the upper and
lower rows were of the same contrast or not.)

Alternate description of our patterns in terms of backgrounds
and probes

In this article we describe our experiments in terms
of adapt and test patterns, where the adapt pattern is
not present during the test pattern. Alternately, the test
pattern here could be described as the adapt (back-
ground) pattern plus an added (or subtracted) probe
pattern. The relationship of these experiments here to
earlier experiments in the literature using the back-
ground–probe terminology is discussed in Wolfson and
Graham (2009), at the end of the Procedure subsection
under Methods.

Durations

The duration of the test patterns was approximately
100 ms. Within any one experiment, the duration of the
adapt, test, and posttest patterns stayed constant. The
duration of the adapt (and posttest) patterns was
always approximately either 1 s (for the second-order
orientation-identification experiment) or 0.5 s (for the
same–different experiments); see Table A1 for exact
values. Previous work (Graham & Wolfson, 2013) has
shown that for the conditions here and the conclusions
of this study, the difference between 0.5- and 1-s adapt-
pattern durations does not matter. We used the shorter
durations in most experiments to diminish the burden
on the observers by speeding up the collection of data.

Some terminology: Average test contrast, test-contrast
difference, and constant-difference series

The relationship on any individual trial between the
two test contrasts C1 and C2 and the adapt contrast A
is critical. Thus we use short terms to describe the
relationship succinctly.

The average test contrast is the mean of C1 and C2—
that is, (C1 þ C2)/2.

When one of the two test contrasts is greater than the
adapt contrast and the other is less than the adapt
contrast, we call it a Straddle test pattern, since the test
contrasts straddle the adapt contrast. When the average
test contrast is somewhat greater than the adapt
contrast, we call it an Above test pattern. When the
average test contrast is much greater than the adapt
contrast, we call it a Far Above test pattern. Similarly,
when the average test contrast is less than the adapt
contrast we call it a Below or a Far Below test pattern.

The absolute value jC1� C2j of the difference
between the two contrast values is called the test-
contrast difference.

To show the results of these experiments, we
frequently plot performance on several curves. Each
curve shows the results for a series of test patterns in
which the test-contrast difference is constant. We call
each such series a constant-difference series.

Fixation patterns

Two fixation patterns were used:

� A fixation ‘‘point,’’ namely a small square filled
with a lighter gray than the mean luminance as
shown to scale in, for example, Figure 1. This was
used for all the 232 Gabor-patch grid experiments
and the big-disk experiment.
� An outline square, shown to scale in Figure C4. This
was used for the single-Gabor-patch experiment.

The duration of the fixation pattern for each
experiment is given in Table A1. In the initial
instructions, each observer was told to fixate in the
middle of the screen throughout a trial as indicated by
the fixation pattern.

Gray screen

At times during these experiments the observer was
looking at an entirely gray screen. For the gray screen,
the whole 168 3168 area was at 55 cd/m2—that is, equal
to the mean luminance in the case of Gabor-patch
experiments and to the background luminance in the
case of the big-disk experiment. Note that a 0%
contrast adapt or test pattern is exactly the same as a
gray screen.

Three observer tasks

Second-order orientation identification

The inset at the right of Figure 1 shows example test
patterns in the second-order orientation-identification
task, with correct responses indicated. The observer’s
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task is a conventional identification task with two
alternatives: On each trial, the observer is required to
identify which of two possible categories the test
pattern falls into. More specifically, the observer is
required to respond with whether the two different test
contrasts in the 2 3 2 Gabor-patch test pattern define
horizontal or vertical stripes. The orientation of the
contrast-defined stripes is technically a spatially sec-
ond-order orientation.

In this article, we use this task only with 2 3 2 grids
of Gabor patches.

Second-order same–different two positions

The inset at upper right of Figure 15 shows example
test patterns in the second-order same–different two-
position task, with correct responses indicated. This is a
conventional same–different task, using single-interval
trials. What must be judged as same or different are the
Gabor patches occupying two different positions in the
test pattern. More specifically, the test pattern is a 23 2
grid of Gabor patches, and the observer is required to
respond indicating whether the contrast of the top two
Gabor patches is the same as or different from the
contrast of the bottom two.

We use this task only with 2 3 2 grids of Gabor
patches. Note also that we only use horizontal contrast-
defined arrangements of the 2 3 2 Gabor grids, as
shown in Figure 15.

First-order same–different two intervals

The first-order same–different two-interval task is
also a conventional same–different task, except it uses
two intervals in each trial, and the aspect to be judged is
whether the test patterns in the two intervals are
identical or different. (If they are different, they are
different only in contrast.)

