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Using an Artificial Neural Bypass 
to Restore Cortical Control of 
Rhythmic Movements in a Human 
with Quadriplegia
Gaurav Sharma1, David A. Friedenberg2, Nicholas Annetta1, Bradley Glenn3, 
Marcie Bockbrader4,5, Connor Majstorovic1, Stephanie Domas1, W. Jerry Mysiw4,5, Ali Rezai4,6 
& Chad Bouton1,†

Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand 
movements in a paralyzed person. However, cortical control of rhythmic movements which originate 
in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal 
cord has not been demonstrated previously. Here we show a demonstration of an artificial neural 
bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing 
volitional rhythmic hand movement. The technology uses a combination of signals recorded from the 
brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a 
neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass,  
a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger 
movements, using his thoughts alone. These results have implications in advancing neuroprosthetic 
technology to restore complex movements in people living with paralysis.

Neuroprosthetics aim to restore or substitute for a lost function such as motion, hearing, vision, cognition, or 
memory in patients suffering from neurological disorders. Current neuroprosthetics systems have successfully 
linked intracortical signals from electrodes in the brain to external devices including a computer cursor, wheel-
chair and robotic arm1–11. Recently, a neuroprosthetic bridge that bypassed the injury of the spinal cord was devel-
oped to link intracortical signals to a neuromuscular electrical stimulation (NMES) system and enable cortical 
control of discrete hand movements to a paralyzed person12. However, cortical control of more complex rhythmic 
or oscillatory movements that normally require involvement of the spinal cord has not been demonstrated by 
current neuroprosthetics technologies.

We hypothesized that one of the reasons for this limitation is the fact that while many rhythmic activities, such 
as breathing, walking/running, stirring, teeth-brushing, scratching, or playing a musical instrument, are initiated 
in the brain but they also require further downstream coordination in the spinal cord. Networks of neurons in the 
spinal cord known as Central Pattern Generators (CPGs) are responsible for producing the rhythmic activities 
(for a review see ref. 13). CPGs integrate input signal from the brain with sensory feedback from the limbs to 
produce rhythmic movements. Considerable progress has been made in understanding the behavior of biological 
CPGs by studying isolated spinal cords in animals (for a review see ref. 14) and using electrical stimulation of 
the spinal cord to further characterize the properties of the CPGs15–17. Researchers have also developed mathe-
matical models of CPGs18,19 that can generate rhythmic/oscillatory output. These models have been successfully 
applied in simulation studies of animal and human movements20–23, rehabilitation of paralyzed limbs24,25 and 
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robotics26–28. However, the next step, i.e. the translation from simulation to practical demonstration of real-time 
cortical control of rhythmic movements in paralyzed limbs has so far been elusive.

To emulate the spinal cord CPG function which facilitates rhythmic movements, we implemented a numerical 
model for a CPG oscillator and linked it to neural decoding algorithms and a cortically-controlled NMES system. 
(Supplementary Figure S1 shows the block diagram of the system). We analyzed cortical signals using a wavelet 
transformation of the data that represented multi-unit activity recorded from a 96-channel multi-electrode array 
(MEA) implanted in the motor cortex of a human with tetraplegia. We show that the cortical activity patterns for 
imagined rhythmic flexion/extension movement differ from activity patterns for imagined discrete flexion and 
extension movements. The wavelet transformed data were input into a Support Vector Machine (SVM)-based 
neural decoder that could discriminate between brain activity associated with the participant’s desire to perform 
rhythmic versus discrete movements. Decoded cortical signals were then used to drive the virtual CPG oscillator 
which in turn controlled the NMES to stimulate the paralyzed muscles and generate movements thereby bypass-
ing the injured spinal cord. Figure 1a,b shows the experimental neural bypass system in use by the participant. 
Figure 1c,d show examples of raster histograms from one discriminated unit (channel 7 unit 1) with response to 
attempted thumb movements and the corresponding wavelet processed neural data showing average mean wave-
let power (MWP). Using this technology, we have demonstrated for the first time an artificial neural bypass can 
be used to allow a paralyzed person to perform both discrete and complex rhythmic movements years after injury.

