
RESEARCH ARTICLE

Diffusion-based neuromodulation can

eliminate catastrophic forgetting in simple

neural networks

Roby Velez1, Jeff Clune1,2*

1 Computer Science Department, University of Wyoming, Laramie, Wyoming, United States of America,

2 Uber AI Labs, San Francisco, California, United States of America

* jeffclune@uwyo.edu

Abstract

A long-term goal of AI is to produce agents that can learn a diversity of skills throughout their

lifetimes and continuously improve those skills via experience. A longstanding obstacle

towards that goal is catastrophic forgetting, which is when learning new information erases

previously learned information. Catastrophic forgetting occurs in artificial neural networks

(ANNs), which have fueled most recent advances in AI. A recent paper proposed that cata-

strophic forgetting in ANNs can be reduced by promoting modularity, which can limit for-

getting by isolating task information to specific clusters of nodes and connections (functional

modules). While the prior work did show that modular ANNs suffered less from catastrophic

forgetting, it was not able to produce ANNs that possessed task-specific functional modules,

thereby leaving the main theory regarding modularity and forgetting untested. We introduce

diffusion-based neuromodulation, which simulates the release of diffusing, neuromodulatory

chemicals within an ANN that can modulate (i.e. up or down regulate) learning in a spatial

region. On the simple diagnostic problem from the prior work, diffusion-based neuromodula-

tion 1) induces task-specific learning in groups of nodes and connections (task-specific

localized learning), which 2) produces functional modules for each subtask, and 3) yields

higher performance by eliminating catastrophic forgetting. Overall, our results suggest that

diffusion-based neuromodulation promotes task-specific localized learning and functional

modularity, which can help solve the challenging, but important problem of catastrophic

forgetting.

Introduction

Learning is a powerful, complex ability possessed by natural organisms, and one that artificial

intelligence researchers have sought to incorporate into artificial systems. Advances in learning

systems such as deep neural networks (DNNs) have led to major innovations through state-of-

the-art performances in vision recognition [1], video game playing [2], robot control [3] and

many other domains [4]. While DNNs and other learning systems have become quite powerful

in recent years they still lack a crucial aspect of natural learning: the ability to continuously
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learn new skills over a lifetime. Artificial learning systems are unable to continuously learn

new information due to a phenomenon called catastrophic forgetting.
Catastrophic forgetting is when the learning of new information causes old information to

be rapidly lost [5, 6]. It is particularly extreme in artificial neural networks (ANNs) [6, 7].

ANNs are graph-based structures that are simplified, abstract computational models of real

brains in which the nodes and connections of the graph correspond to neurons and synapses

[8, 9]. Like real brains, information in ANNs is encoded in connection weights and patterns

and learning involves the changing of those weights [10–13]. One reason ANNs are prone to

catastrophic forgetting is because information for tasks tends to be spread across many nodes

and connections, rather than isolated to specific groups of nodes and connections [7]. In such

a situation, any change to a group of nodes and connections to learn new information would

cause forgetting because those nodes and connections most likely encoded for something else

[14, 15]. One possible solution is to encourage the isolation of information to specific groups

of nodes and connections. This isolation should help disentangle the parts of the ANN that

encode for different aspects of problems [5].

Ellefsen et al. [16] have proposed that modularity could facilitate the isolation of informa-

tion to specific groups of nodes and connections. Modularity within ANNs, and networks in

general, is characterized by clusters of highly interconnected nodes (i.e. modules) that are

sparsely connected to other clusters [17–19]. Previous research showed that modular ANNs

could be produced via a method known as the connection cost technique (CCT) [20, 21]. With

the CCT, ANNs are evolved with an evolutionary algorithm (EA) that includes an evolutionary

cost for each connection [20]. EAs are search algorithms based on Darwinian evolution, and

can search through various ANN configurations for the right weights that allow an ANN to

solve a problem [9, 22]. Modularity could facilitate learning to be turned on within a module

without interfering with information in the rest of the ANN, and thus could reduce or elimi-

nate catastrophic forgetting. This learning within a module should isolate information and

produce functional modules that encode for specific information, such as a subproblem or task

in a multitask problem. While Ellefsen et al. [16] found that modular ANNs, produced via the

CCT, suffered less from catastrophic forgetting, their ANNs did not possess functional mod-

ules for the different skills tested; thereby leaving the main tenet of their hypothesis untested.

In this paper, we introduce a method based on diffusion that can produce the isolation of

information in functional modules by inducing learning that corresponds to a specific subtask

in a group of nodes and connections (i.e. task-specific localized learning).

Neurons employ a wide array of communication mechanisms. Traditionally, neuronal

communication is viewed as a private channel or wire of communication between two neurons

facilitated by a synapse or gap junction [23], and is sometimes referred to as wire transmission.

Neurons have also been shown to engage in volume transmission where they release signaling

chemicals, such as neurotransmitters, that can diffuse and transmit information to neurons

within a volume of brain tissue [24, 25]. Diffusing neurotransmitters can only influence the

neurons in their general vicinity due to obstructions and recycling factors in the extracellular

space (ECS) between neurons [26], and many play a role in synaptic plasticity and learning

[27–29]. Because of these two properties, it is possible that volume transmission could be pro-

ducing some localized learning, where groups of neurons and synapses within a volume of

brain tissue all undergo learning at the same time. It is difficult to assess whether this localized

learning is task-specific because much of the brain’s mechanisms and processes are still

unknown. It has been suggested by many researchers, though mostly in passing, that the syn-

chronized and coordinated learning in groups of neurons could play a role in the creation or

maintenance of functional units or modules [25, 30–33].
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In this paper, we abstract the idea of volume transmission via diffusing chemical signals in

real brains to produce a new learning algorithm for ANNs called diffusion-based neuromodu-

lation. In this implementation of diffusion-based neuromodulation, we place point sources at

specific locations within an ANN that emit diffusing learning signals that correspond to the

positive and negative feedback for the tasks being learned. We test whether these diffusing

learning signals can 1) induce task-specific localized learning in order to 2) isolate information

for the different tasks into functional modules and 3) reduce catastrophic forgetting.

Background

Modularity. Modularity is a important feature in both man-made [34] and natural sys-

tems [17, 35–37]. One of the benefits of modularity is that it allows the components of a system

to be easily reconfigured or replaced [34, 36, 38, 39]. In the context of ANNs, there is structural

modularity and functional modularity. Structural modularity quantifies the connectivity pat-

tern of nodes and connections, and is the most studied. Two methods to promote structural

modularity during the evolution of an ANN include the CCT mentioned above, and constantly

switching between different test problems that have the same subgoals [38]. Structural modu-

larity in these works was quantified with the Q-Score metric [40] which quantifies the connec-

tivity patterns of nodes and connections, and is the current state-of-the-art in module

detection. Functional modularity involves modules that encode for some specific information,

such as a subproblem or one of the tasks in a multitask problem [19]. Identification of func-

tional modules is challenging because it requires understanding how information is encoded

in the nodes and connections of an ANN.

