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Abstract: For minimizing the transport of antibiotics to groundwater, the migration of antibiotics
in soils should be investigated. Soil organic matter can affect the migration of antibiotics. To date,
the influence of aromatics and aliphatic content of organic matter on the adsorption of antibiotics
has been controversial. To better understand the reaction mechanism of soil organic matter with
antibiotics, this study investigated the adsorption of oxytetracycline (OTC) by humus soils (HOS)
and their fractions. HOS were sequentially fractionated into four organic fractions, including the
removal of dissolved organic matter (HRDOM), removal of minerals (HRM), removal of free fat
(HRLF), and nonhydrolyzable organic carbon (HNHC). Moreover, batch experiments revealed that
adsorption capacity was ordered by HNHC > HOS > HRDOM > HRLF > HRM. SEM images
and N2 adsorption/desorption isotherms indicate that adsorption capacity is independent of the
external structure. However, adsorption capacity is related to the internal structure and composition.
Combination analysis with elemental composition and infrared spectroscopy showed that the
adsorption capacity of HRM, HRLF, and HNHC had a good positive correlation with aromaticity,
but a negative correlation with polarity and hydrophilicity. Additionally, the rule of binding affinity
between OTC and functional groups with different properties was summarized as aromatic > polarity
> hydrophilic.

Keywords: Humus; organic matter fractions; oxytetracycline; adsorption

1. Introduction

Antibiotics are not only used in human medicine for treatment, but also widely used in livestock
feed in recent years [1]. Antibiotics have been extensively detected in soil, overland runoff, underground
water, and sediment [2]. Oxytetracycline (OTC), belonging to the tetracyclines class of antibiotics,
is used in the livestock and poultry industry worldwide owing to its high quality and low price [3].
Since solid retention time is commonly one order of magnitude higher than hydraulic retention time,
certain antibiotics and degradation products might accumulate in the soil, leading to higher soil
concentrations than in raw sewage [4–6]. It was reported that OTC were detected most frequently
in farmland soil of Canada and Britain, at concentrations as high as 513 µg/kg and 1691 µg/kg [6,7]
respectively. The concentration of OTC in the sediments around an aquaculture plant in China was as
high as 300 mg/kg [8]. Antibiotics can not only damage the soil environment, but also affect human
health [9–12]. More importantly, antibiotics are moved with soil water to enter the underground water
and cause pollution. Thus, understanding the migration of antibiotics in soil has significance for the
protection of groundwater.
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The fate of antibiotics in soil are mainly controlled by the adsorption/desorption function of soil.
The adsorption behavior of antibiotics is further affected by clay minerals, metal oxides, and organic
matter in soil [13–15]. Although there is little organic matter in soil, it can strongly affect the fate of
antibiotics in soil [15,16]. Soil is negatively charged owing to organic matter surface contained polar
functional groups, for instance, hydroxyl, carbonyl, and carboxyl. The polar functional groups of
antibiotics can be adsorbed to the surface of the soil through electrostatic interaction [17], hydrogen
bond [18], synergistic interaction, and complexation mechanism [19]. The influences of organic matter
have been extensively reported during the adsorption/desorption process of antibiotics in soil. Many
have found that there is a simple positive relationship between the content of soil organic matter and
adsorption capacity [20,21]. However, Pils et al. [22] found that some soil organic matter could cover
up adsorption points, leading to reduce the absorption of antibiotics in the soil. Therefore, such a
simple positive correlation denotes a lack of rationality. In summary, the previous studies suggested
that organic matter could affect the migration of antibiotics in soil. However, there remains controversy
about the influence of organic matter on antibiotic adsorption at present. Further studies on accurate
feature and mechanism of soil organic matter adsorption/desorption for antibiotics are necessary.

