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PDX models recapitulate the genetic and epigenetic
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Abstract

We compared 24 primary pediatric T-cell acute lymphoblastic
leukemias (T-ALL) collected at the time of initial diagnosis and
relapse from 12 patients and 24 matched patient-derived xeno-
grafts (PDXs). DNA methylation profile was preserved in PDX mice
in 97.5% of the promoters (q = 0.99). Similarly, the genome-wide
chromatin accessibility (ATAC-Seq) was preserved remarkably well
(q = 0.96). Interestingly, both the ATAC regions, which showed a
significant decrease in accessibility in PDXs and the regions hyper-
methylated in PDXs, were associated with immune response, which
might reflect the immune deficiency of the mice and potentially
the incomplete interaction between murine cytokines and human
receptors. The longitudinal approach of this study allowed an
observation that samples collected from patients who developed a
type 1 relapse (clonal mutations maintained at relapse) preserved
their genomic composition; whereas in patients who developed a
type 2 relapse (subset of clonal mutations lost at relapse), the
preservation of the leukemia’s composition was more variable. In
sum, this study underlines the remarkable genomic stability, and
for the first time documents the preservation of the epigenomic
landscape in T-ALL-derived PDX models.
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Introduction

Despite recent improvements in the treatment of pediatric T-ALL

(Hunger & Mullighan, 2015), this type of leukemia still represents

a major clinical challenge, because relapsed T-ALL face a dismal

prognosis inferior to this of B-cell leukemia (Nguyen et al, 2008;

Van Vlierberghe et al, 2008; Dores et al, 2012; Locatelli et al,

2012; Girardi et al, 2017). The development of novel treatment

strategies requires a comprehensive understanding of disease

biology and valid preclinical models. Despite important limita-

tions of patient-derived xenografts (PDXs) such as clonal selec-

tion during propagation in immunodeficient mice (Hidalgo et al,

2014), PDX models are indispensable to study biology of

leukemia in vivo and to test novel molecular-targeted therapeu-

tics (Hidalgo et al, 2011; Frismantas et al, 2017). Further, the

speed of engraftment has been shown to correlate with progno-

sis, thus highlighting the value of xenotransplanted cells to

reflect important clinical variables (Lock et al, 2002; Frismantas

et al, 2017).

It has been shown that PDXs of precursor B-cell ALL, acute

myeloid leukemia (AML), and T-ALL retain their leukemogenic

profile regarding immunophenotype, chromosomal aberrations,
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transcriptome, and minimal residual disease (MRD) marker expres-

sion (Woiterski et al, 2013; Wang et al, 2017). Cellular barcoding

has been used to investigate the clonal evolution of precursor B-cell

leukemia cells in PDXs, demonstrating that several individual clones

can engraft and expand independently (Belderbos et al, 2017). In

T-ALL, primary and PDX cells were reported to be generally stable

at the genomic level (Wang et al, 2017), although the PDX material

more closely resembled the relapsed leukemias rather than the

pattern observed in initial disease, which suggested that the PDX

maneuver selects for subclones that may later give rise to the

relapse (Clappier et al, 2011). Extensive genomic studies of BCP-

ALL showed that PDXs mirror the clonal composition of the original

leukemia samples, including from MRD samples, with the exception

of losses and gains of alternations in RAS pathway genes, which is

also frequently observed in relapsed ALL (Fischer et al, 2015; Fris-

mantas et al, 2017). Moreover, PDX models of ALL served for iden-

tification of a rare subpopulation that resembled relapse-inducing

cells whose gene expression profile was similar to primary cells

isolated from patients at MRD (Ebinger et al, 2016).

Whereas PDX models of leukemia are well-characterized with

respect to genomic and transcriptomic features, not much is known

about the degree of preservation of the epigenetic profiles in PDX

models. We have thus performed a detailed multilevel genomic and

epigenomic analysis of primary T-ALL and matched primary PDX

samples taken at the time of initial diagnosis and at relapse and find

a remarkable genomic and in particular epigenomic stability of pedi-

atric T-ALL when propagated as PDX. While most of the variability

affects single nucleotide variants (SNV) that occur at low allele

frequency, in many cases the PDX model truly reflects even the

leukemia’s subclonal composition and clonal hierarchy.

Results

PDXs largely preserve genetic alterations and the subclonal
architecture of patients’ leukemia

We transplanted into NOD/SCID/IL2k-receptor null (NSG) mice a

total of 24 matched samples obtained from 12 patients at the time of

initial diagnosis and at relapse. These samples were compared to

the respective primary material of the patients (summary of the

samples and performed analyses to be found in Dataset EV1). SNP

fingerprinting showed that all PDX samples matched the original

patients’ samples (Appendix Fig S1). On the basis of characteristic

expression profiles of the samples propagated in PDX, we classified

patients into the following subgroups: TAL1/2 (n = 5), TLX1/3

(n = 3), HOXA (n = 1), NKX2-4/5 (n = 2), and LMO2 (n = 1;

Fig 1C). In addition, we confirmed the breakpoints of the fusions in

the genomic DNA in six of 12 primary leukemia samples either by

Sanger sequencing (Appendix Fig S2; three patients) or by MLPA

analysis for SIL-TAL1 fusions (Dataset EV2a; three patients). In all

of these cases, the driving event was identified in the primary

samples obtained at initial disease and relapse, and also in the

corresponding PDX sample.