A recent paper presented a technique to identify functional modules called subsets regres-

sion on network connectivity (SRC) [41]. It identifies the nodes and connections that encode

for subproblems of an overall task. The result is functional modules, and a core functional net-

work, which is a subnetwork of the original ANN that has at least the same fitness. When the

Q-Score metric is applied to a CFN it produces a functional modularity score, i.e. a structural

modularity score based only on the functional nodes and connections. Functional modularity

and the ability to identify functional modules are crucial to the study of catastrophic forgetting

in this paper because they allow us to understand how information for the different tasks is

encoded in the ANNs.

Learning and forgetting. Due to the complexity of even small ANNs, these structures can

not be fully designed by hand and researchers must rely on automated methods to set their

weights. The two most prominent approaches are EAs and learning algorithms. While quite

powerful, the ANNs produced by EAs are generally static, and cannot further learn or incorpo-

rate information during their lifetime. In contrast, learning algorithms such as Hebbian learn-

ing [42], neuromodulation [43], and backpropagation [10–12] enable ANNs to continuously

learn during their lifetime. Many researchers combine both methods and evolve the starting

weights for an ANN, and then incorporate learning to further refine the weights of the network

[9, 22]. The ANNs in this work, and in Ellefsen et al. [16], implement this latter approach of

combining evolution and learning.

In Hebbian learning the strength of a connection between nodes increases or decreases

depending on whether the firing of those nodes is correlated or non-correlated [42]. Hebbian

learning also occurs in neuromodulation, but in neuromodulation there is a mechanism that

can modulate (i.e. raise, lower, or invert) the rate of Hebbian learning. In neuromodulation

ANNs, there are two types of nodes: regular nodes and modulatory nodes. Through a direct

connection to a regular node, a modulatory node can modulate the rate of Hebbian learning in

the connections feeding into that regular node [43]. Put another way, in neuromodulation,
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learning can be context specific because there is a mechanism to turn Hebbian learning on or

off in target connections given specific situations or data. Hebbian learning and neuromodula-

tion are modeled after homosynaptic and heterosynaptic plasticity rules found within real

brains [27]. Neuromodulation has been successful at training simulated bees in foraging tasks

where the bees had to learn which flowers produced the highest reward [43]. Neuromodula-

tion has also been successful, more so than regular Hebbian learning, at creating robots that

can navigate a maze filled with moving rewards [44]. Neuromodulation was the learning algo-

rithm in Ellefsen et al. [16], and is the basis for diffusion-based neuromodulation.

Another ANN learning algorithm is backpropagation [12]. It differs from Hebbian learning

and neuromodulation in that it requires knowing the correct ANN output for all inputs in

order to calculate detailed error signals. Backpropagation then sends those error signals back

through the ANN and applies weight changes to connections based on how much influence

they had over those error signals. Backpropagation has been very successful at training DNNs

and has fueled many of the major advances in AI in recent years [1–4]. DNNs can also suffer

from catastrophic forgetting [45], although there has been some recent progress in this area

[46]. If we can solve catastrophic forgetting on small diagnostic problems we could potentially

scale those solutions up to DNNs and increase their capabilities.

In addition to Ellefsen et al. [16], another method that can reduce catastrophic forgetting

by isolating information to specific nodes and connections is node sharpening. During learn-

ing, node sharpening influences the weight changes for connections feeding into the most and

least active nodes, making those nodes more and less active, respectively [5]. The end result is

that only a few nodes and connections, not the entire ANN, encode for a specific task or piece

of information. Researchers have also evolved ANNs that have the ability to write data to mem-

ory on disk and read it back later through evolvable neural turing machines (ENTMs) [47].

ENTMs were applied to the foraging task, which is the experimental domain is this paper and

Ellefsen et al. [16], and produced a few individuals that completely avoided catastrophic for-

getting, but were not able to reliably produce perfect solutions across all runs. Other strategies

to combat catastrophic forgetting include rehearsing previously learned skills [48, 49], emu-

lating dual memory models [5, 50], or developing routines that determine which weights

should become static and retain older tasks and which should stay plastic to learn a new task

[46].

Diffusion. A growing body of work is beginning to illuminate the prevalence of volume

transmission in real brains, and show that neurons can engage in a mix of both wire transmis-

sion and volume transmission [24, 51]. One example of volume transmission is the spillover of

neurotransmitters like glutamate or gamma-Aminobutyric acid (GABA). Neurotransmitters

can have many different functions in the brain, but glutamate and GABA are generally classi-

fied as messenger chemicals that can excite or inhibit a neuron [23]. When transmitting a

signal, a pre-synaptic neuron releases neurotransmitters from the vesicles at the end of its syn-

apses that diffuse across the synaptic cleft to excite or inhibit the receiving, post-synaptic neu-

ron [23]. The neurotransmitter usually stays within the synaptic cleft, but sometimes it can

spillover into the extracellular space (ECS) and affect neurons in the surrounding area [31, 52–

54]. Neurotransmitter spillover has been observed in different areas of the brain such as the

hippocampus [30, 55, 56], cerebellum [57], and olfactory bulb [32, 58]. Aside from spillover,

neurons can also directly inject neurotransmitters, such as the neuromodulators dopamine

[59, 60] and serotonin [61, 62], into the ECS, without any consideration towards targeting a

particular neuron [33, 63, 64]. Generally, neuromodulators are classified as neurotransmitters

that can modulate synaptic strength, and are central in models of heterosynaptic plasticity and

learning within the brain [27–29]. The strongest evidence for this deliberate broadcasting of

neurotransmitter into the ECS is the fact that in certain regions of the brain there are far more
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neurotransmitter receptors than transmitters [33, 63, 64]. Lastly, another mechanism for vol-

ume transmissions comes from gaseous neurotransmitters such as nitric oxide (NO), carbon

monoxide (CO), and hydrogen sulfide (H2S) [65]. NO is the most studied of these gaseous neu-

rotransmitters and has been linked to synaptic plasticity and learning [66, 67]. NO is a highly

diffusible, molecular gas that can move easily through cell membranes, and simply starts to dif-

fuse as soon as it is synthesized within a neuron [66, 68–70]. Due to its highly diffusible prop-

erties and effect on synaptic plasticity, NO has been abstracted to an ANN framework called

GasNets that has been shown to be comparable to other ANN frameworks in regards to visual

navigation [71] and bipedal locomotion tasks [72]. Lastly, even with factors that limit a diffus-

ing chemical signal such as obstructions and uptake in the ECS [26] or general dilution [73],

simulations of the diffusion of dopamine [73], glutamate [74], and NO [75] indicate that these

chemicals can diffuse far enough to affect large populations of neurons.

