
Introduction 

The prevalence of obesity is increasing annually worldwide. According to the WHO 
report [1], 13% of the world’s adult population is obese, and the number has been grow-
ing steadily. In 2016, obesity was approximately three times what it was in 1975. In partic-
ular, the morbidly obese population, with a body mass index (BMI) >  40 kg/m2, is on the 
rise. Given the increase in the number of surgeries performed to treat obesity and associ-
ated diseases and the comorbidities present in this population, anesthesiologists are hav-
ing an increasingly difficult time managing these patients. During surgery, anesthesiolo-
gists may have trouble with intubation and airway management before and after surgery, 
mechanical ventilation, control of diabetes and hypertension, obstructive sleep apnea, 
and cardiopulmonary disease. 

In addition, pharmacokinetic and pharmacodynamic changes of anesthetic drugs in 
obese patients make it difficult to control the appropriate dose of anesthetic agents. The 
increase in body mass and changes of its composition influences pharmacokinetic pa-
rameters such as distribution volume, clearance, and elimination half-life. Comorbidities 
in obese patients, such as obstructive sleep apnea, may also cause narrowing of the thera-
peutic dynamic range of anesthetic drugs. 
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The prevalence of obesity is increasing, resulting in an increase in the number of surgeries 
performed to treat obesity and diseases induced by obesity. The associated comorbidities 
as well as the pharmacokinetic and pharmacodynamic changes that occur in obese pa-
tients make it difficult to control the appropriate dose of anesthetic agents. Factors that af-
fect pharmacokinetic changes include the increase in adipose tissue, lean body weight, ex-
tracellular fluid, and cardiac output associated with obesity. These physiological and body 
compositional changes cause changes in the pharmacokinetic and pharmacodynamic pa-
rameters. The increased central volume of distribution and alterations in the clearance of 
drugs affect the plasma concentration of propofol and remifentanil in the obese popula-
tion. Additionally, obesity can affect pharmacodynamic properties, such as the 50% of 
maximal effective concentration and the effect-site equilibration rate constant (ke0). Con-
ducting a simulation of target-controlled infusions based on pharmacokinetic and phar-
macodynamic models that include patients that are obese can help clinicians better under-
stand the pharmacokinetic and pharmacodynamic changes of anesthetic drugs associated 
with this population. 
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This review will include a discussion about the changes in vari-
ous anesthetic drugs’ pharmacokinetic and pharmacodynamic 
behaviors that result from the increase in body mass and compo-
sitional changes that occur in obese patients based on published 
articles.  

Changes in body mass composition 

In obese individuals, the lean body mass, which includes ves-
sel-rich organs and the tissues where drugs act, does not usually 
increase proportionally to the increase in total body mass. Rather, 
as the body weight increases, the blood volume, fat mass, lean 
body mass, and extracellular water volume increase along with 
the increase in total body weight (TBW); however, the composi-
tion of the mass does not always increase in proportion to the to-
tal body mass. The fat mass tends to increase along with the TBW; 
however, lean body mass does not. The ratio of lean body weight 
(LBW) to TBW decreases as the TBW increases. The proportion 
of LBW, which explains the increase in TBW, is approximately 
20%–40% [2]. 

When a drug dosage is determined, it is usually scaled based on 
the TBW. However, administering drugs scaled simply using the 
TBW in obese patients would result in an overdose. Therefore, 
obese individuals need other mass scalars to calculate the appro-
priate dose, such as LBW, ideal body weight (IBW), and fat-free 
mass. Various mass scalars have been introduced, each with their 
own characteristic features and equations (Table 1). 

Total body weight 

Dosing based on the TBW is valid for people with a normal 
weight. In obese patients, however, the lean tissue, which is where 
most cardiac output is delivered, does not increase in proportion 

to the TBW; therefore, the use of the TBW to determine the dose 
in obese patients would result in an overdose. Other mass scalars 
must therefore be considered. 

