
ORIGINAL RESEARCH
published: 21 December 2020

doi: 10.3389/fchem.2020.616961

Frontiers in Chemistry | www.frontiersin.org 1 December 2020 | Volume 8 | Article 616961

Edited by:

Victor Borovkov,

South-Central University for

Nationalities, China

Reviewed by:

Claudio Baggiani,

University of Turin, Italy

Andrea Romeo,

University of Messina, Italy

Silvano Geremia,

University of Trieste, Italy

*Correspondence:

Marco d’Ischia

dischia@unina.it

Alessandro D’Urso

adurso@unict.it

Specialty section:

This article was submitted to

Supramolecular Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 13 October 2020

Accepted: 23 November 2020

Published: 21 December 2020

Citation:

Gaeta M, Randazzo R, Villari V,

Micali N, Pezzella A, Purrello R,

d’Ischia M and D’Urso A (2020) En

Route to a Chiral Melanin: The

Dynamic

“From-Imprinted-to-Template”

Supramolecular Role of Porphyrin

Hetero-Aggregates During the

Oxidative Polymerization of L-DOPA.

Front. Chem. 8:616961.

doi: 10.3389/fchem.2020.616961

En Route to a Chiral Melanin: The
Dynamic
“From-Imprinted-to-Template”
Supramolecular Role of Porphyrin
Hetero-Aggregates During the
Oxidative Polymerization of L-DOPA
Massimiliano Gaeta 1, Rosalba Randazzo 1, Valentina Villari 2, Norberto Micali 2,

Alessandro Pezzella 3, Roberto Purrello 1, Marco d’Ischia 4* and Alessandro D’Urso 1*

1Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy, 2Consiglio Nazionale delle Ricerche-IPCF

Istituto per i Processi Chimico-Fisici, Messina, Italy, 3Department of Physics “Ettore Pancini,” University of Naples “Federico

II,” Naples, Italy, 4Department of Chemical Sciences, University of Naples “Federico II,” Naples, Italy

Chiral porphyrin hetero-aggregates, produced from meso-tetrakis(4-N-methylpyridyl)

porphyrin H2T4 and copper(II) meso-tetrakis(4-sulfonatophenyl)porphyrin CuTPPS by an

imprinting effect in the presence of L-3,4-dihydroxyphenylalanine (L-DOPA), are shown

herein to serve as templates for the generation of chiral structures during the oxidative

conversion of the amino acid to melanin. This remarkable phenomenon is suggested

to involve the initial role of L-DOPA and related chiral intermediates like dopachrome as

templates for the production of chiral porphyrin aggregates. When the entire chiral pool

from DOPA is lost, chiral porphyrin hetero-aggregate would elicit axially chiral oligomer

formation from 5,6-dihydroxyindole intermediates in the later stages of melanin synthesis.

These results, if corroborated by further studies, may open unprecedented perspectives

for efficient strategies of asymmetric melanin synthesis with potential biological and

technological applications.

Keywords: eumelanin, DOPA, porphyrin, supramolecular aggregates, circular dichroism

INTRODUCTION

L-3,4-Dihydroxyphenylalanine (L-DOPA; Figure 1A) is an aromatic amino acid produced in
various organisms by the oxidative modification of L-tyrosine (Raper, 1927; Mason and Wright,
1949; Haneda and Watanabe, 1971; Prota, 1995; Ito, 2003; Slominski et al., 2012; Marchiosi
et al., 2020). In the skin and other organs, like the ink sac of cephalopods, L-DOPA is an early
intermediate in the synthesis of black eumelanin pigments from L-tyrosine by the action of
the copper enzyme tyrosinase (Slominski et al., 2004; Ito and Wakamatsu, 2007; Simon et al.,
2009; Della Vecchia et al., 2013; d’Ischia et al., 2014). In vivo, the process involves the oxidation
of tyrosine to dopaquinone followed by intramolecular cyclization to an indoline intermediate,
termed leucodopachrome or cyclodopa, which can enter a redox cycle by exchanging electrons with
dopaquinone to produce L-DOPA and L-dopachrome. The latter, then, undergoes isomerization
with or without decarboxylation and loss of the chiral center to give 5,6-dihydroxyindole (DHI)
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FIGURE 1 | (A) Schematic illustration of dihydroxyphenylalanine (DOPA) oxidative polymerization to melanin (highlighted is the generation of

L-3,4-dihydroxyphenylalanine (L-DOPA) by redox cycling between leucodopachrome and dopaquinone). (B) Molecular structures of porphyrinoids used,

5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin tetrachloride salt (H2T4) and copper(II) 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin tetrasodium salt (CuTPPS).