Experimental setup

This section briefly describes the experimental setup in this paper designed to test catastrophic

forgetting. A more detailed description of the implementation is in Materials and Methods.

With a few exceptions (S1 Table) the experimental setup is the same as Ellefsen et al. [16].

Because the network topology, food encoding, and some of the learning parameters are differ-

ent from Ellefsen et al. [16], the networks from this paper can not be directly compared to

their work.

Foraging task. We conduct experiments in a variant of the foraging task, introduced by

Ellefsen et al. [16], where an artificial agent is presented food items during a series of days.

Each day the agent is presented with all possible food items and its task is to learn which food

items are nutritious and should be eaten, and which are poisonous and should not be eaten.

After five days the agent transitions to a new season where the food items are the same, but

their association (nutritious or poisonous) is reassigned randomly. The seasons the agent expe-

riences are summer and winter, and together they make up a year. The agent’s lifetime is three

years in total and the food associations for each particular season stay constant over that life-

time. Within each season, half of the food items are nutritious and half are poisonous. The

summer and winter food associations, along with the order in which they are presented in a

lifetime, are called an environment. To achieve maximum fitness, an agent must eat all the

nutritious items and not eat the poisonous items (Eq 1).

fitness ¼ 0:5þ
nutritiousFoodEaten � poisonousFoodEaten

totalFood
ð1Þ

A successful agent is one that learns the correct food associations in the first season (i.e.

summer) and then, when learning the correct associations in the second season (i.e. winter),

does not forget what it learned in the prior season. For the remaining two years of the agent’s

lifetime, it can thus recall the associations it already knows to make the correct decisions. On

the other hand, if the learning of food associations in one season causes the loss of associations

for the other season, then, as the seasons cycle, the agent will have to continuously relearn asso-

ciations again and again, which results in mistakes that lower fitness.

Network setup and encodings. The artificial agents are represented by feed-forward, five-

layer networks where each node has an (x,y) position (S1 Fig). The number of nodes in each

layer from input to output are 5, 12, 8, 6, and 2 respectively. Starting from left to right, the first

three nodes in the input layer are fed food items (described below) for both seasons, and are

referred to as a shared input. The last two nodes are referred to as seasonal feedback because

they are fed feedback signals, and are season specific. The feedback is 0 if the previously
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presented food item was not eaten, and is 1 or -1 if the previously presented food item was

eaten and it was nutritious or poisonous. The summer and winter feedback nodes are fed feed-

back during the summer and winter season respectively, and are inactive (i.e. fed 0) during the

other season. Lastly, the two outputs are also season specific and determine whether the agent

eats (output > 0) or does not eat the food item presented. In summer only the leftmost output

is considered and in winter only the rightmost output is considered.

The food items presented to the ANNs, and fed into the first 3 nodes of the input layer, are

encoded as a 3-bit vector of 1’s and − 1’s. The food associations, whether something is nutri-

tious or poisonous, for each season are randomly assigned when creating an environment. For

each season, a bit in the food encoding is chosen at random to be the decision bit. A coin flip is

then done to determine whether encodings with a -1 or 1 in the decision bit signify a nutritious

item. For example, in one environment nutritious items in summer are those with a −1 in the

0th bit and in winter nutritious items are those with a 1 in the 1st bit. Anything that is not

nutritious is poisonous. Thus, for a given season the ANNs only have to learn which of the

input bits is important. In our ANN visualizations, the input nodes that correspond to the

decision bits are denoted with a ‘D’ inside the input node.

This work introduces diffusion-based neuromodulation and compares it to standard neuro-

modulation. As described in the section on Learning and Forgetting, in standard neuromodu-

lation, regular nodes receive modulatory signals via direct connections from modulatory

nodes. In diffusion-based neuromodulation, regular nodes receive modulatory signals based

on their location in the ANN and a concentration gradient of modulatory chemical. For the

implementation of diffusion-based neuromodulation in this paper, the concentration gradient

is produced by two point sources located at the far left and right of the ANN (S1 Fig).

The left and right modulatory point sources are tied to summer and winter feedback respec-

tively. They are high (1) if the previously eaten food item was nutritious, and low (-1) if it was

poisonous. The modulatory signals of the left and right point sources remain at 0 in winter

and summer respectively (i.e. when not in the season they are informative about), and are 0 if

the previously presented food item was not eaten. To save computation, we do not simulate

the temporal dynamics of diffusion, but rather assume the diffusion chemicals have already

reached a steady state. As soon as the activation of the point source is non-zero the simulated

chemical instantaneously fills the space within a radius of 1.5 from the center of the point

source, and modulates all of the nodes within that space. The simulated chemical released by a

point source does not extend beyond 1.5 units of distance from the point source to model the

fact that neurotransmitters in the brain can not diffuse forever, but rather are localized due to

various factors such as obstructions in the extracellular space (ECS) [26]. Lastly, the modula-

tory signal decreases with distance from a point source. The full implementation details of the

ANNs, standard neuromodulation, and diffusion-based neuromodulation can be found in

Materials and Methods.

Evolutionary algorithm. This paper has 4 treatments. Two treatments are from Ellefsen

et al. [16] and are individuals with standard (i.e. non-diffusing) neuromodulation evolved to

maximize performance alone (PA) and evolved to both maximize performance and minimize

a connection cost (PCC) (i.e. the CCT) [20]. The other two treatments are the same except

their learning rule is diffusion-based neuromodulation. These diffusion treatments are perfor-

mance alone with diffusion (PA_D) and performance with a connection cost and diffusion

(PCC_D). All individuals are evolved with the probabilistic, multi-objective evolutionary algo-

rithm PNSGA [20]. 50 independent runs for each treatment were performed to gather a large

sample size for analysis. A detailed description of the parameters for the EA can be found in

Materials and Methods.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0187736 November 16, 2017 6 / 24

https://doi.org/10.1371/journal.pone.0187736


To prevent evolution from hard coding the seasonal associations into individuals, an indi-

vidual’s fitness is averaged over 4 lifetimes, each with a different environment. The 4 environ-

ments are randomized after every generation, which randomizes the seasonal associations and

the food ordering.