All three types of patterns are used with this task: the
2 3 2 grid of Gabor patches (Figure 7), the single
Gabor patch (Figure C4), and the big disk (Figure C8).
All three test patterns are show at the same scale in
Figure 13.

Structure of each trial

Each trial in all the experiments started when the
observer pressed the 0 key or space bar.

Each trial in a particular experiment contained either
a single interval or two intervals. Every interval in every
experiment in this article had the same general timing
and pattern sequence, which is described later.

Each trial ended with the observer giving a response
and receiving feedback as to the correctness of the
response.

Between trials, the screen was a homogeneous gray
until the observer started the next trial by pressing the 0
key or space bar.

Sequence and timing of stages within an interval

Figure A1 shows an abstract diagram of each stage
in any single interval of any of the experiments here.
The diagrams for each experiment are shown in more
detail in Figures 1, 7, 15, C4, and C8. The precise
timing of each stage for each experiment is listed in
Table A1.

The interval begins with a fixation pattern followed
by a short gray period. This is immediately followed by
a brief adapt pattern.

There follows immediately, for approximately 100
ms, a test pattern. In all these experiments, the test
pattern is identical to the adapt pattern in spatial
characteristics but generally contains a different con-
trast or contrasts.

The test pattern is followed immediately by a brief
posttest pattern, which in these experiments is always
identical to the adapt pattern (in duration as well as
spatial characteristics and contrast).

If an interval is the first in a two-interval trial, there
is a short fixed-duration gray period at the end of the
first interval. Then the second interval begins with a
short fixation pattern and proceeds as the first interval
did.

If an interval is the second in a two-interval trial, or
if it is the only interval in a single-interval trial, there is
a final gray period that is terminated by the observer

Figure A1. Generic trial diagram showing each stage in a single interval in any of the experiments here. Diagrams for specific

experiments are shown in Figures 1, 7, 15, C4, and C8.
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pressing a response key. (The observer is not allowed to
respond until a short period of time has passed.)

Immediately following the key-press response, there
is a tone giving feedback as to the correctness of the
response.

Structure of blocks of trials: Intermixing
different patterns and contrasts within a block

The contrast of the adapt pattern was almost always
50%. The one exception is the experiment varying
adapt contrast in the first-order same–different two-
interval task (Figures 12, C1, C2, and C3). In this
experiment, five different adapt contrasts were used.
The adapt contrasts are listed in Table A1. The set of
test contrasts used was generally different from
experiment to experiment. In Table A1, the set of test
contrasts is given by specifying what values were used
for the average test contrasts and the test-contrast
differences.

Some experiments had two versions. The only
difference between two versions is the particular test
contrasts used. For example, we ran two versions of the
first-order same–different two-interval experiment: The
results from one version are plotted in Figure 9, and the
results from the other version are plotted in Figure 10.
In any block of a version of an experiment (e.g., Figure
9), all test contrasts used in that version were
intermixed. To put it another way, all test-contrast
differences and all average test contrasts used in a
version of an experiment were presented in a random
order within a block. All contrast combinations were
shown an equal number of times within a block.
Similarly, in the only experiment where more than one
adapt contrast was used, those adapt contrasts were
randomly intermixed in a block.

All the substantive characteristics (e.g., test and
adapt contrasts) were randomly sampled without
replacement across trials to make the numbers of trials
of each the same. But the nonsubstantive characteristics
were sampled with replacement. The nonsubstantive
characteristics include whether Gabor-patch orienta-
tion was horizontal or vertical; whether the contrast-
defined stripes were horizontal or vertical; which
interval of a two-interval trial which test pattern came
in; and which position of the two-position same–
different experiment had which test contrast.

Table A1 lists the trials per point in the results
figures. Two numbers are given for the same–different
experiments: number of trials per point when the
correct answer was ‘‘same’’ and number when the
correct answer was ‘‘different.’’ In a block, we wanted
always to have the number of Same trials (trials on
which the correct response was ‘‘same’’) be equal to the
number of Diff trials (trials on which the correct

response was ‘‘different’’). Thus, in experiments that
had two nonzero constant-difference series, there are
twice as many trials per point for the 0% constant-
difference series (the Same trials) as for the nonzero
(e.g., 10% and 20%, as in Figure 9) constant-difference
series (the Diff trials). In the second-order orientation-
identification experiment, only one number is give,
which is the total number of trials per point.