According to solubility, Weber et al. [23] separated soil organic matter operationally into fulvic acid
(FA), humic acid (HA), and humin (HM). The adsorption capacity of hydrophobic organic pollutants are
order: FA < HA < HM [24]. However, the affinity of polycyclic aromatic hydrocarbons for HM is lower
than that for HA [25]. Sun et al. [26] found that nonhydrolyzable organic carbon (NHC) was separated
into kerogen graphitic (KC) and black carbon (BC). The adsorption capacity of Phenanthrene (Phen) by
different fractions of organic matter are: NHC≈BC>KC. Ran et al. [27] further found the adsorption
capacity of Phen by NHC fraction is negative with respect to aromatic carbon content. However,
Jin et al. [28] found aromatic domains of NHCs acted as p-acceptors to promote the adsorption of Phen.
Obviously, for hydrophobic organic pollutants only, the adsorption mechanism is complex. OTC as
hydrophilic organics pollutants contain polar functional groups (e.g., -OH -CONH and -NH(CH3)2),
which make the adsorption process more complex than hydrophobic organic pollutants, but must have
its specific regular. It is necessary to explore different types of regular pollutant adsorption by different
fractions of organic matter. Besides the property of antibiotics and the content of soil organic matter,
the source, fractions, and functional groups of organic matter can affect adsorption. For understanding
the reaction and mechanisms between organic compounds and different fractions of matter organic,
the roles of composition and internal fine structure in their adsorption should be further investigated.

It should be emphasized that the composition and structure of organic matter differs greatly
depending on the soil type [29]. Humus soil (HOS) is a kind of geologically young soil, formed by
dead branches and leaves after long term decay fermentation. Compared to the sedimentary and peat
soils studied previously, the of HOS structure is loose and porous and contains carboxyl, hydroxyl, and
some other functional groups, with a more representative and typical adsorption of pollutants [30,31].
Therefore, the purpose of this study was as follows: (1) HOS was sequentially divided into the removal
of dissolved organic matter (HRDOM), removal of minerals (HRM), removal of free fat (HRLF), and
nonhydrolyzable organic carbon (HNHC) to evaluate different fractions adsorption characteristics and
mechanisms on OTC. (2) Compare and analyze the adsorption relationship of OTC among different
dissolve organic matter (DOM) coming from different soils. (3) Reveal the effect of functional groups
of different fractions on OTC adsorption.

2. Materials and Methods

2.1. Extraction Treatment of Sample

The HOS (original sample) was collected from the 5–15 cm below the ground under the surface
of the shrub along the Weihe river basin (34◦ 23′ 41.86” N, 108◦ 52′ 38.99” E). After removing the
impurities, the HOS was naturally dried in the dark. Then was pestle through a sieve (80 mesh). It was
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sealed and saved at 4 ◦C before used (all the samples were detected without OTC). Figure 1 shows
brief steps [31–33].
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Figure 1. Extraction treatment of the organic matter of humus soil.

The first step was to obtain HRDOM fraction: 30 g of HOS and 300 ml of ultrapure water
were shaken on a shaker for 24 h in an Erlenmeyer flask, and then the solution was centrifuged.
The supernatant was soil dissolved organic matter (DOM), which was saved in the dark at 4 ◦C after
filtering through a 0.45 µm filter. The centrifuged solid was HRDOM fractions after drying.

The second step was to obtain HRM fraction: Firstly, the HRDOM fraction was dissolved in
1 M HCl, shaken for one day, and centrifuged for 30 minutes to remove carbonate. To remove the
silicate, the solid after centrifuge was shaken with a 10% mixture of 1m HCl and HF for 4 days. Finally,
the solid was HRM fraction after centrifuging again and drying.

The third step was to obtain HRLF fraction: The HRM fraction was extracted under ultrasonic
conditions for 15 minutes, and the supernatant was removed by centrifugation. After repeated 5
times, the solid portion obtained was the HRLF fraction. The extract solution was consisted of
dichloromethane and methanol (2:1, V/V).

The fourth step was to obtain HNHC fraction: The HRLF fraction was successively hydrolyzed
with 2M trifluoroacetic acid, 4M and 6MTFA and 6M HCl in Teflon furnace at 100 ◦ C for one day.
Then, the supernatant was removed after centrifugation. The solids are then washed with ultrapure
water to neutrality, which is the HNHC fraction. Fill with nitrogen for not less than 5 minutes before
each hydrolyze.

All shaken parameters were 160 rpm for 24 h and centrifugation parameters were 6000 rpm for
30 min. All sample were dried at 50 ◦C before use. Table 1 shows the total organic carbon (TOC)
content and pH values.

Table 1. TOC and pH of different fractions.