Results
CPG model generates rhythmic output. To develop a virtual CPG oscillator capable of generating 
rhythmic/oscillatory outputs, we carried out simulation studies in MATLAB based on Eqs 1–6 (see Methods) 
describing the two-neuron oscillator model as described by Matsuoka18 in which the two neurons (the extensor 
neuron and the flexor neuron) are interconnected in a mutually inhibitive network (Fig. 2a). The parameters 
used for the model were identified using a genetic algorithm and are listed in Supplementary Table 1. Figure 2b 
shows the output from the virtual CPG oscillator which was used to control the NMES system, generating stable, 

Figure 1. (a) Experimental neural bypass system in use with the participant (seated in a wheelchair) in front 
of a table with a computer monitor. The neuromuscular electrical stimulation sleeve is wrapped around the 
participant’s forearm; (b) Close up view of the participant’s hand showing the colored cots on the fingers. An 
additional cot was placed on a plastic cylinder extending out past the participant’s thumb (referred to as the 
“sixth finger”). A stereo camera was positioned above the participant’s hand to track movement in 3 dimensions. 
The color of the cot on the thumb was used to identify thumb movement and locate it in three-dimensional 
space with the “sixth finger” serving as the reference point; (c) Examples of rasters histograms from one 
discriminated unit (channel 7 unit 1) with response to attempted thumb movements. The participant was 
presented with cues to attempt thumb flexion, thumb extension, and rhythmic thumb wiggle. Each cue was 
presented for a random duration of 2.5–4.5 s followed by a random 2.5–4.5 s rest period. We presented 6 trials 
of each in random order. Each dot in the raster represents a spike, and each row of spikes represents data from 
one trial. All trials were aligned on cue presentation (time 1 s, red dashed line). (d) Wavelet processed neural 
data from channel 7 corresponding to the same movements in panel c showing the mean wavelet power (MWP) 
averaged over the trials in dark blue with a confidence interval of ±1 S.D. around the mean shown in grey.
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rhythmic oscillations at 2.5 Hz using the following parameters: τ 1 (0.10), τ 2 (0.20), β (8.44), μ 21 (4.94), μ 12 (6.00) 
and, c (50.6).

Neural activity is distinct for imagined rhythmic versus discrete movements. To investigate the 
changes in neural modulation for imagined rhythmic versus discrete movements we first carried out experiments 
to analyze neural activity patterns for three trained movements (discrete flexion, discrete extension and rhythmic 
wiggle) of the thumb and wrist. Motor cortical neural activity was continuously recorded as the participant was 
cued to imagine one of the three trained movements interleaved with rest periods. Cues were delivered by an ani-
mated virtual hand on the computer monitor. MWP was estimated from the cortical neural activity as described 
in Methods. Representative heat maps of the normalized MWP for each channel overlaid on the physical layout 
of the array clearly shows the distinct spatial distribution of the neural activity for the imagined rhythmic and 
discrete movements of the thumb and wrist (Fig. 3).

We also calculated the correlation coefficient between the cue and the MWP on each channel for each motion 
(Fig. 4). The correlation was significantly different (p <  0.05) on 65 out of 96 channels when the participant 
imagined the rhythmic thumb wiggle compared to when he imagined thumb flexion and on 67 out of 96 channels 
for imagined rhythmic thumb wiggle compared to imagined thumb extension (Fig. 4a). Similarly, the correlation 
was significantly different (p <  0.05) for imagined wrist wiggle on 67 out of 96 and 74 out of 96 channels com-
pared to imagined wrist flexion and extension respectively (Fig. 4b). Indeed the MWP on some channels was not 
only highly correlated (correlation coefficient > 0.3) for rhythmic movement but was also negatively correlated 
with either the discrete flexion or extension movement. Figure 4c shows the modulation in MWP on a few repre-
sentative channels showing distinct modulation for imagined wiggle compared to imagined extension and flexion 
of the thumb and wrist. It also appears that there are group of channels (for example channel #7, 77, 85, 87, 90) 
that modulate more when the participant is attempting a rhythmic movement compared to a discrete movement 
irrespective of the joint (thumb or wrist).