Observers

This research adhered to the tenets of the Declara-
tion of Helsinki. All observers were Columbia Uni-
versity students who were long-term observers in our
laboratory. They gave their informed consent and were
paid for their work.

Four observers (SYP, BSG, IBK, and WL) had
extensive knowledge of the experiments, but the other
two (LG, MC) did not. The two relatively inexperi-
enced observers (LG and MC) are the two who
participated in almost every experiment here. All
reported having normal or corrected-to-normal visual
acuity, and wore their prescribed glasses if any had
been prescribed.

Equipment

The experiments were run on Macintosh G4s with
NEC MultiSync FE992 CRT monitors and ATI
Radeon 9000 video cards. The resolution was 1,280 3
1,024 pixels at 85 Hz. The mean luminance of the
Gabor-patch experiments, the background luminance
in the big-disk experiment, and the luminance of the
blank gray screen when no pattern was present were all
the same and approximately 55 cd/m2. The room was
dark except for the CRT screen and a dim lamp. Each
CRT’s lookup table was linearized. Stimuli were
generated and presented using MathWorks’ MATLAB
with the Psychophysics Toolbox extensions (Brainard,
1997; Pelli, 1997). The actual duration of each stage
(adapt, test, etc.) of each trial was checked for
accuracy. In the event of inaccuracy—typically an extra
refresh of the CRT (1/85 of a second)—the trial was
excluded from subsequent analysis. Such inaccuracies
occurred on less than 1% of the trials.

Appendix B: About computing d0

values

We use conventional signal-detection theory to
summarize and compare performances in the different
experiments. Descriptions of signal-detection theory

Journal of Vision (2018) 18(5):15, 1–43 Graham & Wolfson 28



can now be found in many places, as it has become
widely used to disentangle response biases from
sensitivity estimates. The source we refer to here is
Macmillan and Creelman (2005).

The ways we calculate d0 in this article are not standard
because the experimental and theoretical frameworks here
are somewhat different from most standard cases. The
reader already familiar with signal-detection theory can
skip ahead to Three ways of calculating d0 values for all
our same–different experiments.

A simple form of signal-detection theory can be used
for our purposes. It starts with two probability
distributions as shown in Figure B1 (for two different
criteria). These two distributions are often referred to
as the signal and noise distributions, and they represent
the distribution of values along some internal dimen-
sion resulting from, respectively, signal and noise
stimuli. It is a hypothetical dimension on which the
observer is making a two-alternative decision. This
decision is assumed to be based on a criterion—that is,
the observer gives one response (e.g., ‘‘Yes, there is a
signal’’) if the internal response on this trial is above the
criterion, and the other response (e.g., ‘‘No, there is not
a signal, there is only noise’’) if the internal response on
this trial is below the criterion.

The internal-response dimension can be labeled in
various ways depending on the application of the
model—for example, internal sensory magnitude,
perceptual strength, memory strength, or decision
variable. The two classes of stimuli—frequently labeled
signal and noise in the abstract model—are more
generally two mutually exclusive and exhaustive subsets
of all stimuli being considered.

We will make the conventional assumption of equal-
variance normal (Gaussian) distributions. The sensi-
tivity parameter d0 will be defined as the difference
between the mean of the signal and noise distributions
divided by the standard deviation of either distribution.
For this equal-variance Gaussian model, the value of d0

is then easily computed (e.g., Macmillan & Creelman,
2005, pg. 8, equation 1.5) as

d 0 ¼ z Hð Þ � z Fð Þ;
where the symbols in the equation are defined as
follows:

� z(x) is the z score characterizing the standard
normal distribution that is associated with the
cumulative probability x.
� H (for ‘‘hit’’) is the conditional probability that an
observer responds ‘‘yes’’ given that a signal stimulus
has occurred on a trial. It is called the hit rate.
� F (for ‘‘false alarm’’) is the conditional probability
that an observer responds ‘‘yes’’ given that a noise
stimulus has occurred on a trial. It is called the
false-alarm rate.

A third quantity (for ‘‘miss’’) is often useful. It is the
conditional probability that an observer responds ‘‘no’’
given that a signal stimulus has occurred on a trial—
that is, M ¼ 1 � H.

(An aside for those who are interested: Rather than
assuming equal-variance Gaussian signal and noise
distributions, another approach would be to measure full
receiver operating characteristic curves—see, e.g., Mac-
millan & Creelman, 2005, pp. 57–63—and from these
curves to calculate estimates of the individual shapes of
both distributions. But measuring full curves would have
greatly expanded the amount of data that needed to be
collected, and from what we know about very similar
tasks, it is highly unlikely to affect the conclusions here.)