We analyzed the genomic stability of the PDXs by comparing

SNVs/InDels (Fig 1A and B) and CNA patterns (Fig 1C). 72% (512)

of the total 712 SNVs and InDels that were detected in patients’

samples were also detected in the corresponding PDXs (all SNVs/

InDels with corresponding AF are listed in Dataset EV2b). Clonal

mutations with allele frequencies (AF) ≥ 30% were almost comple-

tely (93%) conserved in the PDX samples, whereas subclonal SNVs

with an AF < 30% were more frequently absent in PDX samples

(194 out of 371, 52%; Fig 1B). The proportion of SNVs preserved

was higher at initial disease (175/213; 82%) compared to relapse

(337/499; 68%), although this difference was mainly driven by a

single relapse sample from patient P1 where one subclone with 98

mutations with an allele frequency below 20% did not engraft

(Appendix Fig S3).

Thirty (86%) of the 35 large CNAs, identified by low-coverage

WGS, spanning from several Mb up to entire chromosomes

(Appendix Fig S4), could also be detected in the corresponding PDX

models (Fig 1C). Independent CNA analysis with multiplex ligation-

dependent probe amplification (MLPA), allowing higher sensitivity

for detection of known CNAs, was performed in 17 regions, cover-

ing 16 T-ALL-related genes (Dataset EV2a). This analysis shows that

PDXs retained 96% (80/83) of the deletions and amplifications

present in the primary patient samples.

Altogether, 20 out of 24 PDXs preserved all clonal mutations

(AF ≥ 30%) detected in the patients’ leukemia (Fig 2A). Interest-

ingly, out of the 19 samples with at least one subclone (defined by

mutations with an AF < 30%) in the primary sample, in 17 samples

at least two clones were detected in the corresponding PDX model.

The mean AF of the preserved mutations was slightly higher in PDX

models (38%) than in the patients’ samples [33%; P < 0.0001 (Wil-

coxon)], which indicates enrichment of either leukemia cells or of

particular subclones in the PDX. Moreover, a Pearson’s correlation

coefficient of 65% between AF of mutations detected in patients’

samples and in PDXs suggests that clonal hierarchy expressed as a

proportion of the cells that carry particular SNV/InDel was well

preserved in the PDXs (Fig 2B). An overview of the fraction of

preserved mutations for each of the samples is shown in Dataset

EV3.

Primary T-ALL cells can engraft in defined modes that depend on
the subclonal architecture

We have next focused on the comparison of engraftment patterns

between patients who later developed either a type 1 (all clonal

mutations detected at the time of initial disease maintained at

relapse) or a type 2 (a subset of clonal mutations detected at initial

disease lost at relapse) relapse (Kunz et al, 2015) and hypothesized

that the clonal complexity of the initial T-ALL in patients who later

developed a type 2 relapse may be less well preserved in the PDX

than in patients who later developed a type 1 relapse. In these

groups of patients, we were particularly interested in whether the

clonal composition (SNVs/InDels with AF ≥ 30%) and the clonal

architecture (selection/eradication of specific subclones/clones) are

preserved. In all of the patients who later developed a type 1

relapse, the clonal SNVs found in the primary initial sample could

also be detected with an allele frequency of ≥ 30% in the corre-

sponding PDXs [patients: mean AF 46.5% (SD: 12.6%); PDXs: mean

AF 46.3% (SD: 13.8%)].

By contrast, in seven patients who later developed a type 2

relapse, the engraftment pattern of the samples obtained at the time

of initial disease was more variable. The genomic complexity of

these samples was only maintained in two of seven corresponding
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PDXs (P1 and P8; Fig 2), whereas in five of seven PDXs, the clonal

composition or architecture was remodeled. Of these five models,

three (P2, P10, and P12) preserved all clonal mutations

(AF > 30%). However, the actual AF varied between the primary

and the PDX samples likely reflecting clonal selection (Fig 2: blue;

for details, see Dataset EV2b). In two of these PDX models (P7 and
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Figure 1. PDX models recapitulate genomic features of the corresponding patients’ leukemias.

A Total number of SNVs/InDels (allele frequency ≥ 20%) detected in primary samples (x-axis) plotted against the number of SNVs/InDels detected in corresponding PDX
samples (y-axis); R²—coefficient of determination.

B Number of preserved SNVs/InDels (black bars) and those that were not detected in PDX models (gray bars) in relation to their allele frequencies (AF); %—fraction of
preserved mutations.

C Large (> 1 Mb) CNA (amplifications, shades of violet; deletions, shades of red) identified by low-coverage whole-genome sequencing in each of the patients and
corresponding PDXs.
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Figure 2. Engraftment mode (A—concordant; B—discordant) correlates with the type of relapse.

A Allele frequencies (AF) of mutations detected in primary (PRI) patients’ samples (x-axis) at initial diagnosis (INI) and relapse (REL) plotted against AF of corresponding mutations
detected in matched PDX models (y-axis) for type 1 relapse (left) and type 2 relapse patients (right); black—mutations preserved between primary and PDX; blue—mutations
selected for/against in PDX models; green—relapse-specific mutations selected for in INIPDX, absent or detected with a very low AF in primary patients’ diagnosis sample;
orange—subclonal mutations lost in PDX; red—clonal mutations lost in PDX; gray—mutations, in which AF was affected by low blast content (BC) at relapse).