Results

Performance

For all generations, diffusion treatments significantly outperform non-diffusion treatments on

the foraging task (Fig 1A). To understand why we performed a post-evolution analysis on the

highest fitness individual from the last generation of each evolutionary run. In this analysis,

each individual is re-evaluated in 80 new foraging task environments. For each environment,

individuals are evaluated first with their initial, evolved weights and learning on (training
phase), and then again with their learned weights and learning off (testing phase). In the train-

ing phase, the following metrics (discussed below) are calculated: fitness over lifetime, seasonal

Fig 1. Diffusion treatments outperform non-diffusion treatments across various metrics. (A) Across all

generations diffusion treatments (PA_D & PCC_D) achieve significantly higher (p < 0.001) fitness than non-

diffusion (PA & PCC) treatments. (B) Diffusion treatments maintain consistent fitness over their lifetime after

the first two seasons, indicating they remember how to solve a task even after they have not performed that

task for an entire season. Non-diffusion treatments do not. (C) Diffusion treatments have significantly higher

(p < 0.001) Retained Percentages and Perfect (i.e. know both summer and winter) seasonal associations than

non-diffusion. (D) Diffusion treatments posses significantly higher (p < 0.001) testing fitness than non-diffusion

treatments. Throughout paper, all statistics are done with the Mann-Whitney U test. Markers below line plots

indicate a significant difference (p < 0.001) between PA_D and the other treatments at the corresponding data

point. For all bar plots, except when stated, a significance bar labeled with ‘***’ is placed between bars that

are significant at the level of p < 0.001. Lastly, the summary value and confidence intervals for all plots in this

paper are the median and 75th and 25th percentiles respectively.

https://doi.org/10.1371/journal.pone.0187736.g001
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associations, training fitness, and weight changes. In the testing phase, the following metrics

(discussed below) are calculated: testing fitness and functional modules.

Within a lifetime, diffusion treatments exhibit constant fitness after the first two seasons

while the fitness of non-diffusion treatments drops sharply after every season transition (Fig

1B), clearly demonstrating that diffusion treatments have solved catastrophic forgetting on this

problem and non-diffusion treatments have not. To complement lifetime fitness, at the end of

each season during the training phase individuals are re-evaluated, with learning turned off, to

determine what seasonal associations the individual knows. In this re-evaluation, an individual

is considered to have Known a season’s food association if it eats all the nutritious food items

and does not eat any poisonous food items for that season. It possesses a Perfect seasonal asso-

ciation if it knows the seasonal association for both summer and winter at the end of each sea-

son, which tests if the off-season association is still known after training for that season. Aside

from random chance, the best an agent can do is have Perfect seasonal associations in 5 of the

6 seasons, because it is not until the end of the second season that they could have learned both

sets of season associations (at the end of the first season they have not yet experienced the

other season). Summed over 80 environments, the maximum score on the Perfect metric is

thus 80 × 5 = 400.

Diffusion treatments possess a near-maximum median of 395 (PA_D) and 381 (PCC_D)

Perfect associations, respectively (Fig 1C). Both non-diffusion treatments possess a median of

84 Perfect seasonal associations (Fig 1C). These results are further evidence that diffusion

treatments, but not non-diffusion treatments, are reliably eliminating catastrophic forgetting.

In fact, the only reason the non-diffusing treatments have any Perfect associations is because,

due to chance, in 14 of the 80 post-evolution environments the seasonal associations for sum-

mer and winter were exactly the same, meaning that learning one seasonal association means

both are known. In those instances, it is possible to know both seasonal associations at the end

of all 6 seasons without solving catastrophic forgetting, which explains the 84 Perfect seasonal

associations for non-diffusion treatments (14 × 6 = 84).

We also calculate how many seasonal associations are Retained or Forgotten from the prior

season. At the end of each season, the maximum number of Known seasonal associations is 2

(i.e. summer and winter), which means that the maximum number of seasonal associations

that could have been Retained or Forgotten from the prior season is also 2. The number of

Retained seasonal associations is divided by the number of Known seasonal associations to cal-

culate the Retained Percent of seasonal associations. See Ellefsen et al. [16] for a more detailed

description of seasonal associations and S2 Fig for a plot of all seasonal associations. Diffusion

treatments have a median Retained Percent of 91.8% while non-diffusion treatments have a

median Retained Percent of 29.6% (Fig 1C).

Retained Percent provides an intuitive sense of how many seasonal associations are remem-

bered, but the metric can be misleading since it depends on how many seasonal associations

are Known. An individual can achieve a high Retained Percent by not having many Known

seasonal associations in the first place. To compliment Retained Percent we calculate the fit-

ness of individuals during the testing phase. If an individual learned and stored information

during the training phase then it can do even better during the testing phase because it does

not have to make the mistakes inherent in learning. Individuals that have solved catastrophic

will have perfect testing fitness. On the other hand, individuals that simply relearn each season

will perform poorly during the testing phase because they cannot relearn, and will thus per-

form well for the last season experienced before the testing phase, not both. Because the base

fitness is 0.5 (Eq 1), knowing only one of the two seasons results in a testing fitness of 0.75.

Diffusion treatments have a median testing fitness of 1 (Fig 1D), which is an increase from

the training fitness, and the max value, revealing that a majority of individuals have learned to
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solve the tasks perfectly. Non-diffusion treatments exhibit a large decrease from training fit-

ness and end up with a median testing fitness of 0.75 (Fig 1D). This evidence, along with the

performance drops after season transitions (Fig 1B) and the low number of Perfect seasonal

associations (Fig 1C), confirms that the non-diffusion treatments are continuously forgetting

and relearning each season. The original fitness broken down by season, provided for compar-

ison in a knockout analysis for the functional modules discussed in the next section (S3 Fig),

confirms that only the last season seen in the training phase (the winter season) is known after

the training phase in non-diffusion treatments.

In conclusion, fitness over lifetime, the number of Perfect seasonal associations, Retained

Percent, and testing fitness all indicate that a majority of the individuals in the diffusion treat-

ments are solving catastrophic while individuals in the non-diffusion treatments are not.

Functional modules

The main idea of this work and Ellefsen et al. [16] is that the isolation of information in func-

tional modules could help reduce interference and mitigate catastrophic forgetting. To identify

functional modules within ANNs we introduce the activation record knockout (ARK) algo-

rithm (See Materials and methods). ARK is based on the subsets regression on network con-

nectivity (SRC) algorithm [41]. Like SRC, ARK can identify the nodes and connections

responsible for specific subproblems in order to identify functional modules within an ANN.

The end result is a core functional network (CFN), which is a subnetwork of the ANN that

possesses at least the same fitness as the original network. ARK is applied to the final learned

networks at the end of each training phase, and is based on the node activations gathered (i.e.

activation record) during the testing phase. Because each individual is evaluated against 80 dif-

ferent environments, each with their own training and testing phase, there are 80 different

CFNs for each individual.