Distinct neural activity leads to differential cortical control of rhythmic and discrete thumb 
movements. We next trained the neural decoders to distinguish brain activity between movements. 
Decoders were trained for a given movement by asking the participant to attempt the three cued thumb/wrist 
movements interleaved with rest periods. This full set of data was used as input for training and generating the 
neural decoders. An example of neural decoder training trials is shown in Supplementary Figure S2.

To investigate if the cortically-controlled NMES system could differentially control both discrete flexion/
extension movements and more complex, rhythmic movements, we next carried out experiments to test the sys-
tem’s ability to evoke these movements on cue. For this experiment we focused on analyzing discrete and rhyth-
mic thumb movements as the overhead mounted stereo camera could reliably track movements of the thumb 
compared to wrist. Test blocks were performed consisting of six trials of each of the three trained movements 
(discrete thumb flexion, discrete thumb extension and rhythmic thumb wiggle) presented in random order with 

Figure 2. (a) A two-neuron oscillator based on the Matsuoka neural model. Neural decoder output 
corresponding to the rhythmic thumb wiggle was fed as an input to the neuron oscillator model. The output 
from the oscillator is linked to NMES for stimulating the extensor and flexor muscles controlling the thumb 
movement; (b) Output of the neural oscillator, yout, showing oscillatory behavior with a frequency of oscillation 
at 2.5 Hz.
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Figure 3. Neural activity is distinct for imagined rhythmic movement. (a) Neural firing pattern (as 
represented by the average normalized MWP power for each move) overlaid on the physical layout of the 
electrode array shows changes in neural activity while imagining rhythmic/CPG wiggle compared to discrete 
flexion and extension. The normalized mean wavelet power is in units of standard deviations away from a 
baseline non-movement period of rest.

Figure 4. Correlation between neural activity and cue. (a,b) Correlation coefficient between neural activity 
and cue vector was calculated for each motion for each array channel and shows the change in modulation 
levels on certain channels when imagining wiggle compared to flexion and extension. (c) Modulation in neural 
activity on a few representative channels clearly shows distinct neural modulation on these channels when 
imagining rhythmic wiggle compared to discrete flexion and extension of the thumb and wrist. Data shown 
ranges from 0.3 seconds before the cue to 2.5 s after the cue ended.
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a rest period between each movement. Cortical activity was continuously decoded using the trained decoders as 
the participant attempted either the cued movement or rest, as described above.

Neural decoder output corresponding to the rhythmic thumb wiggle was used to trigger the virtual CPG 
oscillator, which used the identified parameters to generate the oscillatory output used by the NMES for real-time 
stimulation of alternating extensor and flexor muscles in the participant’s forearm resulting in a rhythmic thumb 
wiggle. Neural decoder output classified as either a discrete flexion or discrete extension was fed to the NMES 
for real-time stimulation of muscles controlling either thumb flexion or extension respectively. Representative 
data, including modulation of MWP (before and after stimulation begins), decoder outputs, and corresponding 
movement state are shown in Fig. 5a. MWP increases after stimulation begins due to residual stimulation artifact 
(see Methods). However, since the neural decoders were trained with MWP data from before and during stimu-
lation, the neural decoders were not only able to recognize the correct imagined movement to initiate stimulation 
but also the participant’s desire to sustain and subsequently terminate the target movement. The participant was 
able to successfully initiate, sustain, and complete distinct flexion, extension and wiggle movements through his 
thoughts alone (see Supplementary Video 1). Figure 5b shows the movement state output (as measured by the 
distance of the thumb from a reference point “sixth finger”, see Methods) generated using finger motion tracking 
for each movement. Successful discrete flexion/extension and rhythmic wiggle movement attempts can be seen 
in the figure. An unsuccessful attempt where the participant was unable to correctly initiate rest after a cued 
flexion can also be seen between 57–60 s. Table 1 shows that performance accuracy, sensitivity, and specificity for 
the trained movements are high. Using the system, the participant achieved an overall accuracy of 77.4 ±  0.9% 
(mean ±  s.d., p <  0.01) across all states of rest, wiggle, extension and flexion. See Supplementary Video 2 showing 
the participant attempting discrete flexion/extension and rhythmic wrist movements.