B Allele frequencies of all mutations preserved between primary patients’ samples (x-axis) and PDX samples (y-axis); PCC—Pearson’s correlation coefficient.
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P10), we detected mutations that were acquired at the time of

relapse in the original sample (Fig 2: green). This finding indicates

that the clone responsible for the relapse was already present at a

subclonal level at initial diagnosis but could not be detected at an

average read depth of 50× at that time. Finally, two of these models

(P6 and P7) did not preserve some alterations (SNVs and large dele-

tions of chr7&10) found in the primary initial leukemia. These muta-

tions were not detected at relapse either, which may indicate that

they represent passenger mutations. Alternatively, these mutations

may have been present in subclones that were selected for in the

progression of the major population prior to diagnosis, but were

disfavored by both treatment and engraftment, leading to selection

for an “earlier” divergent subclone.

On the other hand, the genomic composition of relapse

samples was much better maintained in corresponding models of

all five patients who had developed a type 1 relapse and in four

of seven patients with a type 2 relapse. Altogether, in 10 out of

12 PDXs of relapse, all clonal mutations that were found in

patients’ samples were also detected in the corresponding PDX

(Fig 2). Notably, in cases with low blast content in the primary

sample (P4, P5, and P10), the PDX enriched for leukemia cells,

thus facilitating a representative analysis (Fig 2). Finally, in two

PDXs of relapsed leukemia, one of two clones detected in the

patients’ samples was selected for in the PDX, while the other

one was lost (P6 and P12). The absence of the variants in the

matched PDX models was confirmed by Sanger sequencing for a

subset of five mutations in STAT5B (N642H), DNM2 (R199Q),

FOXO3 (R211Q), PIK3CA (R1023Q), and MAP1B (T908K;

Appendix Fig S5A).

PDX-specific mutations

In 10 of 24 PDXs, we detected a total of 38 SNVs and three InDels

with an AF > 10% that were not detected in the patients’ samples,

neither at initial diagnosis nor at relapse (Dataset EV2c). None of

these genes was recurrently mutated. Four of the mutations were

previously reported in the COSMIC database, one of which was a

known activating variant of NOTCH1 (L1585P; Breit et al, 2006),

which is concordant with a previous report showing that PDX

often contain additional mutations in established human oncoge-

nes and/or tumor suppressor genes (Clappier et al, 2011).

However, allele frequencies of the PDX-specific variants co-occur-

ring in the same model were constant, which indicates that the

variants were carried by the same clone. Therefore, we suggest

that these variants tend not to be truly acquired during the xeno-

transplantation maneuver, but were likely present in the original

patient’s sample, but at an AF below the detection limit of our

analysis and were likely selected in the PDX. We did not observe

any CNA to be acquired during the process of engraftment. The

absence of mutations in NOTCH1, SGCE, WDR88, MAST3,

PCDH15, and COL6A3 in the primary leukemias (P1INI, P5INI,

P10INI, P10REL, and P12REL) was validated by Sanger sequencing

as shown in Appendix Fig S5B.

DNA methylation is stably propagated in PDX models

We used Illumina 450k and 850k arrays to analyze DNA methyla-

tion in the 22 of 24 paired samples for which DNA was available

and observed that the use of the two different types of arrays did

not introduce any bias (Fig EV1). Compared to patients’ samples,

the global promoter methylation profiles in the PDXs were almost

identical (Appendix Fig S6). Similarly, unsupervised hierarchical

clustering based on the average degree of methylation of the 1,000

most variable promoters suggested a high degree of relationship

between the patients’ leukemias and the corresponding PDX models

and indicates that the data are not confounded by murine contami-

nation (Fig 3A). The only exception, the relapse sample of patient

P4, which did not cluster together with the sample obtained at the

time of initial disease, could be explained by the low blast content

of the relapse sample of only 8% indicating that the PDX maneuver

enriched for leukemia cells from a background of normal cells.

The degree of promoter methylation in patients’ samples plotted

against the degree of promoter methylation in PDX samples con-

firmed the high concordance between the two groups [PCC (Pear-

son’s correlation coefficient) = 0.9938; Fig 3B], although a slight

trend for increased methylation levels of the promoters could be

observed in the PDX models [P = 0.1531 (Wilcoxon rank-sum test)].

Altogether, we found 2.5% of all the analyzed promoters to be

recurrently differentially methylated (Dataset EV4), which is in

agreement with previous reports (Guilhamon et al, 2014; Tomar

et al, 2016). Moreover, we found the expected negative correlation

between the blast content and the total number of differentially

methylated promoters (b value difference of at least 0.2) of �88%

(PCC). Thus, the higher proportion of differences in relapse samples

(Fig EV2) can largely be explained by a lower blast content (mean:

69%; SD: 27%) in comparison with samples collected at initial diag-

nosis (mean: 87%; SD: 7%). The number of differences detected at

the epigenetic level between primary leukemia and the matched

PDX for each of the analyzed samples is listed in Dataset EV3. Alto-

gether, there were 69 promoters that were recurrently hypomethy-

lated in PDX models and 484 promoters that were recurrently

hypermethylated. As the 69 promoters in which we observe reduced

methylation levels in PDX are most likely a result of the low blast

content in some of the primary samples (Fig EV2), we focused on

the 484 promoters hypermethylated in the PDX models. Publicly

available expression data from 264 T-ALL patients (Liu et al, 2017)

were available for 408 of these genes. Of the 408 genes, only 12

(3%) had an average expression of at least five FPKM and additional

21 genes (5%) had a variable expression (SD ≥ 3, expressed with at

least five FPKM in at least three patients). In comparison, 43%

(8,412/19,464) of the entire transcriptome were categorized as

either expressed or variably expressed. Three hundred and seventy-

five of the 408 genes hypermethylated in PDX were not expressed at

all or expressed at a very low level (average FPKM ≤ 2), indicating

that the vast majority of hypermethylated genes are transcriptionally

silent in T-ALL (Fig EV3).