Ideal body weight 

Numerous equations have been introduced to calculate the 
IBW [3]. The disadvantage of this mass scalar is that individuals 
who have the same sex and height receive the same dose regard-
less of obesity and body mass composition. 

Lean body weight 

The LBW is the body mass without fat or adipose tissue. For the 
past several decades, James’ equation has frequently been used to 
calculate the LBW [4]; however, it has serious limitations for the 
obese population. The equation underestimates the LBW of mor-
bidly obese individuals and even yields a flawed negative LBW. In 
2005, Janmahasatian et al. [5] suggested another equation be used 
to overcome the limitations of James’ formula. This equation is 
derived from dual-energy X-ray absorptiometry measured in men 
and women of various body weights and heights. Most metabolic 
activities occur in the lean body mass, and an increase in cardiac 
output is closely correlated with an increase in the LBW. There-
fore, the early distribution kinetics of the drug and clearance are 
influenced by cardiac output. 

Adjusted body weight 

The adjusted body weight (ABW) is defined as the IBW plus a 
proportion (40%) of the excess TBW compared to the IBW. The 
ABW is calculated as the IBW + 0.4 ×  (TBW – IBW). 

Table 1. Common Dosing Scalars

Dosing scalar Equation
Ideal body weight Males: 50 kg + 2.3 kg for each 2.54 cm (1 in) over 152 cm (5 ft)

Females: 45.5 kg + 2.3 kg for each 2.54 cm (1 in) over 152 cm (5 ft)
Lean body weight Males: 1.1 ×  TBW − 128 ×  (TBW / Ht)2

Females: 1.07 ×  TBW − 148 ×  (TBW / Ht)2

Fat-free mass [5] Males: (9.27 ×  103 ×  TBW) / (6.68 ×  103 + 216 ×  BMI)
Females: (9.27 ×  103 ×  TBW) / (8.78 ×  103 + 244 ×  BMI)

Body surface area (Mosteller’s adaptation) [6] [(height [cm] - TBW) / 3600]1/2

Pharmacokinetic mass [7,51] 52 / [1 + (196.4 ×  e-0.025 TBW − 53.66) / 100] (fentanyl only)
Corrected body weight or Adjusted body weight [17,34] IBW + 0.4 ×  (TBW – IBW)
Allometric scaling With allometric coefficient alpha, clearance =  beta ×  (TBW)alpha

BMI: body mass index, FFM: fat-free mass, Ht: height (cm), IBW: ideal body weight, LBW: lean body weight, TBW: total body weight (kg).
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Body mass index 

The BMI is widely used to determine the degree of obesity and 
is calculated as the ratio of the body weight (kg) to the height (m) 
squared. However, the BMI does not consider the body mass 
composition.  

Body surface area  

The body surface area (BSA) has been primarily used as a dos-
ing scalar for chemotherapeutic agents. The equations derived by 
Mosteller [6] are widely used. However, the BSA does not dis-
criminate between fat and lean body mass. 

Pharmacokinetic mass 

Due to the non-linear relationship between fentanyl clearance 
and the TBW, if fentanyl was administered based on the TBW, 
obese patients would be overdosed. Shibutani et al. [7] therefore 
devised a modified weight called pharmacokinetic mass, in which 
the mass scalar increases in proportion to the increase in clear-
ance. The ‘pharmacokinetic mass’ is reported to be highly cor-
related with the LBW. 

Allometric scaling 

Allometric scaling is a method that establishes a relationship 
between the body mass and pharmacokinetic or pharmacody-
namic parameters with a certain fixed exponent constant α, calcu-
lated as follows: Clearance =  β ×  (TBW)α. Alpha is usually called 
the allometric coefficient. Allometric scaling is designed to apply 
animal experiment results to humans or to assume pediatric doses 
from adult data [8–10]. Allometric scaling can sometimes be use-
ful in determining the drug dosages for obese patients. However, 
extrapolating analyzed data out of the range, such as data from 
non-obese to obese populations, has inherent problems. 