For the ANNs with the highest and lowest testing fitness for each treatment, Fig 2 shows the

original (non-simplified) networks, an example CFN, and its functional modules. For the for-

aging task, we define three types of functional modules: connections that encode for the sum-

mer task, connections that encode for the winter task, and connections that are in common

and encode for both season tasks. These connections are colored red, blue, and green respec-

tively in the CFN visualizations. See Materials and methods for details on how ARK identifies

functional modules.

The following descriptions of the CFNs in this work are qualitative, but provide a sense of

how information is encoded and processed in the networks. The majority of CFNs for the

highest performing diffusion and non-diffusion individuals come in two variants (Fig 2B). The

first, and most predominant, possesses two separate functional modules, one for summer and

one for winter, that connect the decision bit inputs for summer and winter to the summer and

winter output. The second, which can occur when the decision bit input is the same for both

seasons, possesses a single common connection from the decision bit input that then branches

into two separate functional modules. In both of these instances, there is no interference with

the seasonal information as it progresses through the network. The CFNs for the lowest per-

forming, non-diffusion individuals exhibit many patterns, but in general possess two common

themes (Fig 2B). The first is that a decision bit input or season output is not part of any func-

tional module, and is disconnected from the CFN. The second is that there are connections

from unimportant inputs or laterally between functional modules. The first pattern prevents

the CFN from receiving or transmitting season specific information and the second pattern

produces interference as seasonal information progresses through the network. The CFNs for

the lowest performing diffusion individuals, whose testing fitness is mid-range between the
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best and worst testing fitness values across all treatments, possess a mix of the low and high-

performing CFN patterns. Thus, it is visually apparent that the low-performing CFNs are

slightly less modular and sparse than high-performing CFNs (Fig 2B). A larger sample of

CFNs for the best and worst individuals is provided in S4, S5, S6 and S7 Figs.

The structural modularity of the CFNs (i.e. functional modularity) reflects the patterns

described above and reveals a clear difference between the diffusion treatments, which are pre-

dominantly high-performing, and the non-diffusion treatments, which are predominantly

low-performing (Fig 3A). The identification of the CFNs and functional modules reveal two

insights. The first is that diffusion-based neuromodulation can be a strong inducer of func-

tional modularity (Fig 3A). Second, if the CFN of an ANN is highly modular, regardless of dif-

fusion, it will exhibit less, or no, catastrophic forgetting (Fig 3B and 3C). In the upper right

quadrant of the scatter plots in Fig 3(B) and 3(C), where high-performing, high functional

modularity ANNs are placed, there are mostly diffusion networks, but there are also a few

non-diffusion networks. Thus, diffusion-based neuromodulation is a strong inducer of func-

tional modules, but it is the functional modules that are allowing catastrophic forgetting to be

mitigated.

Task-specific localized learning

Our hypothesis is that diffusion-based neuromodulation produces the functional modules

shown in the prior section by inducing task-specific learning in a specific group of nodes and

Fig 2. High-performing networks are differentiated from low-performing networks through the presence of distinct functional

modules in Core Functional Networks (CFNs), network features not seen when just examining the original, non-simplified ANNs.

(A) Original ANNs for the networks with the best and worst test fitness. Inset text is the training fitness (trainF), testing fitness (testF), and

structural modularity of the original ANN (origM) averaged over all 80 environments in the post-evolution analysis. Superficially there is

nothing that distinguishes networks that have the best testing fitness. (B) One example CFN for each of the corresponding ANN from A. Inset

text is the structural modularity of the original ANN (origM), training fitness (trainF), testing fitness (testF), CFN fitness (cfnF), and CFN

modularity (cfnM) for the environment that produced the CFN. High-performing networks possess sparse CFNs with either two distinct

functional modules (red and blue) that form separate paths, or a common functional module (green) that branches off into two distinct

functional modules. Low-performing networks possess CFNs that are much more entangled, or do not connect to the decision input bits

(input nodes marked with ‘D’) or season outputs. Structural modularity is quantified with the Q-Score metric [40]. 20 additional CFNs for the

best and worst individuals are provided in S4, S5, S6 and S7 Figs. For diffusion ANNs the locations of the point sources are indicated by

small, purple, filled circles (S1 Fig) and the modulatory nodes for non-diffusion ANNs are indicated by circles with thick white borders. Nodes

whose activation variance is below 1.0 × 10−9 are deemed to be bias nodes and are visualized with thin, outgoing connections.

https://doi.org/10.1371/journal.pone.0187736.g002
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connections. While such coordination is theoretically possible in non-diffusion networks, we

hypothesized that it would be less likely because it requires many separate mutations to create

individual connections that produce a coordinated effect. To investigate whether such task-spe-

cific or coordinated learning occurs in diffusion or non-diffusion treatments, we record and

plot median weight changes for connections that will become the functional modules (Fig 4).

For the diffusion treatments, learning in a given season is isolated to specific groups of

nodes and connections (Fig 4). During summer, the connections that undergo weight changes

are those that will form the summer functional module. During winter, a different group of

connections, those that will form the winter functional module, undergo weight changes. This

task-specific localized learning eliminates catastrophic forgetting. Within each season, learning

is turned on and off in a specific group of connections, leaving nodes and connections in the

rest of the ANN, and whatever seasonal information they encode, alone and intact. In contrast,

in non-diffusion ANNs learning is not task-specific (Fig 4), and weight changes occur in con-

nections that will correspond to both seasons. For instance, in winter, non-diffusion treat-

ments experience weight changes in connections that will become responsible for winter, but

also in connections that will become responsible for summer, or both. Such interference

explains why these treatments exhibit catastrophic forgetting.

Discussion

The functional modules in this paper were produced by task-specific localized learning, but

in Ellefsen et al. [16] it was hypothesized that the modularity of an ANN should produce

Fig 3. Structural modularity scores for Core Functional Networks (CFNs) (i.e. functional modularity)

sets diffusion networks apart from non-diffusion treatments. (A) Structural modularity Q-Scores for Core

Functional Networks (CFNs) (i.e. functional modularity). (B,C) Scatter plots of functional modularity versus

two quantifiable measures of high performance: Retained Percent and testing fitness.

https://doi.org/10.1371/journal.pone.0187736.g003
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functional modules by facilitating modular learning. The concepts of task-specific localized

learning and modular learning are similar in that they induce task-specific learning in specific

groups of nodes and connections. The difference is that in modular learning the weight change

is induced in a module, while in task-specific localized learning the weight change is induced

within a spatial region of the ANN that may or may not be modular. While task-specific local-

ized learning initiates the process in the experiments in this paper, an argument could be

made that modular learning is also occurring. At some point during task-specific localized

learning, a functional module forms and subsequent learning occurs within it. It is also possi-

ble that evolution sets the stage for the functional modules that emerge during the localized

learning. Investigating the extent to which either mechanism occurs is beyond the scope of

this paper, but is an interesting opportunity for future research.