Functional enrichment analysis of the remaining 33 genes (listed

in Dataset EV4) that were (variably) expressed yielded a term

GO:0060761: “negative regulation of response to cytokine stimulus”

as most significantly enriched (FDR = 7.33e-03). Altogether, these

data suggest that the majority of the genes (92%) that were hyper-

methylated in PDX were already silenced prior to the propagation in

mice, which is in accordance with previously published observations

that methylation might serve not to actually repress previously tran-

scribed genes, but maintains their continued silencing in somatic

tissues that might otherwise be permissive to these genes (Klutstein
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et al, 2016). In a small proportion of differentially methylated

promoters (8%; 0.17% of all the promoters), the increase in the

methylation level in PDX models might be a result of the incomplete

interaction between murine cytokines and human receptors.

In summary, PDX models exhibit a very stable methylome and all

the PDX models reflected the pattern of the primary leukemias. Alto-

gether, 97.5% of promoters are not significantly altered in PDX, while

only 2.5% is differentially methylated upon propagation in mice.

Chromatin accessibility and nucleosome patterns are maintained
during engraftment

We used Assay for Transposase-Accessible Chromatin (ATAC)

sequencing (Corces et al, 2016) to determine differences in the

genome-wide chromatin accessibility landscape in six patients for

whom primary and PDX materials were available. For three of the

patients, we analyzed biological replicates of PDXs (two different

mice transplanted with the same primary leukemia).

Quality control of the libraries (Dataset EV5a) revealed that the

fraction of the reads in peaks and the transcription start site (TSS)

enrichment score was significantly higher in PDXs than in libraries

prepared from primary samples [P = 0.03 (Wilcoxon matched-pairs

signed rank test) Figs 4A and EV4] indicating that the technical

quality of the PDX material is higher than that of the primary

leukemia. This difference likely reflects the various pre-analytical

factors that affect the primary leukemia samples that have been

obtained in the context of multicenter studies. These technical chal-

lenges relating to the primary leukemia samples are also reflected

by the low quality of the RNA in these samples, which precluded

generation of interpretable RNA-Seq datasets.

Analysis of the fraction of shared peaks showed that 91.5–94.5%

of ATAC peaks with a height (average number of reads that map

into an accessible region called by Macs2) of ≥ 50 are preserved

between the primary patient’s leukemia and the corresponding

model (Fig 4B). Moreover, the average number of reads per peak

reached a very high concordance (Fig 4C, mean coefficient of deter-

mination of 0.92–0.98). Unsupervised learning by principal compo-

nent analysis (PCA) clusters samples originating from the same

patient in close proximity (Fig 4D) demonstrating that the peak pro-

files are largely preserved during propagation in mice. Moreover,

the stability of the process of engraftment is reflected by particularly

the close localization of the biological replicates of PDX models on

the PCA plot. Moreover, a comparison with previously published

chromatin datasets for the T-ALL cell line DND-41 (Knoechel et al,

2014), in which we computed expected values based on the

randomly shuffled peaks, shows a high degree of overlap between

the ATAC peaks and the active promoters and enhancers detected in

histone methylation/acetylation analysis by chromatin immunopre-

cipitation and sequencing (Fig EV5).

To identify differentially accessible promoter regions between

primary and PDX samples, we performed differential peak calling

using DESeq2 (Love et al, 2014). Out of 77,344 (10,755 TSS and

66,589 non-TSS) peaks called in the analyzed sample pairs, 2,667

(3.4%) showed significantly increased accessibility (hyper-acces-

sible) and 2,887 (3.7%) had significantly decreased accessibility

(hypo-accessible) in PDX samples in comparison with the primaries

(P < 0.05; Fig 4E; Dataset EV5b). Representative ATAC-Seq tracks

for known leukemia drivers that are accessible both, in the primary
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Figure 3. The epigenomic profile reflected by DNA methylation is
recapitulated in NSG mice.

A Unsupervised hierarchical clustering based on the average degree of
methylation of the 500 most variable promoters (red—low/violet—high
methylation levels); * relapse (REL) sample of patient P4 with blast content
of 8%.

B The degree of the mean promoter methylation in patients’ samples
plotted against the degree of mean promoter methylation in PDX samples;
q—Spearman’s rank correlation coefficient; median combined ranks
across hexagonal bins are shown as a gradient according to the color
legend.
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and in the PDX samples, and for the differentially accessible peaks,

are shown in Appendix Fig S7.

Functional enrichment analysis was performed separately for the

TSS peaks and for the distal (non-TSS) peaks. In both cases, this

analysis did not yield any ontology term within the hyper-accessible

peaks, whereas the hypo-accessible signature was highly enriched

in terms associated with immune/defense responses, cytokine

production, and leukocyte activation (Fig 4F). These data suggest a

reduced interaction between the immune system and the leukemia

in PDX models and possibly the incapability of murine cytokines to

stimulate corresponding responses. As a result, in PDX models, we

observed induced chromatin condensation of the gene regulatory

elements involved in immune function and in the regulation of cyto-

kine production of in comparison with their matched primary leuke-

mias (examples are shown in the Appendix Fig S7).

In sum, however, the overall chromatin accessibility measured

by ATAC-Seq is preserved remarkably well in the PDX models.