Sample HOS HRDOM HRM HRLF HNHC

TOC (%) 28.956 24.060 47.425 48.389 49.321
pH 5.86 6.91 7.03 6.81 7.02

2.2. Batch Experiment

The batch experiments followed the Organization for Economic Cooperation and Development
method [34]. Under neutral conditions, 0.05 g of different fractions and 5 mL of 10.0 mg/L OTC solution
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at 30 ◦C which shaking at 160 rpm for one day in the dark. The kinetic data were obtained at 2, 4, 8,
12, 20, 24, 28, 36 and 48 h. For adsorption isotherm and thermodynamic experiments, OTC initial
concentrations were between 5 mg/L and 25 mg/L, the OTC solution temperatures were 20 ◦C, 30 ◦C,
and 40 ◦C, respectively. The samples were filtered through a 0.45-µm filter before ultra-performance
liquid chromatography (UPLC). All of the experiments were performed in triplicates.

Batch experiments were performed in the pH range of 2–10 for explore the influence of pH on
OTC adsorption. To explore the influence of DOM types on OTC adsorption, 1 mL exogenous DOM
from decay plant (PDOM) and chicken manure (MDOM) were added into the removal of DOM of
humus and sediment soil for batch adsorption experiments. PDOM and MDOM extraction methods
were consistent with humus soil.

2.3. Sample Analysis

OTC in solution was detected by UPLC. The chromatographic column was ACQUITY UPLC BEH
C18 column (2.1 × 150 mm, 1.7 µm particles). The column temperature was 40 ◦C. Injection volume
was 5 µL and flow rate was 0.2 mL/min. Mobile phase composition was methanol: water = 60:40 (v/v).
The equations of adsorption models of kinetics and isotherm were employed to fit the experimental
data, as shown in Table 2 [35,36].

Table 2. The equations of adsorption models of kinetics and isotherm.

Model Equation Parameters

Pseudo-first-order kinetic Qt = Qe
(
1− e−K1t

) Qt = quantity of OTC adsorbed at any
time t (mg/kg)

Qe = quantity of OTC adsorbed at
equilibrium (mg/kg)

pseudo-second-order kinetic Qt =
K2Q2

e t
1+K2Qet

k1 = pseudo-first-order rate constant
(1/h)

k2 = pseudo-second-order rate
constant (kg/mg h)

Langmuir adsorption isotherm Qe =
QmaxKLCe
1+KLCe

Ce = OTC concentration of solution at
equilibrium (mg/L)

Qmax = maximum adsorbed capacity
(mg/kg)

KL = Langmuir adsorption isotherm
constant (L/mg)

Freundlich adsorption isotherm Qe = KFC
1
n
e

kF = Freundlich adsorption coefficient
((mg/kg) (L/mg)1/n)

1/n = Freundlich index

2.4. Characterization of Different Fractions

Quanta 200 scanning electron microscopy was used to observe the morphology of different
fractions. The pore-size distributions and specific surface areas were analyzed volumetric system
(ASAP 2460, Micromeritics, America) through the nitrogen adsorption/desorption isotherms. Vario
ELIII elemental analyzer was used analysis elemental (C, H, N). The fluorescence spectra (F-7000;
Hitachi, Japan) of DOM were recorded. The excitation and emission wavelengths (Ex and Em) ranged
from 220 to 600 nm and 250 to 600 nm, respectively. The scan rate was 1200 nm/min. The different
fractions were characterized by Tensor 27 infrared spectroscopy. The Elementar Vario TOC was
analyzed TOC.

2.5. Quality Assurance and Control

The calibration curve was prepared by more than seven standard solutions in the linear
range. The linear range of OTC test was 1–100 mg/L. The detection limits of quantification were
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0.051–0.057 mg/L, while relative deviations were 2.6%–10.8%. Recoveries of the OTC were determined
in the range of 79% and 113%. OTC were not detected in the blank sample, so the data were reliable.

3. Results and Discussion

3.1. Adsorption Studies

3.1.1. Adsorption Kinetic

As shown in Figure 2, the adsorption rate of HRM, HRLF, and HNHC were significantly higher
than that of HOS and HRDOM. This may be due to the presence of DOM and inorganic minerals so that
further adsorption requires greater activation energy, and the adsorption rate becomes slow. However,
HRM, HRLF, and HNHC are removed of minerals, lipids, carbohydrates, and other pollutants which
can quickly reach the adsorption equilibrium. The specific amounts of five fractions were calculated as
the equation listed below:

qt =
(C0 −Ct

m

)
V (1)

where qt (mg/kg) is the quantity of OTC adsorbing onto different fractions at a predetermined time, Ct

(mg/L) is the instantaneous concentration of OTC in solution at time t (h).
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Figure 2. Adsorption characteristics of OTC by different fractions.