Previous research has shown that a connection cost can improve performance and evolva-

bility [20, 76], and Ellefsen et al. [16] specifically showed that on a foraging task similar to the

one in this paper. In this work, we do not see a performance difference between a connection

cost (PCC) and not having one (PA). The likely reason is because the problem in this paper is

easier than that in Ellefsen et al. [16] such that PA performs well enough without the extra per-

formance boost typically provided by a connection cost. We made the problem simpler and

more modularly decomposable in order to better encourage the discovery of functional modu-

larity and investigate whether it can aid with catastrophic forgetting.

The task-specific localized learning in this paper was produced by a new learning algorithm

for ANNs called diffusion-based neuromodulation. Diffusion-based neuromodulation is a

Fig 4. Diffusion treatments change only connections that will become the summer and winter

functional modules in those respective seasons, while non-diffusion treatments change either all

connections (PA) or only common connections every season (PCC). Note, weight change is also

occurring in the other connections within range of the points sources, but we plot only connections that

eventually become functional and encode task information. Bars are not statistically compared to one another.

https://doi.org/10.1371/journal.pone.0187736.g004
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form of volume transmission because nodes receive information not from direct connections

from other nodes, but based on their location within an ANN and a concentration gradient of

signaling chemical. Volume transmission can induce elements of modularity as shown by the

functional modules in this work, and the structural modularity of GasNets [77]. Volume trans-

mission, either via a learning signal or an activation signal, could also influence other struc-

tural qualities such as regularity [19, 21] and hierarchy [76]. Regularity means the same

connectivity patterns are reused in an ANN. The effect of those repeated connectivity patterns

is that large groups of nodes receive the same signal. Volume transmission could produce a

similar effect by releasing a chemical signal that can diffuse and excite or inhibit a large group

of nodes simultaneously. Lastly, volume transmission could also induce elements of hierarchy

as shown by the work on diffusion-limited aggregation and its ability to produce fractal-like

patterns known as Brownian trees [78].

The goal of this work is to investigate whether the addition of diffusion to neuromodulation

produces functional modules, and if these functional modules would aid in the mitigation of

catastrophic forgetting. To accomplish this goal we designed a simple modular forgetting task

where we knew the modular decomposition a priori in order to test whether either treatment

would discover it. We also designed the implementation of the diffusion-based neuromodula-

tion to best encourage the expected optimal, modular solution to the problem, in order to see

whether diffusion helps in the case we most expect it should. That included having the concen-

tration gradient of the modulatory chemical be produced by two points sources tied to the feed-

back for the tasks in the multitask problem. These point sources are a simple way to specify a

concentration gradient, but require the experimenter to specify the number, location, and

modulatory signal of these point sources. In future work we will explore how this new approach

can scale to much harder, less hand-designed, problems. One such path is to remove the hand-

placed point sources and evolve the location and connectivity of modulatory nodes that can

release a diffusing modulatory chemical. GasNets evolve the location, connectivity, and diffu-

sion parameters for diffusing nodes [71]. In preliminary experiments for this paper, we found

that it was difficult for evolution to specify the location and connectivity of diffusing, modula-

tory nodes. Evolution would cause many erroneous connections to be fed into the modulatory

nodes, which prevented learning from being task-specific, or modulatory nodes were too close

to each other, which prevent learning from being localized. Future work is required to return

to the question of whether and how well evolution can place diffusing modulatory nodes, or

simplified point sources. Future work could also investigate other methods to produce a modu-

latory concentration gradient. One option is to specify the concentration gradient with a com-

positional pattern producing network (CPPN) [79]. CPPNs can abstract the concentration

gradients of morphogens in order to produce regular patterns of expression. A CPPN could be

evolved to produce a concentration gradient of modulatory chemical for every point within an

ANN. A prior paper on neuromodulation has already shown that a CPPN can specify the learn-

ing rule for connections (i.e. parameters for Hebbian or neuromodulation learning) based on

their geometric positions within an ANN [80].

Our research strategy resembles recent, exciting work on catastrophic forgetting by another

research group. They too first hand-coded elements of a DNN’s modularity in order to investi-

gate whether modular DNNs are less susceptible to catastrophic forgetting when combined

with learning being selectively turned off and on for different tasks. They accomplished the lat-

ter by freezing the weights in a module that learned an initial task and allowed learning to

occur in a second module that could leverage features from the first module [81]. In follow-up

work they harnessed these insights to develop a more automated, elegant, less hand-designed

method [46], which we also envision is possible with diffusion-based neuromodulation.
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Conclusion

Catastrophic forgetting is a major challenge that hinders our ability to produce ANNs and gen-

eral AI that can learn and refine a multitude of different skills and abilities over a lifetime.

Ellefsen et al. [16] proposed that the isolation of task-specific information to functional mod-

ules should help mitigate catastrophic forgetting. To produce functional modules Ellefsen et al.

[16] evolved modular ANNs, via a connection cost, because that would allow for modular

learning; where task-specific learning is turned on and off in different modules. While Ellefsen

et al. [16] showed that modular ANNs suffered less from catastrophic forgetting they did not

see the emergence of different modules for different tasks, or the complete avoidance of cata-

strophic forgetting. In this paper, we have presented diffusion-based neuromodulation and

shown that functional modules for the different tasks appear when task-specific learning

occurs in a local group of nodes and connections (i.e. task-specific localized learning). In our

experiments, such task-specific localized learning results in the complete avoidance of cata-

strophic forgetting. This paper thus confirms the central hypothesis of Ellefsen et al. [16],

which is that localized, task-specific learning can form functional modules and solve cata-

strophic forgetting. Of course, here we have only shown that on a simple problem and simple

ANNs. Future work is needed to test the ability of this mechanism to scale to far more chal-

lenging problems and larger neural networks.

Materials and methods

The experiment details are adapted from Ellefsen et al. [16], which is based in the Sferes 2

framework [82]. Neuromodulation is modeled off the work of Soltoggio et al. [44], and was

adapted for Sferes 2 by Tonelli and Mouret [83]. Network and EA implementation details fol-

low from prior work with Sferes 2 [20, 21, 76]. The software to reproduce these experiments

and analyze the data, as well as the key data from our experiments, can be found at https://doi.

org/10.15786/M21G6W.

Network activation

For all ANNs in this paper, the activation ai of node i is determined by Eqs 2 and 3, where wij

is the weight from node j to node i, bi is the internal bias of node i, and Cn are all non-modula-

tory nodes with direct connections to node i.

ai ¼ �
X

j�Cn

wijaj þ bi

 !