Discussion

Patient-derived xenografts have emerged as a useful platform to

model cancer biology and to develop new treatment strategies. Previ-

ous studies have shown the utility of PDXs in modeling of acute T-cell

leukemia and the importance of genomic profiling of the models to

ensure concordance with the primary sample of origin (Wang et al,

2017). As the importance of the epigenetic level of gene regulation in

cancer cells generally and in leukemia in particular has become

increasingly apparent (Dawson & Kouzarides, 2012; Peirs et al,

2015), it is a fundamental question in how far the transfer of primary

leukemia cells into PDX models affects the epigenetic profile of these

cells. It is one of the important new findings reported here that the

epigenetic profiles of pediatric T-ALL cells are faithfully reflected in

PDX mice. More than 97.5% of the promoters covered by the arrays

to analyze DNA methylation are stably preserved when xenotrans-

planted into NSG mice. Similarly, ATAC sequencing revealed a large

conservation of the genome-wide chromatin accessibility profiles in

PDXs. Moreover, the analysis of the biological replicates in which the

same leukemia was transplanted into two different mice shows that

chromatin accessibility profiles are stably propagated during engraft-

ment. Interestingly, however, a 3.7% fraction of peaks with signifi-

cantly decreased accessibility in PDX mice as well as 33 promoters

recurrently hypermethylated in PDXs when compared to the primary

samples are highly enriched for immune function categories, which

suggests that the immunodeficient background of the mice has a

noticeable effect on the chromatin landscape and methylation

patterns of the leukemia cells.

As a second important new finding, we show in a longitudinal

analysis of the sample pairs obtained from the same patient at the

time of initial disease and at relapse that the mode of engraftment of

the sample obtained at initial disease is correlated to the type of

relapse (Kunz et al, 2015). Samples of patients who later develop a

type 1 relapse are more stable in the PDX mice than those that have

been obtained from patients with a type 2 relapse, which reflects the

more complex subclonal architecture of the high-risk leukemia giving

rise to a type 2 relapse. In analogy to the two modes of type 1 relapse

and type 2 relapse, we propose two modes of engraftment. In the first

mode that we refer to as mode A, both, the clonal composition and

the clonal architecture, are captured in the corresponding PDX. In the

second mode that we call mode B, the composition of the major clone

including its characteristic SNVs and CNAs and/or the clonal archi-

tecture is remodeled in the PDX by clonal selection (Fig 5). Primary

samples collected at the time of initial disease of patients who later

develop a type 1 relapse (clonal mutations detected at the time of

initial disease are maintained at relapse) tend to preserve the

genomic composition and the genomic architecture in the PDX. In

contrast, only in two of seven patients with type 2 relapse, the

complexity of the primary sample collected at initial disease is main-

tained during the xenotransplantation maneuver (mode A; Fig 5),

whereas in the five remaining patients, the clonal composition or/

and the clonal architecture is remodeled (mode B). In two of the

patients, a subclone that later gives rise to the relapse is selected in

the xenotransplanted cells from the initial presentation (Fig 2). This

finding supports a previous report indicating that the genomic

composition of PDX might more closely resemble relapse samples

than samples obtained at the time of initial diagnosis (Clappier et al,

2011). However, in none of the cases, the relapsing subclone outgrew

a clone specific for the patients’ initial diagnosis. Moreover, in no

case, we observed that the PDX from the time of initial diagnosis

already displayed the full complexity of relapse as all relapsed leuke-

mias had gained additional mutations (Appendix Fig S8), indicating

that clonal selection is only one of the mechanisms shaping relapse.

Despite many acquired subclonal mutations, which result in a higher

genomic heterogeneity, samples collected at the time of relapse tend

to better maintain their genomic composition when engrafted in NSG

mice when compared to samples collected at initial diagnosis. We

suggest that the propensity of relapse samples to preserve their clonal

architecture in the PDX is a result of the clonal selection which the

leukemia has undergone on the way to relapse in the patient.

Previous studies addressed the question of clonal composition

and selection during engraftment of ALL either by analysis in a bulk

cell population (Anderson et al, 2011; Clappier et al, 2011; Ben-

David et al, 2017) or at single-cell resolution (Belderbos et al, 2017)

and showed that leukemia is driven through a dynamic pattern with

◀ Figure 4. Chromatin accessibility profiles of primary leukemias are maintained in PDX.

A TSS enrichment score of primary samples (PRI, n = 65) and PDXs (n = 9). Horizontal lines indicate median, lower and upper limits of each box correspond to the first
and third quartiles (the 25th and 75th percentiles) and the lower and upper whiskers extend from min to max.

B Reads number per peak in primary samples (x-axis) plotted against the reads number in corresponding PDX model; PCC—Pearson’s correlation coefficient.
C Fraction of peaks shared between PDX and corresponding primary leukemia for ATAC peaks with a certain height (x-axis; average number of reads that map into an

accessible region called by Macs2).
D Unsupervised learning by principal component analysis (PCA); circle—primary sample (PRI); triangle—PDX sample; each color corresponds to 1 patient.
E MA plot of log2 fold changes between primary and PDX samples plotted against the mean of normalized read counts per peak, red indicates differentially accessible

regions (P < 0.05) as analyzed by DESeq.
F GO term enrichment of the predicted cis-regulatory regions downregulated in PDX in comparison with primary samples performed by Genomic Regions Enrichment

of Annotations Tool (GREAT).
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variable branching trajectories instead of sequential linear processes

(Anderson et al, 2011). It was demonstrated that engraftment is a

stochastic process in the primary passage and a deterministic clone-

size-based process in the secondary and tertiary passages with

several clones having leukemia propagating capacities (Belderbos

et al, 2017). Moreover, it has recently been shown that the preselec-

tion of minor subclones during PDX passaging results in a rapid

accumulation of copy number alterations and aneuploidy, which

differ from those acquired during tumor evolution in patients (Ben-

David et al, 2017). These findings together with an ongoing reduc-

tion in the number of clones in serial xenografts (Belderbos et al,

2017) argue against the usage of secondary and tertiary models and

suggest that primary passages, such as used in our study, faithfully

reflect the clonal diversity of human T-ALL.