Changes in pharmacokinetic properties 

The various physiological and anthropometric changes that oc-
cur in obese patients affect pharmacokinetic parameters, such as 
distribution volume and clearance, which are used to determine 
drug concentration and dosage. The characteristic changes in pa-
tients with obesity that affect pharmacokinetic parameters, which 
are not present for those with a normal weight, include an in-
crease in lean body mass, muscle mass, fat mass, circulatory blood 
volume, and total body water. In addition, changes in the lipo-

philicity or hydrophilicity and protein binding of drugs affect 
pharmacokinetic parameters in obese patients [11,12]. 

The increase in fat mass associated with obesity increases the 
distribution volume of lipophilic drugs [13–15]. In a study of 
thiopental, which has high lipophilicity, the steady-state distribu-
tion volume and the elimination half-life in obese patients was 
found be considerably higher. [16]. A study of propofol also 
showed that the volume of distribution increases in proportion to 
the increase in the TBW [17]. While the volume of distribution of 
this lipophilic drug does increase as fat mass increases, it does not 
increase proportionally. The reason for this is related to changes 
in blood flow to the adipose tissue, which accounts for 5% of car-
diac output in non-obese patients, but it is reduced to 2% in obese 
patients [18]. 

The increase in the central volume of distribution associated 
with obese individuals leads to a rapid decrease in concentration 
during the initial distribution phase. The loading dose is mainly 
determined by the size of the central volume of distribution, 
which determines the changes in the initial concentration after 
administration. In addition, the increase in cardiac output, which 
is a commonly observed physiological change in obese patients, is 
another factor explaining low plasma concentrations in the dis-
tributive period [19,20]. 

Increased cardiac output plays an important role in the increase 
in the overall clearance of drugs, thus lowering the elimination 
half-life of the drug. The increase in cardiac output in patients 
with obesity is highly correlated with the increase in the LBW 
[21,22]. Increased cardiac output and increased LBW are associat-
ed with increased renal and hepatic blood flow, which in turn in-
crease the overall clearance and initial distributive clearance 
[23,24].  

The increase in cholesterol levels and free fatty acids in obese 
patients has been found to inhibit the binding of drugs to plasma 
proteins, such as albumin. There is also a disagreement, however, 
as binding of the drug to plasma proteins increases due to in-
creased levels of α-acid glycoproteins in obese patients [25–28]. 

Changes of pharmacodynamic properties 

Excess fat caused by obesity leads to disturbances in body me-
tabolism and inflammatory reactions and increases drug sensitiv-
ity [29,30]. Some studies have shown that obesity increases pain 
sensitivity, while other studies have found no adverse or pharma-
codynamic effects [31–33]. Cortinez et al. [34] did not find any 
changes in the pharmacodynamic parameters in obese patients. 
Dong et al. [35], however, reported a decrease in the 50% of maxi-
mal effective concentration in obese patients and an increased 

https://doi.org/10.4097/kja.21345480

Tae Kyun Kim · Obesity and anesthetic pharmacology



sensitivity to propofol. 
Considering that obesity affects both pharmacokinetics and 

pharmacodynamics, determining the dose of propofol based on 
the EEG processed monitor (e.g., BIS, entropy) should be consid-
ered. Subramani et al. [36] reported that the induction dose of 
propofol based on the BIS index was different from the induction 
dose based on LBW in morbid obese patients. In this study, com-
pared to the amount of propofol administered based on the LBW, 
a larger amount was administered when the dose was based on 
the BIS. These authors also reported that for those who were ad-
ministered propofol based on the LBW, 60% of them required an 
additional dose of propofol to obtain a sufficient depth of anes-
thesia. The Eleveld model also suggests that the effect-site equili-
bration rate constant (ke0) changes as the body weight changes, 
using the equation 0.146 ×  (weight [kg] / 70)-0.25. 