Figure 5. CPG task performance. (a) Subfigures show heat maps of MWP representing processed signals from 
the microelectrode array, neural decoder output scores (dashed line), and physical thumb movements (solid 
line), as detected by a computer-based video classification algorithm. Of the three simultaneously running 
decoders, the output score from the one with the highest amplitude greater than zero was used to turn on/
off the stimulation. The vertical white line marks when the decoder crosses zero and the stimulation is turned 
on. MWP increases during stimulation due to residual stimulation artifact (see Methods). The MWP plot is 
therefore split into two areas with two different color scales (one each for pre- and post-stimulation patterns) to 
facilitate better visualization of these patterns. The neural decoders are robust to any stimulation induced effects 
as they not only recognize the correct imagined movement to initiate stimulation but also continue to recognize 
the participant’s desire to sustain and subsequently terminate the stimulation-induced movement. Trial data 
shown ranges from 0.3 s before the cue to 2.5 s after the cue ended. A 1 s boxcar filter is applied to the MWP 
data causing a delay of ~0.5 s. The MWP is in units of standard deviations away from a baseline non-movement 
period. Only decoder outputs greater than zero are shown for visual clarity; (b) shows the results from finger 
motion tracking for each motion: thumb flexion (F), thumb extension (E), thumb wiggle (W) and a rest (R) in 
between each motion obtained from the 3D stereo camera mounted overhead. The output is measured as the 
distance of the finger from a reference point (“sixth finger”, see Methods).
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Discussion
Ability to generate rhythmic motion is a fundamental and necessary skill for humans that is needed for a variety 
of tasks including locomotion (walking/running), breathing, scratching, swimming etc. In this study, we iden-
tified and decoded signals recorded from the primary motor cortex of a quadriplegic human to control a virtual 
CPG oscillator which was then linked to a NMES system to allow volitional control of both rhythmic and discrete 
movements in the thumb and wrist. Our results show that: (1) stable rhythmic oscillations can be generated using 
a virtual CPG oscillator, (2) neural activity in the motor cortex is distinct for imagining rhythmic movements 
compared to discrete movements, (3) neural decoders can be trained to successfully classify imagined rhythmic 
versus discrete movements, and (4) the decoded neural activity in combination with the CPG oscillator and 
NMES can differentially enable rhythmic versus discrete movements in a paralyzed joint.

The CPG oscillator model we used to generate oscillatory/rhythmic patterns is based on the biologically-inspired  
two-neuron oscillator as described by Matsuoka18 in which the two neurons (the extensor neuron and the flexor 
neuron) are interconnected in a mutually inhibitive network (Fig. 2a). A constrained optimization search rou-
tine was used in order to identify the parameters for the CPG oscillator that can generate stable oscillations at a 
desired frequency upon receiving a tonic input from the brain. The CPG oscillator is capable of generating oscil-
latory output, the amplitude and frequency of which can be independently controlled by tuning the parameters; 
more specifically the amplitude is positively correlated to the tonic input c, the frequency is positively correlated 
to the adaptation coefficient β and negatively correlated to the time constants τ 1 and τ 2. For this study, however, 
we did not attempt to control the amplitude and frequency of oscillation and instead selected parameters that 
can generate stable oscillations at 2.5 Hz (Fig. 2b). This frequency was selected due to hardware and software 
limitations as the rate at which the neuromuscular stimulator could be updated was limited to 10 updates/s, and 
the muscles required approximately 0.2 s of continuous stimulation of the stimulation pattern in order to achieve 
measureable deflection of the thumb. Similarly the output amplitude of the CPG oscillator was discretized, which 
was used to trigger the maximum flexion/extension stimulation of the joint in order to achieve the maximum 
deflection that was physically possible for the thumb or wrist.