In conclusion, pediatric T-ALL cells largely maintain their DNA

methylation pattern, their chromatin architecture, and most of their

genomic characteristics when xenotransplanted into primary NSG

mice. However, it must be noted that the absence of a normal

immune system and the reduced ability of murine cytokines and

chemokines to replace their human counterparts (Francis et al,

2016) result in an understimulation of immune pathways. The data

presented in this report indicate these effects to reduce the chro-

matin accessibility in a small fraction of gene loci, as reflected by

~3.7% of the analyzed ATAC peaks, and to induce methylation in

the small fraction of the gene promoters (0.17%).

Moreover, some of the complexity of the genomic characteristics

and the subclonal architecture may be remodeled in the course of

engraftment. Our results indicate that such a remodeling process

preferentially affects samples obtained at the time of initial disease

and particularly when collected from patients who later develop a

type 2 relapse. Although this mode of engraftment must be consid-

ered when interpreting data derived from PDX models, the overall

genomic and epigenomic stability of T-ALL following transfer into

NSG mouse indicates that primary PDX models are suitable surro-

gates for the study of disease biology and for the preclinical develop-

ment of novel treatment strategies.

Materials and Methods

Patients’ clinical characteristics

The primary cells were obtained from patients recruited in ALL-BFM

2000, ALL-BFM-2009, CoALL97, CoALL03, CoALL09, and ALL-REZ

BFM 2002 trials and were selected on the basis of sufficient material

being available from the time points of first diagnosis, remission,

and relapse. For patients’ clinical characteristics, see Dataset EV6.

Clinical trials from which samples were used in this analysis had

previously received approval from the relevant institutional review

boards or ethics committees. Written informed consent had been

obtained from all the patients and the experiments conformed to the

principles set out in the WMA Declaration of Helsinki and the

Department of Health and Human Services Belmont Report.

Establishment of the patient-derived xenografts

Patient-derived xenografts (PDX) were generated as described (Sch-

mitz et al, 2011) by intrafemoral injection of 1 × 105 to 5 × 106

viable primary ALL cells in NSG (NOD.Cg-PrkdscidIl2rgtm1Wjl/SzJ)

mice. Transplanted mice were both male and female, aged 5–

Patients: P3, P4, P5, P9, P11

Patients: P1, P2, P6, P7, P8, 
P10, P12

A: concordant
pts: P3, P4, P5, P9, P11

*ancestor clone was detected in two pts 
(1 subclonal) in INIPDX, although not 

present in primary sample

A: concordant
pts: P3, P4, P5, P9, P11

relapse type1

B: clonal selection during 
engraftment

pts: P2, P6, P12

relapse type2

Engraftment of Initial Diagnosis (mode A/B)Initial Diagnosis                             Relapse 

mode A

mode A/B

Engraftment of Relapse (mode A/B)

A: concordant
pts: P1, P7, P8, P10

relapse type1

mode A

ancestor clone
relapse type2

mode A/B

ancestor clone*

A: concordant
pts: P1, P8

B: clonal selection during 
engraftment

pts: P2, P6, P7, P10, P12

A

A

B

B

A

A

Figure 5. Schematic view of the correlation between the modes of engraftment with the type of relapse.

In engraftment mode A, both the clonal composition (all clonal mutations with AF > 30%) and the clonal architecture are captured in the corresponding PDX. In mode B, the
composition of the major clone including its characteristic SNVs and CNAs and/or the clonal architecture is remodeled in the PDX by clonal selection; gray—core mutations
common for both initial diagnosis and relapse; blue—mutations specific to initial diagnosis; red—relapse-specific mutations.
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8 weeks. Animals were housed in individually ventilated cages with

access to food and water ad libitum. Leukemia progression was

monitored in the peripheral blood by flow cytometry using anti-

mCD45, anti-hCD45, anti-hCD19, or anti-hCD7 antibodies. Cells had

been harvested after engraftment reached 75% in the peripheral

blood or mice health score reached either three at single item or the

total score had reached five. T-ALL cells were collected from spleen

and cryopreserved as described (Schmitz et al, 2011). Blast

enrichment in the sample had been evaluated by flow cytometry

using same antibody panel. Xenograft identity was verified by DNA

fingerprinting using the commercial AmpFlSTR� NGM SElect kit. In

vivo experiments were approved by the veterinary office of the

Canton of Zurich, in compliance with ethical regulations for animal

research.

Whole-exome sequencing

Libraries for whole-exome sequencing were prepared with SureS-

electXT Target Enrichment System for Illumina Paired-End Multi-

plexed Sequencing Library v4/v6 (Agilent, Santa Clara, CA, USA)

according to the manufacturer’s protocols. DNA concentration was

determined with the Qubit fluorometer using BR dsDNA Assay

(Qubit 2.0, Invitrogen Life Technologies, Grand Island, NY, USA).