ð2Þ

�ðxÞ ¼
2

1þ e� 32x
� 1 ð3Þ

The relatively high number of 32 in Eq 3 makes the transition in the sigmoid function steep

and behave more like a step function.

Learning rules

For both diffusion-based neuromodulation and standard neuromodulation, the change in a

connection weight wij is determined by the activation of the two nodes it connects, aj and ai, a

learning rate η (0.002 for all experiments), and an external modulatory signal mi (Eq 4). The

modulatory signal mi affects all connections feeding into node i, and can accelerate, dampen,
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or invert learning in those connections.

Dwij ¼ Z �mi � ai � aj ð4Þ

For a node i, in standard neuromodulation, the modulatory factor mi in Eq 4 is obtained by

summing up the activations transmitted to node i through connections originating from mod-

ulatory nodes (Cm) (Eq 5) (Fig 5). For diffusion-based neuromodulation, there are no modula-

tory nodes. The modulatory factor mi of node i depends on the activation, as and aw, of the

summer and winter point sources (Eq 6), and the node’s distance, dis and diw, from the sum-

mer and winter point sources. The summer point source is located at (-3,2) (S1 Fig), and its

activation as is the feedback for the summer season. The winter point source is located at (3,2),

and its activation aw is the feedback for the winter season. If a node is within 1.5 units of dis-

tance from a point source, the strength of the modulatory signal rises according to a Gaussian

function as it gets closer to the source (Eq 7), where σ is 0.5. If the distance of the node is

greater than 1.5 units its modulatory signal is 0.

mi ¼ �
X

j�Cm

wijaj

 !

ð5Þ

mi ¼ �ðasgðdisÞ þ awgðdiwÞÞ ð6Þ

gðxÞ ¼

e� 2

ffiffiffiffiffiffiffiffiffiffi
2s2p
p e

� x2

2s2 if x <¼ 1:5

0 otherwise

8
><

>:
ð7Þ

Fig 5. An illustration of (A) standard and (B) diffusion-based neuromodulation. For both, the activation of node 3 depends

on the activations of nodes 0 and 1 and the connecting weights w3,0 and w3,1 (Eq 3). The changes in weights w3,0 and w3,1 rely

on the sum of modulatory signals received by node 3 (Eq 4). (A) In standard neuromodulation, the modulatory signal comes

from the direct connection from the modulatory node 2 (Eq 5). (B) In the diffusion-based neuromodulation implementation in this

paper, the modulatory signal comes from the concentration gradients released by the point sources. In this example, the

modulatory signal of node 3 is determined by its distance to the summer point source.

https://doi.org/10.1371/journal.pone.0187736.g005
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Evolutionary algorithm

All ANNs are evolved with the probabilistic, multi-objective evolutionary algorithm PNSGA

[20]. PNSGA is an extension of the multi-objective algorithm NSGA-II [84]. In PNSGA each

objective is given a probability that determines how frequently that objective factors into the

selection. For all treatments, both performance and behavioral diversity [85] (described below)

objectives have a probability of 100%, while the connection cost objective has a probability of

75%. The lower probability for connection cost follows from Ellefsen et al. [16], and represents

the notion that a connection cost is likely to be weaker than other selection pressures in nature.

The population size of the EA is 400 and it runs for 20000 generations. 50 independent runs

were done for each treatment.

The behavior of each individual is represented by a vector, and for each food item that is

presented to the individual a 1 or 0 is appended to the behavioral vector depending on whether

the individual ate or not. At the end of the individual’s lifetime, the average Hamming distance

between its behavioral vector and the behavioral vector of every other individual in the popula-

tion is calculated to produce a behavioral diversity score. Individuals whose behavior (i.e.

sequence of eat or not eat actions) is more different from the behavior of others in the popula-

tion get a higher score while individuals whose behavior is similar to others get a lower score.

Following Ellefsen et al. [16], we include behavioral diversity because it helps evolutionary

algorithms avoid local optima [85].

At the start of evolution, all ANNs are fully connected and the initial weights for all connec-

tions are drawn uniformly from the range [-1,1]. The initial bias values for nodes are also

drawn from the range of [-1,1]. To give evolution control over whether a node is modulatory

or not, each node possesses an additional evolved parameter called modul that ranges from

[0, 1]. For non-diffusion treatments, if a node’s modul is below 0.4 then it is modulatory. For

diffusion treatments, because there are no modulatory nodes, the modul parameter does

nothing.

Following Ellefsen et al. [16], the ANNs undergo mutation only and not crossover. For net-

work connections, the probability to add or remove a connection is 20%. Per connection, the

probability of reassigning the source or target of a connection from one node to another is

15% and the probability of changing a weight is 2/n, where n is the number of connections in

the ANN. The probability of changing the bias and modul for each node is 10%. Lastly,

changes in connection weights, biases, and moduls all involve polynomial mutation [86].

Activation Record Knockout (ARK)

The Activation Record Knockout (ARK) algorithm is a simplification and analysis tool based

on the subsets regression on network connectivity (SRC) algorithm [41]. It identifies the nodes

and connections within an ANN that are responsible for its overall behavior in order to sim-

plify it down to a core functional network (CFN). A core functional network is a subnetwork

of the original ANN that possesses at least the same fitness as the original ANN. Aside from

identifying the nodes and connections responsible for overall performance (i.e. a CFN), ARK

can also identify the functional modules within an ANN by identifying the nodes and connec-

tions responsible for particular subproblems. This section focuses on ARK’s implementation

on the ANNs in this paper. For a broader discussion of how ARK could be implemented, spe-

cifically in the identification of functional modules, we refer the reader to the original SRC

paper [41].

For this example, we identify the summer functional subnetwork, which is combined with

the winter functional subnetwork to produce the summer and winter functional modules.

Before the main ARK analysis, the activation of all nodes during the testing phase is recorded
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to create an activation record. The ARK analysis consists of three basic steps that repeat: select

a current node to analyze, calculate the contribution of all connection combinations feeding

into the current node, and then select one of those connection combinations.

To identify the summer functional subnetwork, first, we select the summer output as the

current node (Fig 6). Second, we perform a p-dimensional knockout on all of the connections

feeding into the current node, and then compare the resulting knockout activations to the

original activation to generate a measure of sensitivity. p is the number of connections feeding

into the current node and a p-dimensional knockout means we iterate through all (i.e. 2p)

knockout combinations of incoming connections. We recalculate the activation of the current

node given each knockout combination to produce knockout activations. To assess sensitivity,

which is the effect on the current node’s activation given a combination of its incoming con-

nections, we compute the standard error of regression (SER) between the original activation

(y) and each knockout activation (ŷ) (Eq 8). n in Eq 8 is the length of the activation record,

and the number of different inputs presented to the ANN in a single environment in the test-

ing phase. The ARK table for node o0 (upper left of Fig 6, Iteration 1) shows the different

knockout combinations for node o0 and their resulting SER values.