This general signal-detection-theory framework can
be used for many tasks with two alternative responses,
including all those we used here: the orientation-
identification task, the same–different two-position
task, and the same–different two-interval task. How we
used this framework to calculate d0 values in the three
tasks follows. First, however, a general point that
applies to all our graphs of d0 values, no matter how
they were computed.

Truncation of d0 values to deal with proportions
of 1 and 0

When the measured hit rate or false-alarm rate was
100% or 0%, we made an adjustment to keep the d0

values from becoming infinite. More specifically, we used
the following simple rule to truncate the values of d0:

If all trials were correct, we adjusted the number
correct to be equal to the total number of trials minus
0.5 (e.g., 40 correct out of 40 was adjusted to be 39.5
correct out of 40). If no trials were correct, we adjusted
the number correct to equal 0.5 rather than 0 (e.g., 0
correct out of 40 was adjusted to be 0.5 correct out of
40). Points adjusted in this manner are indicated by
open symbols in the figures.

Thus, truncation ceilings will be the same for two
different experiments if the same number of trials was
used in both. This is true in Figure 20 but is generally
not true. The number of trials in each experiment is
listed in Table A1.

Calculating d0 for the second-order orientation-
identification experiment

The second-order orientation-identification experi-
ment can be seen as an example of the signal-detection-
theory case already described and shown in Figure B1.
There are two mutually exclusive and exhaustive
subsets of the trials (those with horizontal contrast-
defined stripes vs. those with vertical contrast-defined
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stripes) and two corresponding responses (‘‘horizontal’’
or ‘‘vertical’’). To view this as a signal-versus-noise
case, you arbitrarily choose one of the two subsets (e.g.,
vertical contrast-defined stripes) to be signal and the
other (e.g., horizontal contrast-defined stripes) to be
noise.

Our second-order orientation-identification experi-
ment can be treated even more simply than the signal-
detection-theory case described. This simplicity arises
because the observer can reasonably be assumed to be

unbiased—that is, to favor neither response over the
other (as shown in Figure B1, top panel). This is a
reasonable assumption, since the presentation proba-
bilities are equal (the horizontal and vertical contrast-
defined stripes occurred equally often) and neither kind
of error seems worse than the other (to respond
‘‘horizontal’’ when it should be ‘‘vertical,’’ or vice
versa). This lack of bias is represented by placing the
criterion on the internal axis so that false alarms and
misses are equally likely. In symbols, the criterion is set

Figure B1. Illustration of a simple form of signal-detection theory. Each panel contains two equal-variance Gaussians and a criterion

line. The top panel shows the line for a symmetric criterion and the bottom for an asymmetric criterion. The horizontal axis is labeled

‘‘Internal Response’’; other terms like decisions axis or internal sensory magnitude dimension are also used for this concept.
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to make F ¼M ¼ 1� H. This is frequently called the
symmetric criterion, because the line representing the
criterion falls exactly in the middle of the two
distributions, making the whole drawing symmetric
around that criterion line.

The calculation of d0 from an equal-variance
Gaussian model with a symmetric criterion (symmetric
bias) reduces to (Macmillan & Creelman, 2005, p. 9,
equation 1.7):

d 0 ¼ 2 3 z probability correctð Þ
These are the d0 values plotted in Figure 4, right
column.

Three ways of calculating d0 values for all our
same–different experiments

Our same–different experiments can also be seen as
an example of the single-detection-theory case already
described and shown in Figure B1. The stimuli for
which the correct response is ‘‘diff’’ are called the signal
stimuli (and denoted by Diff). The stimuli for which the
correct response is ‘‘same’’ are called the noise stimuli
(and denoted by Same). Then the equation for d0

becomes:

d 0 ¼ z Hð Þ � z Fð Þ;
where H¼ probability that observer responds ‘‘diff’’ on
Diff trials and F ¼ probability that observer responds
‘‘diff’’ on Same trials.

In cases like our same–different experiments, ob-
servers are likely to show an asymmetric bias such that
false alarms and misses are not equally likely. In
symbols: F 6¼ M and therefore F 6¼ 1� H. In fact, it is
easy to find cases in our results where that happened.
Thus we cannot use here the symmetric criterion
(Figure B1, top panel); we will have to allow the
criterion to be asymmetric (Figure B1, bottom panel).