The corresponding fitting parameters are listed in Table 3. The smaller the residual sum of
squares (RSS/dof), the better the model fits. Hence, the equilibrium adsorption capacity (Qe, cal) of the
pseudo-second-order kinetics model is close to the actual equilibrium adsorption capacity (Qe, exp).
The K values of adsorption by HRM, HRLF, and HNHC are significantly larger than those of HOS and
HRDOM, which may be related to the microstructure of different fractions.

Table 3. The adsorption kinetics model fitted parameters.

Samples Qe,exp
(mg/kg)

Pseudo-First-Order Model Pseudo-Second-Order Model

R2 K1
(1/h)

Qe,cal
(mg/kg) RSS/dof R2 K2

(kg/mg·h)
Qe,cal

(mg/kg) RSS/dof

HOS 842.10 0.8182 0.4020 807.58 381.18 0.9648 0.0007 872.29 73.73
HRDOM 732.78 0.8876 0.2697 704.68 281.80 0.9748 0.0005 779.05 63.09

HRM 553.14 0.8566 0.6527 536.78 51.52 0.9909 0.0022 561.32 3.26
HRLF 587.04 0.8817 0.6360 570.89 50.25 0.9952 0.0020 597.27 2.02

HNHC 849.83 0.7613 0.9189 821.57 78.81 0.9575 0.0027 844.86 14.03
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3.1.2. Adsorption Isotherms

The non-linear fitting of Langmuir and Freundlich model to isothermal adsorption data is shown
in Figure 3 and Table 4. All samples are fitted well with the Freundlich model by considering lower
Akaike’s information criterion (AICc) [37]. The degree of nonlinearity and difficulty of adsorption
both have negative correlations with the value of 1/n. The values of 1/n range from 0.37 to 0.63, which
indicate an obvious non-linearity process for the OTC adsorption by different fractions in humus
soil. HNHC is speculated to be the most likely component for OTC adsorption, followed by HOS,
HRDOM, HRLF, and HRM. In addition, generally, the adsorption capacity has a positive value of
KF [38]. Therefore, the adsorption capacity of each fraction is ordered: HNHC > HOS > HRDOM >

HRLF > HRM.
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Table 4. The fitted parameters for Langmuir isotherm model and Freundlich isotherm model.

Samples
Langmuir model Freundlich Model

Qm
(mg/kg)

KL
(L/mg) AICc RSS/dof KF (mg/kg)

(L/mg) 1/n AICc RSS/dof

HOS 2697.61 0.5906 34.86 721.41 1061.04 0.4469 31.46 365.88
HRDOM 2576.05 0.2231 34.28 642.38 600.81 0.4947 31.31 355.11

HRM 1687.53 0.0918 26.00 122.61 218.91 0.6364 25.02 100.83
HRLF 2377.73 0.1062 27.83 176.73 263.77 0.5940 25.99 122.54

HNHC 2737.76 0.6032 30.58 306.79 1083.64 0.3798 30.23 285.59

3.1.3. Adsorption Thermodynamic

The thermodynamic characteristics of OTC adsorption can help to further understand the trend
and extent of OTC adsorption by different fractions. The thermodynamic parameters can be calculated
as following equations:

∆G = −RTlnK0, (2)

lnK0= −
∆H
RT

+
∆S
R

(3)

where ∆G, ∆H and ∆S are standard free energy change (kJ/mol), standard enthalpy change (kJ/mol),
and standard entropy changes (J/mol k), respectively. R is the universal gas constant (8.314 J/mol k)
and T is the temperature (◦C). K0 is the thermodynamic equilibrium constant. The parameters are
listed in Table 5. The values of ∆G are range from –9.67 to –22.33 kJ / means that the adsorption of



Int. J. Environ. Res. Public Health 2020, 17, 914 7 of 17

OTC is spontaneous by different fractions at different temperatures. The ∆G values are increased with
removal of DOM. The presence of DOM can prevent macromolecules from occupying adsorption sites
on the soil surface. In addition, studies have shown the value of ∆G is –20~0 kJ/mol meaning physical
adsorption. The chemical adsorption is –80~–400 kJ/mol [39]. However, the value of ∆H between 12.98
to 99.26 kJ/mol suggests that the adsorption of OTC by different fractions is endothermic. Increasing
the temperature can promote adsorption. More heat is needed for chemical adsorption than physical
adsorption, so the adsorption of OTC by different fractions is not simple physical adsorption. The value
of ∆H of HRDOM, HRM, and HRLF are lower than HOS and HNHC, which implies that there is weak
bonding between the OTC and HRDOM, HRM and HRLF. The positive ∆S value indicates that the
adsorption is an entropy increasing reaction, which means it is likely that the adsorption of OTC may
occur in the different fractions of an internal structure [40].