SER ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼0
ðyi � ŷiÞ

2

n

r

ð8Þ

Each current node has its own ARK table that displays the name of the current node and

the size and SER for all knockout combinations for that node. For each combination, the con-

nections that are not knocked out are counted towards the size of that combination, and indi-

cated by an ‘X’ in the table. The ARK table for the starting node displays the starting node and

error threshold. The error threshold will be discussed shortly, but for all iterations of the ARK

procedure in Fig 6 it is 0.70. Lastly, the combinations are sorted by their SER and in the case of

ties reverse sorted by combination size. Note that the no knockout combination (i.e. neither

Fig 6. The first four steps of the ARK procedure for finding the summer functional network.

https://doi.org/10.1371/journal.pone.0187736.g006
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node 21 or 22 is removed) at the top of the ARK table for node o0 (Fig 6, Iteration 1) should

have a SER of 0, because with no knockout the knockout activation of the current node should

be the same as its original activation. The small but non-zero value is due to floating point pre-

cision errors and is present in ARK tables for all nodes. It will be discussed in relation to the

error threshold.

In the third step of the ARK procedure, we select the smallest combination with a SER less

than or equal to the error threshold. The three basic steps of the ARK procedure then repeat

with new current nodes selected via breadth first search. Fig 6 shows 3 more iterations of the

ARK algorithm given current nodes 21, 22, and 12. In iteration 2 of Fig 6, the empty combina-

tion (i.e. no incoming connections) is chosen because it is the smallest combination with a

SER below the threshold. The selection of the empty combination suggests that node 21 is act-

ing as a bias node. In iteration 4 of Fig 6, the ARK table for node 12 shows that the smallest

combination with an SER less than or equal to the error threshold is the one that removes con-

nections from node 2 to node 12 and from node 7 to node 12. ARK stops once there are no

more nodes to explore.

When ARK stops, the remaining nodes and connections that have not been removed are

designated to be the summer functional subnetwork (Fig 7A). To find the winter functional

subnetwork the ARK procedure is run again, but this time the start node is o1, which is the

output node for the winter season (Fig 7A). Once the winter functional subnetwork is found, it

is combined with the summer functional subnetwork to produce a complete picture of the

functional modules (Fig 7B). If there are any connections in common between the summer

and winter functional subnetworks, then those connections are colored in green and we desig-

nate them as a separate common functional module that encodes information for both seasons.

Following from the prior work on SRC [41], a 1-connection knockout is provided in S3 Fig

that verifies that the functional modules identified by ARK do indeed encode for the summer,

winter, or both seasons.

Lastly, separate from the ARK procedure, a variance analysis is done on the activation of all

nodes in order to identify possible bias nodes, and gain further understanding of how the

ANN works. Any node whose activation has a variance less than 1.0 × 10−9 is deemed to be a

bias node and their outgoing connections are made thin in the CFN visualization (Fig 7C).

Node 21, discussed previously, is confirmed to be a bias node by the variance analysis.

Each CFN requires an error threshold that determines the aggressiveness of the ARK sim-

plification. Higher thresholds result in the pruning of more connections, but can lead to a loss

Fig 7. Combination of functional subnetworks to produce functional modules. (A) ARK identifies the

functional subnetworks for summer and winter, red and blue connections respectively, in an ANN. (B) Non-

functional connections are removed. Functional subnetworks are combined to produce the final functional

modules for summer (red connections), winter (blue connections), and common (green connections). (C) As a

final visualization technique, connections from bias nodes are made thin.

https://doi.org/10.1371/journal.pone.0187736.g007
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in fitness. Low thresholds will preserve the fitness of the original ANN, but can result in a lack

of simplification and insight. For each CFN, we iteratively increase the error threshold (start-

ing at 0 plus the floating point error) by 0.01, and keep the threshold found right before the

CFN starts to lose fitness.

Supporting information

S1 Table. Differences between this work and Ellefsen et al. [16]. Differences prevent direct

comparison between the non-diffusion treatments in this work and the networks in Ellefsen

et al. [16]. Purpose of many of the changes were to make it easier for modular solutions to

appear in order to investigate whether they aid with catastrophic forgetting.

(TIFF)

S1 Fig. Network topology. Individuals in the foraging task are represented as ANNs where

each node possesses an (x, y) position. The first three inputs correspond to food items while

the last two inputs are fed positive (1) and negative (−1) feedback signals for the summer and

winter season respectively. An output greater than 0 results in the agent eating the food item

presented. Two point sources, one for each season, exist at the locations (−3, 2), and (3, 2).

Their activation is synchronized to the positive and negative feedback of the summer and win-

ter season. They affect all nodes within a radius of 1.5 and the modulatory signal of the point

sources increases as a Gaussian as you get closer (Eq 7).

(TIF)

S2 Fig. Plot of all seasonal associations. See main text for description and interpretation. For

further details on seasonal associations see Ellefsen et al. [16].

(TIF)

S3 Fig. A 1-connection knockout in the Core Functional Networks (CFNs) confirms that

ARK properly identifies functional modules. The original summer and winter fitness for all

CFNs is plotted along with the summer and winter fitness after the knockout of a random,

common, winter, or summer functional connection. The original (no connection) and ran-

dom connection fitnesses are provided for comparison. For all treatments, the removal of a

summer (or winter) functional connection only causes a drop in summer (or winter) fitness.

In contrast, the removal of a common functional connection causes a drop in fitness for both

seasons. For non-diffusion treatments, the drop in summer fitness is difficult to see because

non-diffusion treatments do not have much competency (i.e. original fitness) on the summer

task to begin with. The knockout analysis confirms that the summer and winter functional

modules identified by ARK encode for those seasons respectively and that the common func-

tional module identified by ARK encodes for both.

(TIF)

S4 Fig. 20 random CFNs for the best and worst PA_D individuals. Each block contains the

unsimplified version of the individual followed by 20 of its CFNs.

(TIFF)

S5 Fig. 20 random CFNs for the best and worst PCC_D individuals. Each block contains the

unsimplified version of the individual followed by 20 of its CFNs.

(TIFF)

S6 Fig. 20 random CFNs for the best and worst PA individuals. Each block contains the

unsimplified version of the individual followed by 20 of its CFNs.

(TIFF)
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S7 Fig. 20 random CFNs for the best and worst PCC individuals. Each block contains the

unsimplified version of the individual followed by 20 of its CFNs.

(TIFF)
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