200 ng of genomic DNA was sheared using Covaris S2 instrument

(Covaris, Woburn, MA, USA) to a mean size of 150–200 bp. Pooled

indexed sample libraries were sequenced in paired-end 100-bp mode

using an Illumina HiSeq2000 deep sequencing instrument (Illumina,

San Diego, CA, USA). All raw sequencing reads from fastq files

were mapped against the human reference genome hg19 [hg19,

GRCh37 Genome Reference Consortium Human Reference 37

(GCA_000001405)] using modified variant tools align pipeline

bwa_gatk28_hg19 (San Lucas et al, 2012). For the PDX samples, we

have classified the reads into those that aligned to hg19, mm10, and

ambiguous and discarded the reads, which preferentially aligned to

mm10. Briefly, alignment was performed with bwa (Burrows-

Wheeler Aligner; Li & Durbin, 2009) mem algorithm and followed

by removing duplicate reads (Picard) and local realignment by

Genome Analysis Toolkit (GATK; McKenna et al, 2010). Mutation

callers Mutect (do Valle et al, 2016) and Strelka (Saunders et al,

2012) were next applied on the recalibrated data for detection of

somatic mutations. The presence of single nucleotide variants

(SNV) and small insertions and deletions (InDels) in the germ line

was excluded by analysis of remission samples. Identified variants

were functionally annotated using ANNOVAR (Wang et al, 2010)

tool with the corresponding nucleotide exchange and then compared

with those listed in dbSNP v138 (http://www.ncbi.nlm.nih.gov/

snp/) and in the 2014 release of the 1000 Genomes Project (http://

www.internationalgenome.org/). Annotations also included GERP

conservation scores and indications whether the variant is located

in a segmental duplicated region (SegDup). Predictions of the func-

tional impact of amino acid exchanges on the structure and function

of the respective protein were computed using SIFT and PolyPhen-

2. All SNVs were filtered for non-synonymous, stopgain or stoploss

variants requiring a frequency of 1% or less in the 1000 Genome

Project release 2014 and a minimum of five supporting reads, unless

the variant was called in more than one sample from the same

patient. Finally, all detected variants were manually curated using

the Integrated Genome Viewer.

Low-coverage whole-genome sequencing

Libraries for low-coverage WGS were prepared using NEBNext Ultra

DNA Library Prep Kit for Illumina (New England Biolabs, Frankfurt am

Main, Germany) from 100 ng of genomic DNA. Five samples were

pooled and sequenced on one Illumina HiSeq 2000 lane generating

150-bp paired-end reads. Mean DNA sequence coverage was threefold

(range: two- to fivefold). Adapters were trimmed by cutadapt (Martin,

2011); the sequences were aligned using bwa-mem (Li & Durbin,

2009). Average coverage of 10-kb genomic intervals was calculated

using DELLY Cov (Rausch et al, 2012). Next, the GC correction was

performed, and the normalized read-depth ratios between the leukemic

samples and the matched remission samples were calculated and plot-

ted using R packages: DNAcopy, ggplot2, reshape2, and scales.

DNA methylation analysis using 450k BeadChip Arrays and
Infinium® MethylationEPIC BeadChip Arrays

Genomic DNA of 11 out of 12 matched pairs of PDXs and correspond-

ing primary leukemias was available for the analysis and has been

isolated or provided by the collaborating centers. DNA concentration

was measured by Qubit� 2.0 Fluorometer (Qubit� dsDNA High Sensi-

tivity Assay Kit; Thermo Fischer Scientific). Genomic DNA (200 ng)

was bisulfite-converted using the EZ DNA Methylation-Gold Kit

(Zymo Research, Irvine, CA, USA). The Infinium� Methylation assay

and EPIC assay (Illumina) were carried out as previously described

(Bibikova & Fan, 2010). Generated data from the 450k and 850k

human methylation arrays were normalized by the Beta MIxture

Quantile (BMIQ) method (Teschendorff et al, 2013) using the RnBeads

analysis software package (Assenov et al, 2014). Background correc-

tion with ENmix.oob (Xu et al, 2016), as well as quality control,

preprocessing, exploratory analysis, and differential methylation anal-

ysis, was performed using the RnBeads analysis software package

(Assenov et al, 2014). The methylation level of a CpG locus was

expressed as beta value (b), which represents the proportion of methy-

lated alleles divided by all alleles. A gene promoter was defined as the

region spanning 1.5 kilobases (Kb) upstream and 0.5 Kb downstream

of the respective transcription start site. A threshold of 0.2 in absolute

numbers was set to define a difference in methylation level between

the initial and relapse samples. Promoters with this 20% difference

were considered as an “event”. To analyze whether particular promot-

ers were preferentially hypo/hypermethylated in the PDX models, we

filtered for the promoters that were represented on the arrays by at

least three different probes and had a gene symbol assigned. To define

probability of observing a recurrent difference between the primary

sample and a PDX model, we calculated a baseline probability of a

hypomethylation event (0.003) and a hypermethylation event (0.018).

Next, we computed P-values for observing a number of events (k = 1,

2, 3. . .22) per gene using a binomial test. Increase in b value (min.

20%) in at least four patients (P = 0.0278) and decrease in at least

three patients (P = 0.014) were statistically significant. Primary leuke-

mias from two of the patients included in this study were part of the

analysis reported by us previously (Kunz et al, 2015).