Table 5. The parameters of adsorption thermodynamics.

Samples T (◦C) lnK0 ∆G (KJ/mol) ∆H (KJ/mol) ∆S (KJ/mol)

HOS
20 5.26 −12.81

91.86 0.357230 6.49 −16.90
40 7.67 −19.33

HRDOM
20 4.84 −11.80

12.98 0.087130 5.94 −14.96
40 6.16 −16.03

HRM
20 3.97 −9.67

36.40 0.157830 4.68 −11.79
40 4.92 −12.80

HRLF
20 4.46 −10.86

30.61 0.141930 5.01 −12.62
40 5.26 −13.69

HNHC
20 5.96 −14.52

99.26 0.386330 6.57 −16.55
40 8.58 −22.33

3.1.4. Comparative Study

Compared with the sedimentary soil previously studied by our team was found that the adsorption
capacity of different source of organic matter were different (Table 6). OTC adsorption capacity of
humus soil was much larger than sedimentary soil [31]. This is verified by lower 1/n values and more
negative ∆G. It was also found the adsorption capacity of humus soil to OTC was reduced, and the
adsorption capacity of sediment soil was increased after removing endogenous DOM. The reason for
this may be that different types soil have different functional groups.

Table 6. Comparison of the OTC adsorption by different soil organic matter.

Extraction Treatment of Sample

Qe, exp (mg/kg) Freundlich Model
Parameter (1/n)

Thermodynamics
Parameter (∆G, 40 ◦C)

Sediments
Soil

Humus
Soil

Sediments
Soil

Humus
Soil

Sediments
Soil

Humus
Soil

Original soil 111.50 842.10 0.6199 0.4469 −8.48 −19.33
Removal of DOM 238.07 732.78 0.8386 0.4947 −10.53 −16.03

Removal of minerals 60.28 553.14 0.7716 0.6364 −5.16 −12.80
Removal of free fat 100.8 587.04 0.7338 0.5940 −9.06 −13.69

Removal of sugar and protein 219.15 849.83 0.8569 0.3798 −10.93 −22.33
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3.2. Effects of External Factors

3.2.1. Effect of pH on Adsorption

From Figure 4, we found the pH conditions can affect the adsorption of fractions other than HNHC.
In general, OTC is amphoteric so that OTC exhibits different electrical properties at different PH
values [41,42]. Furthermore, when the pH > pHzpc, the surface of the soil is negatively charged. On the
contrary, the surface of soil surfaces is positively charged [43,44]. The pHzpc of different fractions was
5.12~5.65. When the pH is under 3.00, the dimethyl ammonium group was protonated and exists as an
OTCH3

+. The different fractions are positively charged. The decreases of adsorption capacity since the
rejection of the charge reduces the contact of the OTC with different fractions. Similarly, when the pH
is above 7.00, OTC exists as OTCH− or OTC2− owing to the loss of protons and different fractions being
negatively charged. Therefore, the adsorption capacity decreases. Between pH 3.3 and 7.7, because
of phenolic diketone moiety loss of proton, it exists as OTCH2

0. DOM can affect the adsorption of
OTC through hydrophobic partitioning, complexation, and hydrogen bonding. Hence, the effects of
PH on HOS and HRDOM are consistent [45]. It has been known that the zero charge point of most
aluminosilicate minerals is around pH 3.00 [46]. Therefore, when the pH is lower than 3, there is no
longer electrostatic repulsion between HRM and OTC. Fatty acid, polysaccharides, and protein have
lots of oxygenous functional groups, which can compete for adsorption sites [47,48]. Therefore, the
adsorption amount of HRLF for OTC is higher than HRM.
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3.2.2. Effect of DOM on Adsorption

Endogenous DOM in different types of soil has opposite effects on the adsorption of OTC. Adding
two types of exogenous DOM into removal of endogenous DOM of humus (HR) and sedimentary
soil (SR). The results are shown in Figure 5. It was reported that PDOM (from decay plant) mainly
contains humic-like substances and MDOM (from chicken manure) mainly contains protein-like
substances [49]. It can be seen that the presence of PDOM enhances the adsorption of soil to OTC in all
concentrations. However, the adsorption capacity of OTC by two soils is decreased with the increasing
MDOM concentration.