and/or 5,6-dihydroxyindole-2-carboxylic acid (DHICA),
respectively (Pezzella et al., 1996; Edge et al., 2006; Ito and
Wakamatsu, 2007, 2008; Ito et al., 2011; d’Ischia et al., 2013;
Panzella et al., 2018). The oxidative polymerization of these
latter intermediates leads to the deposition of black insoluble
melanin polymers (Figure 1A). So far, knowledge of the intrinsic
chiroptical features of melanin polymers is scant, and little
attention has been paid to the possible generation of chiral
structures under in vivo or in vitro conditions. The only evidence
for the possible occurrence of chirality in melanins is due to
the demonstration that oligomers from DHICA may display
atropisomerism caused by hindered rotation about interunit
bonds (Pezzella et al., 2003). However, current information on
the chirality of DHICA oligomers during the polymerization
process remains limited.

Recently, a systematic investigation of the effect of porphyrin
aggregation on melanin synthesis was undertaken, exploiting
the well-known tendency of porphyrins to interact with amino
acids (Angelini et al., 2005; Uemori et al., 2012; Charalambidis
et al., 2016; Gaeta et al., 2016; Rananaware et al., 2016; Ryu
et al., 2018) and polymeric chains (Borovkov et al., 2002a,b;
De Luca et al., 2010; Occhiuto et al., 2015; Zhao et al., 2015;
Gaeta et al., 2018), with a view to generating new bioinspired
functional materials with tailored optical and chiral properties.
Water-soluble porphyrins maintain their tendency to aggregate

owing to the hydrophobic aromatic macrocycle, whereby binding

suitable functional groups to the porphyrin ring may allow to
realize self-assembled porphyrin systems in aqueous solution.
Although supramolecular arrangements of achiral porphyrins
in aqueous solution result in achiral supramolecular structures,
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chiral aggregates of porphyrins can be formed in the presence
of chiral templates (Bellacchio et al., 1998; Onouchi et al., 2006;
Toyofuku et al., 2007; Lauceri et al., 2008; Helmich et al., 2010).

Noteworthy, as a consequence of extensive network of
interactions (electrostatic, solvophobic, etc.) that trap porphyrin
aggregates in a quite deep local energy minimum ensuring
kinetic inertia, the porphyrin supramolecular assembly is able to
memorize the chiral information imprinted by the chiral template
in aqueous solution (Mammana et al., 2007; Gaeta et al., 2016).
In this context, porphyrin hetero-aggregates (built by opposite-
charged porphyrins) proved to be an ideal system to store
chiral information and may offer the possibility of designing
switch of memory (Mammana et al., 2007). In this work, we
show that porphyrin hetero-aggregates made up of 5,10,15,20-
tetrakis(4-N-methylpyridyl)porphyrin H2T4 (Figure 1B) and
copper(II) 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin
CuTPPS (Figure 1B) can drive the oxidative polymerization
of DOPA to melanins with the unexpected generation of
asymmetric structures.

MATERIALS AND METHODS

5,10,15,20-Tetrakis(4-N-methylpyridyl)porphyrin tetrachloride
salt (H2T4) and copper(II) 5,10,15,20-tetrakis(4-
sulfonatophenyl)porphyrin tetrasodium salt (CuTPPS) were
purchased from Mid-Century Company and used without
further purification. Porphyrin mother solutions (about 4 ×

10−4 M, stored in the dark at room temperature) were prepared
dissolving the solid in ultrapure water obtained from Elga
Purelab Flex system by Veolia. Then, the concentration was
checked by spectrophotometric methods in water solution at
neutral pH by means of their molar extinction coefficients at
maximum of the Soret band: λmax(H2O) = 423 nm (ε = 224,000
M−1cm−1) for H2T4 and λmax(H2O) = 412 nm (ε = 416,000
M−1cm−1) for CuTPPS.

The phosphate buffered saline (PBS) tablets were purchased
from Sigma-Aldrich Company, and the stock solution was
prepared by dissolving one tablet in 200ml of ultrapure water.
PBS buffer (pH = 7.4) contains 10mM of phosphate buffer
sodium salt, 137mM of sodium chloride, and 2.7mM of
potassium chloride.

L-DOPA and the respective D-enantiomer [D-3,4-
dihydroxyphenylalanine (D-DOPA)] were purchased from
Sigma-Aldrich Company and used without further purification.
Solutions of both DOPA enantiomers were freshly prepared by
solubilizing the proper amount of solid in PBS buffer in order to
attain a final concentration of 0.5 mM.