We next investigated if neural activity is distinct for imagined rhythmic versus discrete movements. The 
cortico-spinal tract neurons in layer V of the primary motor cortex (M1) can be divided into two general types 
- those that connect to spinal interneurons for CPG-driven movement and those that connect directly with mus-
cles and are called the cortico-motoneuronal (CM) cells. Previous work in rhesus monkeys has shown that CM 
neurons in M1 make monosynaptic connections with motoneurons of shoulder, elbow, and finger muscles for 
highly skilled movements29. Other researchers also correlated CM cell and muscle activity, supporting the idea of 
a direct connection30. These previous findings suggest that different neural modulation patterns should occur in 
the motor cortex for CPG-driven rhythmic activity compared to slow/discrete type movement of fingers that are 
controlled through a direct cortico-motoneuronal connection. Indeed we observed significant differences in neu-
ral modulation when the study participant was asked to follow visual cues to imagine rhythmic wiggle compared 
to discrete flexion or extension of the thumb or wrist. Qualitatively, the spatial distribution of neural activity, as 
shown by the MWP, indicated that the neural activity patterns were not only different (more spatially distrib-
uted across the array) but also the neural modulation appeared to be stronger when the participant was asked 
to imagine rhythmic movement compared to discrete movements (Fig. 3). The increased spatial distribution of 
neural modulation while imagining higher frequency rhythmic activity is not surprising as it has been shown in 
humans that during rhythmic activities, such as locomotion, the size of the activated area in the motor cortices 
changes with walking speed31. The measured correlation coefficient between the cue and the corresponding neu-
ral activity for each channel on the array indicated that the neural activity was significantly different on a large 
number of channels when the participant imagined the rhythmic movement compared to discrete flexion/exten-
sion movements (Fig. 4a,b). More importantly the neural activity on some channels was not only highly corre-
lated (correlation coefficient > 0.3) for rhythmic movement but was also negatively correlated with either discrete 
flexion or extension movements. In particular the modulation in neural activity on channel #7, 85 and 87 (for 
thumb) and channel #55, 85, and 87 (for wrist) clearly shows distinct neural modulation when imagining rhyth-
mic wiggle compared to discrete flexion and extension (Fig. 4c). Our observation that there appear to be group 
of channels that modulate more when the participant is imagining a rhythmic movement compared to a discrete 
movement irrespective of the joint (thumb or wrist) is consistent with previous findings which indicated that 
there are group of neurons in the motor cortex that are specifically tuned for CPG-driven rhythmic activity29,30.

To assess the ability of the system to restore rhythmic and discrete movements, we focused on three thumb 
movements (rhythmic wiggle, thumb extension and thumb flexion) that were both impaired by the participant’s 
injury and reactivated by stimulation of forearm muscles. We used SVM-based machine learning algorithms to 
train and develop neural decoders that discriminate between the neural modulation patterns associated with 
different imagined movements. SVM is an excellent tool for neural decoding applications and has been used suc-
cessfully to decode neural activity for neuroprosthetics-related applications12,32. During the test period, the output 

Movement Thumb Wiggle Thumb Extension Thumb Flexion

Accuracy 91.5 +  0.6% (p <  0.01) 90.9 ±  0.6% (p <  0.01) 84.6 ±  0.8% (p <  0.01)

Sensitivity 96.4 ±  1.0% 62.1 ±  2.6% 94.0 ±  1.3%

Specificity 90.6 ±  0.7% 96.4 ±  0.4% 82.9 ±  0.8%

Table 1.  Accuracy, Sensitivity and Specificity of cortically-driven and NMES-generated upper limb 
movements.
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of the neural decoders in conjunction with the CPG oscillator was linked to the encoders for NMES of the mus-
cles to enable volitional control of the desired movements in real time. Using the system the participant was able 
to successfully initiate, sustain and complete the desired rhythmic and discrete movements using his thoughts 
alone (Fig. 5). The neural decoders not only recognize the correct imagined movement to initiate stimulation but 
also continue to recognize the participant’s desire to sustain and subsequently terminate the stimulation-induced 
movement (see Supplementary video 1 showing the participant attempting the three movements along with the 
corresponding neural activity modulation and decoder outputs). The participant was able to achieve an overall 
accuracy of 77.4 ±  0.9% as measured by an automated computer-based evaluation of video frames of thumb 
movements. The overall accuracy is lower than the individual accuracies because it accumulates the errors for 
each of the three individual movements. Additionally, the computerized system for movement analysis (video 
classifier) was designed to be able to detect different movements at the same time. For instance, at the beginning 
of a thumb wiggle, it is difficult to distinguish a wiggle from flexion or extension until the thumb has started 
moving back and forth. Similarly, a thumb flexion is difficult to distinguish from a wiggle in the first few frames 
of video until it is clear that the thumb is staying in the flexed position. When conflicts like this occurred, the 
overall detected move was decided by the video classifier with the highest output and could be error prone for the 
first few frames of movement. Errors in classification resolved after a few frames of motion as the computerized 
detection algorithm was able to confirm the presence or absence of oscillatory motions over time.