For the same–different experiments we considered
three different ways to estimate d0 values. The three
different estimates of the true d0 value came from three
different ways of calculating the false-alarm rate. They
are described in the following, after two general points:

First, no matter which of these three ways one uses
to calculate d0, the important general results from these
experiments remain true, in particular: A straddle effect
exists—that is there is a notch in the graph of
performance versus average test contrast centered at
the point where the average test contrast equals the
adapt contrast; and there is maximal performance for
patterns containing both test contrasts somewhat
below (or both somewhat above) the adapt contrast.
Once both the test contrasts become far from the adapt
contrast, performance is below maximum.

Second, only the second and third ways of calculat-
ing d0 values are used for our figures here (e.g., Figure
9, middle and right columns). Why the first way is not
shown is described in the next subsection.

First way of calculating d0 values (a way that is
biased in this context)

This first way is the simplest calculation of false-
alarm rate and therefore of d0. It assumes that the false-
alarm rate is the same for all the trials in a given
experiment no matter how the test-contrast values
differ from trial to trial. This single false-alarm rate is
estimated as the proportion of all Same trials on which
the observer responded ‘‘diff.’’ In our figures here, we
do not show the d0 values calculated this first way for
two reasons, one practical and one theoretical.

The practical reason: As mentioned, this first way of
calculating d0 uses the same estimated false-alarm rate
for every test stimulus. Thus, the calculated d0 values
for a set of stimuli will be monotonic with the hit rates
for those stimuli. These hit rates are plotted in all our
relevant figures in the left column (the large colored
symbols in the left column of, e.g., Figure 9). In
particular, the d0 values calculated this first way will
necessarily have all the peaks and valleys that the hit
rates in the left column show.

The theoretical reason: The assumption underlying
this first way of calculating d0—that the false-alarm rate
on every trial is identical—is easily shown to disagree
with the observers’ performances. First note that all
‘‘diff’’ answers on Same trials are, by definition, false
alarms. In our relevant figures these ‘‘diff’’ answers on
Same trials are plotted as the bottom curve in the left
column (small black dots connected by a black line in,
for example, Figure 9). If the assumption underlying
this first way of calculating d0 were true, then these
bottom curves would be straight horizontal lines except
for statistical variability. In our data, however, these
bottom curves are systematically bent away from a
straight line, showing a dip when the average test
contrast equals the adapt contrast (marked with a red
asterisk)—that is, for the Same-Straddle stimulus.

Second way of calculating d0 values: d0-
conservative

The second way of calculating d0 produces values
shown in the middle column of results figures here, for
example, Figure 9. We call values calculated this way
d0-conservative for reasons described later. This second
way of calculating d0 assumes that the false-alarm rate
varies from trial to trial because it is determined by the
average test contrast on each trial.
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Numerical example of calculating d0-conservative

We consider numerical examples for two kinds of
trials that are particularly important in interpreting our
experimental results. These example calculations will be
gone through here in the text but can be found in a
more succinct format in Figure B2. The top half of the
figure illustrates the second way of calculating d0 (d0-
conservative). The bottom half illustrates the third way
of calculating d0 (d0-unconfounded), which will be
described later. The numbers used in these examples are
based on observer MC’s performance, shown in the top
row of Figure 9. The results of these numerical
examples are summarized in Figure B3.

First we consider a Diff-Above pattern that produces
near-peak performance: the Diff-Above pattern with a
test-contrast difference of 20% (purple triangles) and an
average test contrast of 65%. This pattern contains test
contrasts of 55% and 75%. The observer’s measured hit
rate H for this pattern (that is, the percentage of trials

of this pattern for which observer MC responded

‘‘diff’’) was 90%, thus leading to a z(H)¼ 1.28. In order

to calculate d0-conservative, the false-alarm rate on all

trials of this Diff-Above pattern is determined by the

average test contrast of 65%. So we estimate the false-

alarm rate F by using the measured performance for

the Same test pattern having both its test contrasts

equal to 65% (small black dots). The observer’s

Figure B2. Step-by-step examples of calculating d0-conservative and d0-unconfounded.

Figure B3. Summary of results from numerical examples in

Figure B2.
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measured false-alarm rate on that pattern was 10.1%,
thus producing z(F) ¼�1.28. Thus the estimated d0-
conservative for this Diff-Above pattern¼ z(H)� z(F)
¼ 1.28 � (�1.28)¼ 2.56.