The porphyrin hetero-aggregates in PBS buffer were obtained
by filling with 2ml of PBS solution a quartz cuvette (path length
= 1 cm), then the proper volume of H2T4 mother solution
was added to reach a 2µM concentration of H2T4 in the
sample solution. After 5min, the amount of CuTPPS was added
in order to reach again a 2µM concentration of CuTPPS in
the sample solution. After an additional 20min, other aliquots
of H2T4 and CuTPPS were added as illustrated before. The

FIGURE 2 | Circular dichroism (CD) spectra in phosphate buffered saline

(PBS) buffer (pH = 7.4) of porphyrin hetero-aggregates

[5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin tetrachloride salt (H2T4) =

4µM, copper(II) 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin tetrasodium

salt (CuTPPS) = 4µM] in the presence of L-3,4-dihydroxyphenylalanine

(L-DOPA; red solid curve) and D-3,4-dihydroxyphenylalanine (D-DOPA; black

solid curve) as prepared. The CD spectra for dihydroxyphenylalanine (DOPA)

alone in PBS buffer are graphed in red dashed curve for L-enantiomer and in

black dashed curve for D-enantiomer. In all samples, the concentration of

DOPA was 0.5mM.

final work solution thus obtained was kept for 20min before
spectroscopic investigations.

The porphyrin hetero-aggregates in the presence of D- and L-
DOPA were obtained by using the corresponding DOPA solution
(0.5mM in PBS) following the aforementioned procedure. In
detail, the proper volume of H2T4 mother solution was added to
D- or L-DOPA solution to reach a 2µM concentration of H2T4,
then after 5min, the proper amount of CuTPPS was added to the
sample solution in order to reach again a 2µM concentration
of CuTPPS. After an additional 20min, other aliquots of H2T4
and CuTPPS were added as illustrated before. The final work
solution thus obtained was kept for 20min before spectroscopic
investigations. For the long incubation time, each solution of
DOPA and porphyrin hetero-aggregates was stored in sealed
plastic cuvettes in order to limit the adhesion of both porphyrins
and DOPA on the cuvette walls.

All solutions, both stock and sample solutions, are prepared in
ultraclean conditions: (i) the operators wore a lab coat, hair cap,
gloves, and mask during the preparation of samples and (ii) the
tips of the pipettes and the plastic cells were washed three times
with ultrapure water before being used.

Circular dichroism (CD) and Uv/Vis measurements were
carried out at room temperature (quartz cuvette path length
1 cm) on a JASCO J-710 spectropolarimeter and JASCO V-
530 spectrophotometer, respectively. Linear dichroism (LD)
measurements were carried out on a modified JASCO J-500A
spectropolarimeter (Micali et al., 2015) after proper calibration
with an oriented polarizer. Linear birefringence of the instrument
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FIGURE 3 | Circular dichroism spectra of incubated solutions [phosphate buffered saline (PBS) buffer, pH = 7.4] containing porphyrin hetero-aggregates

[5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin tetrachloride salt (H2T4) = 4µM, copper(II) 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin tetrasodium salt

(CuTPPS) = 4µM] in the presence of L-3,4-dihydroxyphenylalanine (L-DOPA) 0.5mM (A) and D-3,4-dihydroxyphenylalanine (D-DOPA) 0.5mM (B) as prepared

(dotted black curves) and after 24 h, 3, 7, and 15 days (red, green, wine, and blue curves in that order).

FIGURE 4 | Circular dichroism spectra of L-3,4-dihydroxyphenylalanine

(L-DOPA; 0.5mM) alone in phosphate buffered saline (PBS) buffer (pH = 7.4,

298K) as prepared (dotted black curve) and after 24 h, 3, 7, and 15 days (red,

green, wine, and blue curves, respectively).

optics was also measured in order to evaluate the cross-talk
contribution to CD.

RESULTS AND DISCUSSIONS

In PBS buffer (pH = 7.4), the formation of porphyrin hetero-
aggregates from equimolar amounts of tetra-cationic H2T4 and

tetra-anionic CuTPPS was apparent by both the hypochromic
effect and band broadening in the Soret region, as reported
in UV/Vis spectrum (Supplementary Figure 1). In the absence
of chiral inducers in solution and under ultraclean conditions,
the building of achiral supramolecular structures, as expected,
was denoted by zero optical activity in the porphyrin hetero-
aggregate absorption region (Supplementary Figure 1 inset).

The construction of chiral multicomponent systems requires
precise hierarchical rules (Elemans et al., 2003), whereby to
prepare chiral porphyrin hetero-aggregates, cationic porphyrin
H2T4 (4µM) was to be added to a PBS solution of L-DOPA
(0.5mM) followed by the anionic counterpart CuTPPS (4µM).
UV/Vis spectra confirm the formation of porphyrin hetero-
aggregate, showing a hypochromic effect and broadening of the
Soret bands (Supplementary Figure 2). Noteworthy in the CD
spectra, both a positive single Cotton effect of L-DOPA at about
280 nm and an induced bisignate CD signal in visible region,
due to chiral exciton coupling of two porphyrin chromophores
in hetero-aggregates, were observed (Figure 2). Mirror image
was recorded when D-DOPA was used in place of levodopa,
confirming that the CD signal in the porphyrin absorption region
was induced by the interaction with DOPA via a chirality transfer
process (Figure 2).