In conclusion, we showed that a human with quadriplegia can regain a lost function of the spinal cord by using 
an intracortically controlled neural bypass technology to volitionally control rhythmic and discrete movements. 
Our system, while invasive, provides an advantage over other strategies that are based on fixed oscillators imple-
mented in the hardware to generate rhythmic movements21,33–35. These systems lack the important functionality 
to include the participant’s own intention to control his/her movements. One of the limitations of our current 
system is the lack of sensory feedback and its integration in the system. While it is known that CPGs can function 
without sensory feedback, sensory feedback can make the CPGs adaptive to changes, which is important for 
applications such as locomotion. Our CPG oscillator has the ability to include sensory feedback as an input and 
we envision incorporating sensory feedback information in future improvements to the system by using sensors 
placed on joints in the re-animated limb to sense and correct deviations from expected behavior. This will also 
improve the overall robustness and usability of the system for neuroprosthetics-related applications. Another 
limitation of our study is that we did not attempt to independently control the amplitude and frequency of rhyth-
mic movements. As mentioned earlier it was due to the limitation of the maximum thumb deflection that can be 
physically achieved as well as hardware and software limitations. However, by using a biologically-inspired CPG 
oscillator we have designed a modular system that can be easily adjusted to control both amplitude and frequency 
by altering the relevant parameters based on the decoded neural modulation.

Our results have significant implications for the development of the next generation of upper or lower limb 
neuroprosthetic devices that can enable a paralyzed individual to perform tasks that involve both discrete and 
rhythmic movements. The results also have broader implications in the area of neurorehabilitation, and in par-
ticular, hand movement recovery and gait training post stroke and traumatic brain injury. For example, reports 
in the literature have indicated that rhythmic movements such as those generated during treadmill training can 
significantly enhance functional motor recovery following spinal cord lesions36,37 possibly due to changes in the 
reflex pathways to the pattern generating neurons in the spinal cord38. Similarly, evidence points to the idea that 
physical exercise, including those that involve repetitive or rhythmic regimes, can promote functional recovery 
after stroke39,40 possibly due to promotion of neuroplasticity in the motor cortex41,42. It was also recently shown 
that using an electroencephalography (EEG)-based BCI training can induce superior associative learning dur-
ing rehabilitation leading to improved hand functions in chronic stroke patients43. It stands to reason therefore, 
that, a rehabilitation regime involving non-invasive BCI technology driving rhythmic limb movements in stroke 
patients can further increase the efficacy of neurorehabilitation as it will not only increase the repetition cycles 
but can also drive neuroplasticity as it will require active learning involving different group of neurons in the 
motor cortex. The technology presented here demonstrates what is possible in the future and can offer hope for 
movement restoration and rehabilitation to people living with paralysis worldwide.

Materials and Methods
Approval for this study was obtained from the US Food and Drug Administration (Investigational Device 
Exemption) and The Ohio State University Wexner Medical Center Institutional Review Board (Columbus, 
Ohio). The study met institutional requirements for the conduct of human subjects and was registered on the 
ClinicalTrials.gov website (Identifier NCT01997125, Date: November 22, 2013). All experiments were performed 
in accordance with the relevant guidelines and regulations set by the Ohio State University Wexner Medical 
Center. The participant referenced in this work provided permission for photographs and videos and completed 
an informed consent process prior to commencement of the study.