Now we consider the Diff-Straddle pattern, again
with a 20% test-contrast difference—that is, the pattern
having the two test contrasts 40% and 60% (and thus an
average test contrast equal to the adapt contrast of
50%). The measured hit rate H for this Diff-Straddle
pattern was 23.7%, which produces z(H) ¼�0.72. The
false-alarm rate F for calculating d0-conservative is the
probability of an observer’s responding ‘‘diff’’ to the
Same-Straddle pattern (i.e., the pattern having both
test contrasts, and average test contrast, equal to the
adapt contrast of 50%). The measured performance F
in this example was 12.7%, leading to a z(F) ¼�1.14.
Thus the estimated d0-conservative for this Diff-
Straddle pattern¼ z(H)� z(F)¼�0.72� (�1.14)¼0.42.

Third way of calculating d0 values: d0-
unconfounded

The difference between d0-unconfounded and d0-
conservative is in the way the false-alarm rate is
calculated. The hit rate is the same for both calcula-
tions. We use the term d0-unconfounded for reasons
that will be described later.

Numerical example of calculating d0-unconfounded

We use the same Diff-Above pattern used in the
prior example: the Diff-Above pattern with a 20% test-
contrast difference (purple triangles) and an average
test contrast of 65% (test contrasts 55% and 75%). The
hit rate H for calculating d0-unconfounded is identical
to that for calculating d0-conservative (90%), and thus
z(H) ¼ 1.28. The false-alarm rate F for d0-uncon-
founded is calculated from the pool of all Same trials in
which the test contrasts both equaled 55% (called
Same-55%) or both equaled 75% (called Same-75%).
The proportion of times the observer responded ‘‘diff’’
(gave a false alarm) on Same-55% trials was 21.3%. For
Same-75% trials the false-alarm rate was 5%. Since the
numbers of trials of Same-55% and Same-75% were
identical, we can average the two false-alarm rates
(21.3% and 5.0%) to get the false-alarm rate F on the
whole pool (13.1%). Thus, z(F) ¼�1.12. So the
estimated d0-unconfounded for the Diff-Above case is
z(H) � z(F) ¼ 1.28 � (�1.12)¼ 2.40. This d0-
unconfounded estimate is quite similar to the d0-
conservative estimate for this pattern.

Consider now the Diff-Straddle pattern containing
test contrasts of 40% and 60%. The hit rate H for
calculating d0-unconfounded is identical to that for
calculating d0-conservative (23.7%), and accordingly

z(H) ¼�0.72. The false-alarm rate F for d0-uncon-
founded is calculated from the pool of all Same trials in
which the test contrasts both equaled 40% or both
equaled 60%. The proportion of times the observer said
‘‘diff’’ (gave a false alarm) on Same-40% trials was
17.7%. For Same-60% trials the false-alarm rate was
24.4%. Since the numbers of trials of Same-40% and
Same-60% were identical, we can average the two false-
alarm rates (17.7% and 24.4%) to get the false-alarm
rate F on the whole pool (21.0%). Thus, z(F) ¼�0.08.
So the estimated d0-unconfounded for the Diff-Straddle
case is z(H) � z(F) ¼�0.72 � (�0.08)¼ 0.09. This d0-
unconfounded estimate is very different from the d0-
conservative estimate for this pattern.

Some exceptions when calculating d0-unconfounded

We did not anticipate calculating d0-unconfounded
before we ran the experiments reported here. Thus, for
some experiments we did not use the Same patterns
that would be necessary to compute d0-unconfounded
exactly as above. Where we had not used a necessary
Same pattern, we estimated the performance on that
missing one from the performance on the Same pattern
that was nearest (in test contrast) to the missing one.
These exceptions occurred in two places in our
experiments:

� All test patterns in constant-difference series
characterized by a contrast difference of 5%.
� The very leftmost and very rightmost points of all
constant-difference series.

The special nature of the Same-Straddle pattern and the
observer’s response

The empirical probability of an observer’s re-
sponding ‘‘diff’’ to Same trials is plotted in the left
column of, for example, Figure 9 with small black
dots. Notice that probability is not constant across
average test contrast. In particular, it shows a dip
precisely where the dip occurs in the curves for the
Diff patterns—that is, where the average test
contrast equals the adapt contrast. At first we were
puzzled by this dip in the curve for Same trials. But
then we realized there was a unique feature that the
observer could use to almost always correctly
identify the Same-Straddle trials. Notice that in five
of the six kinds of trials illustrated in Figure 8 (e.g.,
the two kinds in the top row of the figure), there are
four changes in contrast during each interval: at the
start of the adapt pattern, at the start of the test
pattern, at the end of the test pattern, and at the
end of the posttest pattern. Thus, during each two-
interval trial, there are 2 3 4 ¼ 8 transitions.
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However for the Same-Straddle kind of trial
(middle row, right column), the two test contrasts
are both equal to the adapt contrast, and thus there
is no change in contrast at either the start or the
end of the test pattern. Thus there are only two
transitions per interval, for a total of four transi-
tions per trial.