The solutions containing chiral porphyrin hetero-aggregates
and single DOPA enantiomers were incubated for 2 weeks
in plastic cuvettes rather than in quartz cuvettes in order
to minimize the sticking of DOPA-derived melanin products

onto cuvette walls. Although the oxidative polymerization of

DOPA evolved slowly in PBS buffer at pH 7.4 as is usually the
case with catechol and catecholamine compounds (Bernsmann
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SCHEME 1 | Chirality transfer dynamics in the oxidative polymerization of L-3,4-dihydroxyphenylalanine (L-DOPA) in the presence of porphyrin hetero-aggregate.

et al., 2011), after 2 weeks, significant variations in the DOPA
absorption and CD spectra were observed. CD and UV spectra
of the sample solutions were recorded after 24 h, 3, 7, and 15 days
to follow the evolution of DOPA polymerization. In comparison
with the initial situation, main changes observed concerned: i)
the loss of the induced CD signal attributed to the porphyrin
hetero-aggregates and, simultaneously, ii) amarked change in the
dichroic signal of DOPA (Figure 3, Supplementary Figure 3).

Since the chirality transfer mechanism implies a close-
range contact between chiral inducer and achiral building
blocks (Borovkov et al., 2001; Mammana et al., 2007; Zeng
et al., 2009; Randazzo et al., 2019; Ustrnul et al., 2019),
the disappearance of the induced chirality may be associated
to a de-aggregation of the porphyrin hetero-aggregate owing
to the polymerization of DOPA and the associated loss of
chirality. In line with this conclusion, the UV/Vis spectra of
incubated hetero-aggregates evolved with the growth of the
CuTPPS Soret band (λmax = 412 nm) (Supplementary Figure 3),
whereas, conversely, no detectable band associated with H2T4

(λmax = 423 nm) was observed (Supplementary Figure 3 inset)

presumably due to embedment into the developing melanin
matrix whose carboxylate residues are deprotonated (thus

anionic charged) at pH value of PBS buffer. Indeed, adding acid
solution to melanin precipitate (separated from the solution)
in order to protonate the carboxylate residues, a band at

450 nm, ascribable to protonated form of H2T4, was detected
(Supplementary Figure 4). These spectroscopic data suggested
that the porphyrin hetero-aggregate in PBS at high ionic strength
does not exhibit similar stability as previously demonstrated in
water (Mammana et al., 2007; Gaeta et al., 2016). It is likely
that ionic strength modulates electrostatic interactions between
opposite-charged porphyrins, affecting the stability of the hetero-
aggregate in PBS.

Remarkably, drastic changes in the CD signals at 450–
500 nm are observed with time (1 week timescale; Figure 3),
which are paired to a later increase of the signal at 280 nm
(2 weeks timescale). Such profile evolution is a clear signature
of the generation of asymmetric structures, likely driven by
chirally imprinted porphyrin hetero-aggregates during melanin
synthesis, while the original chiral information from DOPA
was completely consumed because of its conversion into

5,6-dihydroxyindoles. Noteworthy, contributions from LD are
negligible; however, the possibility that a component of
differential scattering might affect the measurements owing to
the presence of melanin particles cannot be ruled out.

To support the above conclusions, the spectroscopic behavior
of L-DOPA in PBS buffer was monitored in the absence
of porphyrins. The progress of the oxidative polymerization
was denoted by the simultaneous decrease of the absorbance
(λmax = 280 nm) and related CD signal of L-DOPA (Figure 4,
Supplementary Figure 5). After several days, the final dark
solution did not display almost any residual chirality suggesting
the formation of achiral melanin.

Further evidences of the role played by porphyrin hetero-
aggregate as chiral templating agent of melanin oligomers have
been gained performing a clear-cut experiment, reversing the
order of addition of the components. In detail, we added L-DOPA
to a solution of preformed achiral porphyrin hetero-aggregate
(Supplementary Figure 6). After 1 week, the CD spectrum of
L-DOPA looked similar to the CD spectrum of L-DOPA alone
in PBS (Supplementary Figure 6 inset), confirming that chiral
porphyrin hetero-aggregate plays a key role in inducing chiral
melanin oligomer formation.

To conclude, these results disclose a rare example of
temporary chiral mediation in which a chirally imprinted
aggregate is decomposed while serving in turn as template for the
chiral imprinting of developing oligomer aggregates from non-
chiral decomposition products of a chiral precursor (Scheme 1).

These results open a new promising area of investigation
on the organization of melanin pigments with applications
ranging from biology and medicine to nanotechnology and
material science.
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