Surgical Procedure. Surgery to implant the electrode array was performed as described in Bouton et al.12. 
Briefly, the study participant had complete, non-spastic quadriplegia subsequent to traumatic cervical spine 
injury sustained 4 years prior while diving. His injury was complete, with an overall neurologic level of C5 AIS 
A with zone of partial preservation for motor function to C6 bilaterally according to the International Standards 
for Neurological Classification of Spinal Cord Injury (ISNCSCI)44. The patient underwent a left frontoparietal 
craniotomy for implantation of the microelectrode array into the arm area of his motor cortex. The arm area of 
motor cortex was identified preoperatively by fusing fMRI activation maps obtained while patient attempted 
arm movements to the preoperative planning MRI12. Intraoperative navigation system was used to plan the cra-
niotomy. Prior to opening the dura, we utilized electrical stimulation to induce contralateral arm movement, 
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confirming the correct location. The array was then implanted into the cortex using a pneumatic inserter. The 
pedestal was tunneled under the skin to a posterior exit point. Reference wires were placed subdurally as per the 
manufacturer guidelines.

System architecture and signal processing. The system consists of three main components: (i) 
Blackrock microsystem’s Neuroport was used to acquire the neural data being recorded from the implanted 
array, (ii) A PC running custom neural decoding and encoding algorithms to first analyze the digitized data to 
determine which motion was being imagined and then encoded back into electrical pulses in order to evoke the 
desired response from the muscles in the forearm, and (iii) A custom high-definition neuromuscular stimulator 
which drives the stimulation sleeve wrapped around the forearm of the participant. Figure 1a,b shows the setup 
of the system and the stimulation sleeve.

Signal collection and processing were performed as described in Bouton et al.12. Briefly, intracortical signals 
were recorded and decoded in real-time. A 0.3 Hz 1st order high pass and a 7.5 kHz 3rd order low pass Butterworth 
analog hardware filter was applied to the data, and each of the 96 channels of the microelectrode array were sam-
pled at a rate of 30 kHz. Multiunit activity (rather than sorted individual units) were used for decoding due to the 
increased stability of these signals (across the 96 channels) in chronic applications12,45. A wavelet decomposition 
was applied to the neural data, using the ‘db4’ wavelet and 11 wavelets scales46. The coefficients of scales 3 to 6, 
corresponding to the multiunit frequency band spanning approximately 234 to 3750 Hz, were then standard-
ized per channel, per scale, by subtracting the mean and dividing by the standard deviation of those scales and 
channels during an initial rest period at the beginning of the training period. The four scales are then combined 
by averaging the standardized coefficients for each channel, resulting in 96 values for every 100 ms of data. The 
resulting values were then used as features, termed mean wavelet power (MWP), to train the decoders and as 
inputs to the decoders running in real-time.

The signal processing and decoding/control algorithms were all run on a PC using MATLAB (ver 2012a). 
The digitized data from the Neuroport was processed every 100 ms. Stimulation artifact in the data was detected 
by looking for a threshold crossing at 500 μ V that occurred simultaneously on at least 4 of 12 randomly selected 
channels. A 2.5 ms window of data around each detected artifact was then removed and adjacent data segments 
were rejoined to prevent discontinuities. This approach removes a large portion of the artifact, while preserving 
87.5% of the original data. Residual artifact remained, however, due to the Neuroport amplifiers recovering from 
a brief period of saturation after each stimulation pulse, which led to increased MWP. The decoders were trained 
with data both from the period before and during stimulation to accommodate this residual artifact and allow the 
user to initiate and sustain the correct movement.

Participant Sessions and neural decoder training. The study sessions with the participant were typi-
cally conducted three times per week, lasting approximately 3–4 hours. Stimulation patterns were first calibrated 
for the desired movements of the thumb and wrist. Decoders were trained for a given movement by asking the 
participant to imagine mimicking hand movements cued to him by an animated virtual hand on a computer 
monitor. The cued movements corresponded to discrete extension, discrete flexion and rhythmic wiggle. Each 
movement cue was directly followed by a cue to rest and the duration of the movement and rest cues was ran-
domly selected between 2.5 and 4.5 s. The ordering of the movement cues was randomly shuffled so the partic-
ipant could not anticipate the next cue. The neural decoders were trained in training blocks, each consisting of 
multiple repetitions of each desired motion. This full set of data was used as input for training a nonlinear Support 
Vector Machine (SVM) algorithm, to generate a robust set of decoders. A decoder for each motion (against all 
other motions and rest) was built using a nonlinear Gaussian radial basis function kernel47 to process this full set 
of data and a non-smooth SVM algorithm that uses sparsity optimization to improve performance32. During the 
test period, all decoders ran simultaneously and the decoder with the highest output score above zero was used 
to drive the NMES.