Int. J. Environ. Res. Public Health 2020, 17, 914 9 of 17
Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 9 of 17 

 

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

O
TC

 (m
g/

kg
)

 SR-PDOM       HR-PDOM

 SR-MDOM      HR-MDOM

DOM (mg TOC/L)  
Figure 5. Effects of different DOM types on the adsorption of OTC in humus (HR) and sediment (SR) 
soil. 

The location and meaning of fluorescence peaks are investigated by many studies (Figure 6) [50–
55]. Different peaks of endogenous DOM extracted from humus and sedimentary soil can be 
identified by three-dimensional fluorescence spectra. The endogenous DOM of humus soil (Figure 
6a) has a high strength H3 peak at Ex/Em = 340/430, which is assigned to a lot of humic-like substances. 
Inversely, the endogenous DOM of sedimentary soil (Figure 6b) has two P2 peaks atEx/Em = 280/320 
and a high strength peak at Ex/Em = 230/320, which are assigned to a lot of protein-like substances. 
Hence, the DOM of humus soli can promote the adsorption of OTC, while sedimentary soil does the 
opposite. 

300 350 400 450 500 550 600
200

250

300

350

400

Em(nm)

Ex
(n

m
)

-35.00

98.75

232.5

366.3

500.0

 

(a) 

300 350 400 450 500 550 600
200

250

300

350

400

Em(nm)

Ex
(n

m
)

-35.00

173.8

382.5

591.3

800.0

 

(b) 

Figure 6. The 3D fluorescence spectra of DOM: (a) humus soil; (b) sedimentary soil. 

3.3. The Role of Internal Structure and Composition 

3.3.1. Morphology and Specific Surface Area Characteristics 

The micro-structure of humus soil in different fractions of organic matter was recognized using SEM. 
Figure 7 shows the micro-structure features of HOS, HRDOM, HRLF, and HNHC with 10μm under 
5000 times. It can be seen that HRDOM have a rougher surface and more microporous structure than 
HOS, while adsorption capacity is reduced. Although HRM have more pore structures generated 
after the removal of minerals, the adsorption capacity is the lower than other fractions. The number 
of pores of HRLF decreases, but the adsorption capacity increases, as opposed to HRM, which may 
be caused by more adsorption sites after the removal of free fat. The pore structure of HNHC almost 

Figure 5. Effects of different DOM types on the adsorption of OTC in humus (HR) and sediment
(SR) soil.

The location and meaning of fluorescence peaks are investigated by many studies (Figure 6) [50–55].
Different peaks of endogenous DOM extracted from humus and sedimentary soil can be identified by
three-dimensional fluorescence spectra. The endogenous DOM of humus soil (Figure 6a) has a high
strength H3 peak at Ex/Em = 340/430, which is assigned to a lot of humic-like substances. Inversely,
the endogenous DOM of sedimentary soil (Figure 6b) has two P2 peaks atEx/Em = 280/320 and a
high strength peak at Ex/Em = 230/320, which are assigned to a lot of protein-like substances. Hence,
the DOM of humus soli can promote the adsorption of OTC, while sedimentary soil does the opposite.
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3.3. The Role of Internal Structure and Composition

3.3.1. Morphology and Specific Surface Area Characteristics

The micro-structure of humus soil in different fractions of organic matter was recognized using
SEM. Figure 7 shows the micro-structure features of HOS, HRDOM, HRLF, and HNHC with 10µm
under 5000 times. It can be seen that HRDOM have a rougher surface and more microporous structure
than HOS, while adsorption capacity is reduced. Although HRM have more pore structures generated
after the removal of minerals, the adsorption capacity is the lower than other fractions. The number of
pores of HRLF decreases, but the adsorption capacity increases, as opposed to HRM, which may be
caused by more adsorption sites after the removal of free fat. The pore structure of HNHC almost
disappeared and the surface is smooth, but the adsorption amount is much larger than other fractions.
With the sequential removal of DOM, minerals, and free fat, more effective adsorption domains in
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HNHC were exposed, so the adsorption sites blocked or occupied become accessible for the adsorption
of OTC. These phenomena indicated that the adsorption capacity of different fractions to OTC is not
completely dependent on the rough surface and microporous structure. In order to further verify this
conclusion, the different fractions of organic matter were determined by BET (Table 7, Figure 8).
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Table 7. Physical properties of different fractions.