According to our observers (and in agreement
with our own observations), many fewer transitions
are immediately and effortlessly perceived on Same-
Straddle trials than on other kinds of trials. And
thus, since the observers can relatively immediately
and effortlessly see that there are only four
transitions, they quickly learn from feedback that
the correct answer on this trial is ‘‘same.’’ So it is
little surprise after all that the observers respond
‘‘diff’’ on very few of these trials, thereby producing
a dip in the middle of the curves for Same trials in
the left column of, for example, Figure 9.

There is a minor exception to this. That exception
occurs in cases when the test contrasts are very, very
close to the adapt contrast and thus not seen as
different from it. We have rarely used test contrasts
that close to the adapt contrast, and thus to make the
remainder of this discussion simpler, we ignore these
cases.

When one applies signal-detection theory in the
way we have so far done in this appendix, one is
assuming that there is something like a single
perceptual dimension on which the observer is
setting a criterion and making a judgment. In same–
different tasks that dimension is the similarity
between the two things being judged. However, this
model cannot account for the behavior described on
the Same-Straddle trials.

A more appropriate model for our task is to suppose
two relevant perceptual dimensions: the usual one
based on perceived similarity between two intervals of a
trial, and then a special one based on something like the
number of perceived transitions in a trial (or perceived
flicker in a trial).

The usual dimension—perceptual similarity—is the
more useful dimension for an observer who wants to be
correct on five of the six kinds of trials we have been
discussing. On the sixth kind, however—the Same-
Straddle case—the number of transitions is the more
useful dimension. It is extremely useful, since it leads
the observer to respond almost perfectly (i.e., almost
always respond ‘‘same’’).

We never told the observers that there was such a
feature as number of transitions. However, feedback
was always used, and feedback appears to have quickly
taught observers to respond ‘‘same’’ to those special
trials.

Why do we use the term d0-conservative?

Calculating d0-conservative systematically uses
smaller false-alarm rate estimates z(F) for the Straddle
pattern than for the other patterns because it uses the
false-alarm rate from the Same-Straddle pattern. This
elevates the d0-conservative estimates for the Straddle
patterns—by subtracting a smaller z(F)—relative to the
other two ways of calculating d0. And thus d0-
conservative plots almost always show a shallower
(more conservative) straddle-effect notch than d0-
unconfounded plots.

One might argue that d0-conservative is not actually
conservative with respect to reality. This argument
would make sense if the assumption used in calculating
d0-conservative were true—that is, if the false-alarm
rate operating on a given trial were determined by the
average test contrast on that trial. However, as
described in the previous subsection, we are reasonably
certain that Same-Straddle trials are in a class by
themselves and do not reflect the false-alarm rate on
any other trial.

Why do we use the term d0-unconfounded?

To look at the same facts we have just mentioned
from a different perspective, we can say that the d0-
unconfounded calculations show deeper straddle-effect
notches for the following reason: They do not allow the
confounding effect of the special nature of the Same-
Straddle case (the unusual number of transitions) to
completely dominate the calculation of d0 at the center
of the notch.

Therefore, we think that d0-unconfounded is the
most valid of our three ways of calculating d0 and that
it most closely reflects the similarity dimension. It is this
similarity dimension that can show the effects of the
contrast-comparison and contrast-normalization pro-
cesses, and it is these spatial processes that we are
studying here.

Note that we do not mean to imply that this way
of calculating d 0 produces totally unconfounded
values, but it seemed to be the best term we could
think of.