In order to quantify thumb movements and measure performance, colored finger cots were placed on the 
participant’s hand during testing. For added sensitivity in detecting movements involving the wrist (used as ref-
erence), an additional cot was placed on a plastic cylinder extending out past the participant’s thumb. We refer 
to this as the “sixth finger” (see Fig. 1b showing test setup). A Bumblebee®2 stereo camera (Richmond, Canada) 
was positioned above the participant’s hand to track movement in 3 dimensions. The color of the cots was used to 
identify the thumb and locate it in three-dimensional space using a combination of custom code and OpenCV48. 
The location of the thumb relative to the sixth finger was then fed into a classifier that used the same decoding 
algorithm as the neural decoding but set up to determine thumb movement, termed the video classifier. The video 
classifier was trained using video data collected at 12 frames/s using scripted stimulation for the moves of interest. 
Scripted stimulation is a series of predefined stimulation patterns that is used to evoke a known response, without 
the participant having any control. Overall accuracy for the video classifier was calculated as the fraction of video 
classifier outputs that match the cue for each frame of video. A permutation test was performed by comparing 
the observed data to data with shuffled labels49. Sensitivity was defined as the proportion of movement cues that 
were identified correctly and specificity was defined as the proportion of rest cues that were identified correctly. 
To account for reaction and system lag time the video decoder data was shifted by 1.2 s.

CPG oscillator. The CPG oscillator to generate oscillatory/rhythmic patterns is based on a two-neuron oscil-
lator model as described by Matsuoka50 in which the two neurons (the extensor neuron and the flexor neuron) are 
interconnected in a mutually inhibitive network (Fig. 2a).

The oscillator network can be expressed by a series of ordinary differential equations (ODEs)50,51:
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where xi is the membrane potential of the i-th neuron, vi represents the membrane current, β is the adaptive gain 
for the self-inhibition of neurons, and c is the external input. τ 1 and τ 2 specify the time constants for adaptation, 
μij is the weight for the interaction between the neurons, yi is the neuronal output, and yout is the output of the 
oscillator.

In addition, to produce stable oscillations the following rules must be satisfied50:

β β+
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However the set of parameters that can generate stable oscillatory behavior for a desired frequency are not known. 
Therefore a constrained optimization routine using genetic algorithm was set up using Matlab (Mathworks, 
Natick, MA) to search for parameters that generate the desired oscillation frequency. There parameters were then 
used to solve for the ODEs above to generate the CPG output. (see Table S1, Supplementary Information for the 
list of parameters and corresponding results for frequency of oscillation).

Stimulation. Neuromuscular electrical stimulation was provided through the use of a custom-made 
high-definition sleeve as described in Bouton et al.12. Briefly, the desired movement was evoked by the stimu-
lator providing electrical stimulation through the electrodes on a sleeve wrapped around the participant’s fore-
arm. The sleeve contains 130 electrodes and hydrogel disks (Axelgaard, Fallbrook, CA) of 12 mm diameter. The 
center-to-center spacing of the electrodes is 22 mm along the long axis of the forearm and 15 mm in the trans-
verse direction. Electrical stimulation was provided in the form of current-controlled, monophasic rectangular 
pulses of 50 Hz pulse rate and 500 μ s pulse width. For each movement, a stimulator calibration was performed to 
determine the appropriate spatial electrode pattern by using a trial-and-error method. The output score of each 
movement decoder is between − 1 and 1. When the output score of a movement decoder exceeded zero, the sys-
tem enabled stimulation for that movement. If the output scores of multiple movement decoders exceeded zero 
simultaneously, then the system enabled the movement with the highest decoder score.

Code availability. The MATLAB code used to generate the CPG rhythmic patterns from neural signal input 
can be made available to qualified individuals upon request.
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