sample HOS HRDOM HRM HRLF HNHC

Surface Area m2/g −0.1983 ± 0.2634 0.5712 ± 0.8463 5.2148 ± 3.2002 137.5180 ± 125.9391 −0.3817 ± 0.5365
micropore volume

cm3/g 0.007275 \ \ \ 0.002181
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The organic matter of each fraction of the humus soil has a very smaller specific surface area
than porous materials which have strong adsorption capacity. Among them, HRDOM, HRM, and
HRLF are all undetected micropore volumes, while HOS and HNHC only have very small micropore
volume. From Figure 8, the adsorption capacity of N2 by each fraction showed a downward trend



Int. J. Environ. Res. Public Health 2020, 17, 914 11 of 17

as a whole. This is because the interaction between adsorbate molecules is stronger than between
the adsorbate and adsorbent. It is further proven that a specific surface area of different fractions of
organic matter are too small to purely physically adsorb. Except for HOS and HNHC showing a small
amount of adsorption capacity under high relative pressure (P/P0), the remaining fractions have hardly
the ability to physically adsorb OTC. It follows that the adsorption capacity is independent on the
external structure. The adsorption capacity of different fractions of organic matter to OTC depends
more on surface specific functional groups than surface area.

3.3.2. Adsorption Site Distribution Characteristic

The theory of site energy distribution can provide an adsorption amount of the adsorbent surface
site and the corresponding fractional function [56]. The humus soil in various states based on Freundlich
model is shown in Figure 9. According to the solubility of OTC, the relative adsorption energy E*
values of OTC in the experimental concentration range are in the range of 16.758–31.851 kJ·mol−1.
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From Figure 9 it can be seen that the site energy distribution function decays rapidly by an
exponential function. The adsorption sites of OTC in the HNHC fraction are distributed in the high
energy region evenly, while the HRM and HRLF fractions are distributed in the low energy region
evenly. In HOS and HRDOM fractions, the adsorption sites of OTC are distributed with a poor
uniformity. The high energy adsorption sites of different fractions are covered by OTC in the low
concentration range, thereby increasing the uniformity of surface organic matter. When adsorbed
in a high concentration range, the organic matter of each fraction has a strong adsorption capacity
for OTC, and there exist few high-energy adsorption sites. The adsorption process mainly occurs in
the low energy region. Within a certain range, the area under the site energy distribution curve can
be interpreted as the maximum number of sites available for adsorption. Therefore, OTC has more
adsorption sites in the HNHC fraction, followed by HOS, HRDOM, HRLF, HRM. This indicates that
the adsorption capacity of each fraction is ordered as: HNHC > HOS > HRDOM > HRLF > HRM. This
result is in good accordance with the obtained data from the isothermal adsorption model.

3.3.3. The Role of Functional Groups

Before and after the adsorption of OTC, the changes of infrared spectra are shown in Figure 10.
(1) The Si-O-Si stretching vibration peak of 872 cm−1 disappears or decreases in HOS and HRDOM
samples, and the bending vibration peaks of Si-O in the vicinity of 790 cm−1, 520 cm−1, and 460 cm−1

show displacement in different degrees, which indicates that the complexation or coordination may
have occurred, and the interaction intensity of HOS and HRDOM are different; (2) For all fractions, the
C-O stretching vibration absorption peak is near 1020 cm−1 and the C=C telescopic vibration peak
located at 1600–1635 cm−1, while the shifts and vibration intensity also changed in different degrees.
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In other words, the charge transfer, coordination, or complexation with different effects are produced;
(3) The O-H bending vibration peaks of HOS and HRDOM around 1400 cm−1 almost disappear in HOS
and weakened in HRDOM, indicating that hydrogen bonding is occurred; (4) Owing to the association
between the -OH molecules, which are named hydrogen bonds, the -OH near 3300 cm−1 stretching
vibration absorption peak shifts downward and the peak shape of varied degrees of changes. The peak
shape of HRM, HRLF, and HNHC become sharp significantly, showing that the intensity of hydrogen
bonding between the fractions and OTC is different. Further, after OTC adsorption at each fraction,
the peak intensity of the 400–1600 cm−1 region also changes, which further indicates the interaction
with OTC molecules varied.
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Figure 10. The infrared spectra of different fractions: (a) before adsorption; (b) after adsorption. 
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The atomic ratio about H/C, (N+O)/C and O/C indicate the aromatics, polarity, and hydrophilicity
of different fractions, respectively (Table 8).