ATAC sequencing

In order to reduce mitochondrial reads in ATAC-Seq libraries, we

used a modified ATAC-Seq library preparation protocol, (Corces
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et al, 2016) which uses digitonin instead of NP40 to selectively

permeabilize cell membranes and not the mitochondrial

membranes. Fifty thousand cryopreserved PDX and primary cells

were used for library preparation. After thawing and washing

with complete culture medium (RPMI medium with 10% FBS and

1% penicillin–streptomycin), living cells were enriched for

lymphoblasts using density gradient centrifugation. 15 ml Falcon

tube was filled with 6 ml ficoll (1.077 g/ml), and 1 ml of

defrosted cells was carefully laid on the solution. Centrifugation

with no brake for 20 min at 400 g was performed to form

lymphoblast monolayer. After enrichment, cell number and viabil-

ity were assessed with trypan blue staining. Enrichment was

repeated until the viability exceeded 95% if the number of cells

was sufficient for multiple centrifugation steps. DNA libraries

prepared with the modified ATAC-Seq protocol were sequenced

on Illumina platforms (NextSeq500). Data analysis was carried

out using an in-house developed ATAC-Seq pipeline (https://

github.com/tobiasrausch/ATACseq).

Briefly, the pipeline first discarded mouse contaminating reads

that preferentially aligned to mm10 [PDX: 2.41%, primary

samples (PRI): 0.02%]. Reads that aligned to hg19 and ambiguous

reads that were not classified as hg19 or mm10 were used for

further analysis. Adapters were trimmed by cutadapt (Martin,

2011), and the trimmed sequences were aligned to the human

reference genome (hg19) by Bowtie2 (Langmead & Salzberg,

2012). Reads aligning to mitochondrial DNA (PDX: 13.85%, PRI:

9.67%), duplicate reads, reads with mapping quality below 30,

unmapped reads, and unplaced contigs (PDX: 25.19%, PRI:

29.21%) were removed using samtools (Li et al, 2009). Peak call-

ing was performed using MACS2 (Zhang et al, 2008) with user-

specified parameters, and the IDR method (Li et al, 2011) was

used to identify significant peaks above the background noise.

Peak annotation with genomic features was done using the Homer

package (Heinz et al, 2010). For quality control transcription start

site enrichment values, the insert size distribution with the char-

acteristic nucleosome pattern, and the fraction of reads in peaks,

was used. All quality control metrics were computed using Alfred

(https://github.com/tobiasrausch/alfred), which was also used to

create browser tracks (bedGraph files). Differential peak calling

was performed with DESeq2 (Love et al, 2014) in the multi-factor

design mode to control for additional variation resulting from a

high interpatient heterogeneity with a log-fold change threshold

set to 0.1.

Multiplex ligation-dependent probe amplification (MLPA)

The commercially available SALSA MLPA P383 T-ALL probe mix

(MRC-Holland, Amsterdam, The Netherlands) and a custom-made

probe set based on the SALSA MLPA P200-A1 probemix (MRC-

Holland) were used for the detection of specific copy number varia-

tions as described before (Richter-Pechanska et al, 2017).

Software and bioinformatical tools

Graphical representation and statistics were done using: R (R Core

Team, 2017), GraphPad Prism version 6.00 for Windows (La Jolla,

CA, USA).

Functional enrichment analyses for hyper-/hypo-accessible

ATAC regions and their graphical representation were generated

using GREAT (Genomic Regions Enrichment of Annotations Tool;

McLean et al, 2010).

Data availability

Sequence data have been deposited at the European Genome-

phenome Archive (EGA, http://www.ebi.ac.uk/ega/), which is

hosted by the EBI, under accession number EGAS00001003248.

Expanded View for this article is available online.
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The paper explained

Problem
Identifying appropriate preclinical models to study the biology of
leukemia in vivo and to test novel molecular-targeted therapeutics
remains a major challenge. Although patient-derived xenografts (PDXs)
of pediatric T-cell leukemia were reported to be generally stable at
the genomic level, little is known about conservation of their epige-
netic features and chromatin architecture.

Results
We performed a detailed multilevel genomic and epigenomic analysis
of primary leukemia and matched primary PDX samples collected at
the time of initial diagnosis and at relapse from 12 pediatric T-ALL
patients.
Patient-derived xenograft models largely preserved genetic alterations,
and in many cases, the model truly reflected the leukemia’s subclonal
composition and clonal hierarchy. Samples of patients who later
developed a type 1 relapse (all clonal mutations detected at the time
of initial disease maintained at relapse) were observed to be more
stable in the PDX mice than those that have been obtained from
patients with a type 2 relapse (a subset of clonal mutations detected
at initial disease lost at relapse).
The epigenetic profile measured through detecting DNA methylation
across the genome was largely preserved in PDX mice in (97.5% of the
promoters preserved; q = 0.99). Likewise, the genome-wide chromatin
accessibility profile analyzed by ATAC-Seq was well preserved
(q = 0.96). However, a minor fraction of gene loci associated with
immune response and with response to cytokine stimulus show
reduced chromatin accessibility (3.7% of the ATAC-Seq peaks) or
hypermethylation (0.2% of the promoters) upon propagation in mice.
This observation might be a result of the absence of a normal
immune system and the reduced ability of murine cytokines and
chemokines to replace their human counterparts.

Impact
Our results indicate a remarkable genomic stability and for the first
time document the preservation of the epigenomic landscape in pedi-
atric T-cell leukemia-derived primary NSG mice.
We conclude that while some of the complexity of the genomic and
epigenetic characteristics and the subclonal architecture is likely to be
remodeled in the course of engraftment, the primary PDX models repre-
sent suitable surrogates for the study of disease biology and for the
preclinical development of novel treatment strategies in pediatric T-ALL.
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