More detail for interested readers: A person might
suggest that it would be even better (less confounded)
to prevent the Same-Straddle case from ever entering
into any d 0 estimates. Calculating d 0-unconfounded
does allow it to enter into the d 0 calculation for Diff
patterns that have one test contrast equal to the adapt
contrast. But even there its effect is diluted by the
patterns that have the other test contrast (not equal to
the adapt contrast). We did some calculations
excluding the Same-Straddle pattern entirely and it
made little difference except to make the straddle
effect notch even deeper occasionally.
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Appendix C: More plots from the
first-order same–different
experiments

This appendix shows more plots from the first-order
same–different experiments described in the main text.
These plots should be looked at in conjunction with the
main text.
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Experiment varying adapt contrast

Figure C1. Results for observer MC. Results of varying adapt contrast in a first-order same–different two-interval experiment (using a

232 Gabor-patch grid) from 0% (top row) to 100% (bottom row). They are plotted as three different measures: percentage ‘‘diff,’’ d0-
conservative, and d0-unconfounded, in the left, middle, and right columns, respectively. The horizontal axis gives average test

contrast, and the value of the adapt contrast is indicated by a red asterisk and labeled on the right edge of each row. The left column

of this figure was shown in Figure 12 (left column).
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Figure C2. Results for observer LG plotted identically to those for observer MC in Figure C1. The left column of this figure was shown

in Figure 12 (right column).
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Figure C3. Curves for all five adapt contrasts plotted in Figures C1 and C2 are juxtaposed here. The three columns of the figure are for

the three different measures of performance: percentage ‘‘diff,’’ d0-conservative, and d0-unconfounded. The top row shows MC’s

results, and the bottom LG’s. The horizontal axis gives the difference in contrast (preserving the sign) between test contrast and adapt

contrast; that is, each curve is horizontally shifted so that the adapt contrast is always in the middle of the horizontal axis. The curves

for different adapt contrasts on this axis superimpose, forming an empirical ‘‘butterfly curve’’ like that idealized in Figure 5.
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Experiments using a single Gabor patch and a
big disk

Figure C4. A diagram of a typical trial from the experiment using a single foveal Gabor patch. This trial diagram is identical to that for

the 232 Gabor-patch pattern (Figure 7, top half), except that a single foveal Gabor patch replaces the 232 Gabor-patch pattern, and

the fixation pattern is also changed to avoid perceptual interference with the single Gabor patch. This example shows a horizontal

Gabor patch; a vertical Gabor patch was used on half the trials. Feedback was provided. (The experiment with a single foveal Gabor

patch is discussed in the main text and illustrated in Figures 13 and 14.)

Figure C5. The contrast-versus-time profiles for the single-Gabor-patch experiment shown in Figure C4. This figure follows the

conventions of Figure 8.
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Figure C6. Results from the experiment using a single foveal Gabor patch. This figure follows the conventions of Figure 9. The left

column of this figure is the same as the left column of Figure 14.
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Figure C7. Direct comparison of results from the same–different two-interval experiments using a single foveal Gabor patch and a 23

2 Gabor-patch grid. This figure has the same general format as Figures 11, 19, and 20. Like them, this figure shows only d0-

unconfounded, but the other performance measures look similar. As shown here, the performances are very similar for the

experiments with the single Gabor patch and the 23 2 Gabor patch. This similarity likely results from the balancing out of two sets of

factors. One set favors the experiment with the single Gabor patch (e.g., greater foveal sensitivity); the other set favors the

experiment with the 2 3 2 Gabor-patch (e.g., greater number of Gabor patches). The single-Gabor-patch data are also plotted in

Figure C6, right column; the data for the 2 3 2 Gabor patch are also plotted in Figure 9, right column.

Figure C8. A diagram of a typical trial from the experiment using a big-disk pattern. This trial diagram is identical to that for the 23 2

Gabor-patch pattern (Figure 7, top half), except that a big disk replaces the 23 2 Gabor patch. Feedback was provided. (The big-disk

experiment is discussed in the main text and illustrated in Figures 13 and 14.)
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Figure C9. Contrast/luminance-versus-time profiles for the big-disk experiment shown in Figure C8. Luminance in the wide central

region of the disk relative to the background luminance (around the disk) is given on the left-hand vertical axis. The contrast of the big

disk (shown on the right-hand vertical axis) is defined to equal the luminance in the central area of the disk minus the background

luminance, divided by the background luminance. When the big disk is an adapt or posttest pattern, it is always an increment on the

background. But the test pattern might be either an increment or a decrement from the adapt pattern. This figure follows the other

conventions of Figure 8.

Figure C10. Results from the big-disk experiment. This figure follows the conventions of Figure 9. The left column of this figure is the

same as the right column of Figure 14.

Journal of Vision (2018) 18(5):15, 1–43 Graham & Wolfson 42



Figure C11. Results from another version of the big-disk experiment. This version used a wider range of average test contrasts and a

lower test-contrast difference (5% in yellow triangles), as well as repeating 10% (green squares). This figure follows the conventions of

Figure 10.
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