Table 8. Elemental composition of different humus fractions.

Samples C% H% N% O% TOC (%) H/C O/C (N+O)/C Kd

HOS 26.05 3.19 1.95 30.81 28.96 1.47 0.89 0.95 381.20
HRDOM 27.03 3.40 1.73 32.39 24.06 1.51 0.90 0.95 194.48

HRM 47.06 4.70 2.92 39.72 47.43 1.20 0.63 0.69 67.05
HRLF 47.78 4.81 3.01 41.08 48.39 1.19 0.63 0.68 93.36

HNHC 49.23 4.24 1.75 38.18 49.32 1.03 0.58 0.61 425.59

According to Figure 11 and Table 8, It can be seen that aromaticity, polarity and hydrophilicity
all effect the adsorption capacity. For the fractions of HRM, HRLF, and HNHC based organic matter,
the adsorption coefficient Kd has a good positive correlation with aromaticity, while it has a negative
correlation with polarity and hydrophilicity. HNHC has the largest adsorption capacity because of its
highest aromaticity and lowest hydrophilicity and polarity. HOS and HRDOM have inorganic minerals
which can influence adsorption. Therefore, although HOS and HRDOM have lower aromaticity and
higher polarity than HRM, HRLF, and HNHC fractions, they still show a good adsorption capacity.
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Figure 11. Relationship between adsorption coefficient Kd of HRM, HRLF and HNHC and H/C,
(N+O)/C, O/C.

A schematic diagram for the binding affinity of aromatic, polar, and hydrophilic functional
groups to OTC is established according to infrared spectra and elemental analysis (Figure 12). Using
the sequential order rules, the sequence of functional groups in the interaction process of organic
matter with OTC is in the order of the aromatic functional groups, i.e., C=C, phenolic and aliphatic
> the polarity groups, i.e., carboxyl and carbonyl > the hydrophilic functional groups, i.e., hydroxyl
and amino.
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This study is significant to control antibiotics migration to groundwater. However, due to
pollutants in the environment such as antibiotics, heavy metals, and hydrophobic organic pollutants,
it is necessary to further research composite pollutants adsorption feature by different fractions.
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4. Conclusions

This work identifies the relationship between humus soil organic matter and adsorption feature
of OTC. The HNHC fraction has the largest adsorption capacity due to containing more aromatic
functional groups than other fractions, and controls the fate of antibiotics in the soil environment.
Therefore, it is one of the most important factors that must be paid attention to when studying the fate
of antibiotics in soil. The following conclusions are drawn:

1. Sorting of adsorption capacity for each fraction as: HNHC> HOS> HRDOM> HRLF> HRM.
This rule is verified by the theory of site energy distribution.

2. After removing the endogenous dissolved organic matter, the adsorption capacity of humus soil
is decreased while sedimentary soil is increased. This is due to DOM in humus soil containing
a large amount of humic-like substances, while the DOM in sedimentary soil contains a large
amount of protein-like substances.

3. For the fraction based organic matter (HRM, HRLF and HNHC), the adsorption capacity has
a positive correlation with aromaticity, while it has a negative correlation with polarity and
hydrophilicity. The OTC affinity of corresponding functional groups is in the order of aromatic>

polarity> hydrophilic.
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Abbreviations

OTC Oxytetracycline
Phen Phenanthrene
HOS Humus soil
HRDOM Removal of dissolved organic matter
HRM Removal of minerals
HRLF Removal of free fat
HNHC nonhydrolyzable organic carbon
FA Fulvic acid
HA Humic acid
HM Humin
KC kerogen graphitic
BC black carbon
TOC The total organic carbon
UPLC ultra-performance liquid chromatography
PDOM Dissolved organic matter from decay plant
MDOM Dissolved organic matter from chicken manure
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