Target-controlled infusion model for the obese 
population 

Studies on a target-controlled infusion (TCI) model for the 
obese population have been conducted using several drugs, in-
cluding propofol and remifentanil [37–42]. If the obese popula-
tion was not included in the process of building a TCI model and 
not equipped into the anesthetic delivery pump, the exact target 
effect concentration cannot be obtained by calculating doses sim-
ply based on the TBW of an obese patient. 

However, some reports have stated that changing the weight 
scalar of the known TCI model to something other than the TBW 
improves the performance of the model in obese patients. Corti-
nez et al. [43] reported an improvement in the performance of the 
TCI model by simply switching the original weight scalar with an 
alternative weight scalar. They stated that the performances of the 
Shnider and Marsh models were dramatically improved after sub-
stituting the TBW with the ABW. La Colla et al. [40] proposed us-
ing a fictitious height, or an adjusted height, for the Minto model 
to offset the inaccurate influence of the LBW when the model is 
applied to obese individuals. 

However, these types of proposed shortcuts are not a definitive 
solution. Constructing a new pharmacokinetic model that in-
cludes data obtained from obese patients would be a more desir-
able approach. Eleveld et al. [44] and Kim et al. [42] presented in-
tegrative models for propofol and remifentanil, respectively, by 
gathering data from various pharmacokinetic studies that includ-
ed obese patients. 

Simulations 

Before administering drugs to obese patients, simulations based 
on pharmacokinetic or pharmacodynamic models are helpful for 
planning drug administration. A simulation model that includes 
the obese population would help clinicians discover unexpected 
errors and prepare for them in advance. Therefore, the Eleveld 
and Kim models were simulated to discover the differences in the 
pharmacokinetics of propofol and remifentanil between obese 
and non-obese individuals. 

It is clinically impractical to administer propofol and remifent-
anil independently at each target concentration without consider-
ation of the interaction. The interaction between propofol and 
remifentanil, therefore, should be considered in the simulation of 
obese patients. The target concentration of propofol and remifen-
tanil should be adjusted to reflect a real clinical situation in which 
an interaction of the drugs occurs. 

For this interaction, the hierarchical model proposed by Bouil-
lon et al. [45] was referenced. The target concentration for induc-
tion and maintenance of anesthesia was maintained at the target 
concentration combinations of the two drugs, achieving a rate of 
95% no response to laryngoscope intubation or hypnosis (Fig. 1). 
The resultant predicted concentration of each drug simulated by 
the scenario is plotted in Fig. 2. 

The Eleveld and Schnider models were compared for the 
propofol simulation, while the Minto and Kim models were com-
pared for the remifentanil simulation. In the Eleveld model, vari-
ous covariates are used to determine the pharmacokinetic and 
pharmacodynamic parameters. These covariates include the co-
administration of opioids and the participant’s health status (pa-
tient or healthy volunteer), among others. While all cases could 
not be covered by this simulation, the influences of weight and 
age were simulated. A simulation was performed for a healthy 
volunteer who was administered an opioid and remifentanil and 
was 170 cm in height. The ke0 from the Minto model was used as 
a reference for the Kim model, since it does not include the ke0. 
The purpose of the simulation was to show the changes in the to-
tal cumulative dose and infusion rate according to various BMIs 
and ages. 

The cumulative dose of the Eleveld model was larger than that 
of the Schnider model early in the TCI. This was because the 
Schnider model has a small and fixed central compartment vol-
ume, while the Eleveld model has a relatively larger central com-
partment volume, which requires a relatively larger amount of 
propofol at the beginning of the TCI to maintain the same target 
concentration (Fig. 3A). 

Later in the TCI infusion, however, the cumulative dose of the 
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Schnider model was found to increase more than that of the 
Eleveld model. As the BMI increased, however, the clearance of 
the Schnider model increased much more than that of the Eleveld 
model (Fig. 3B). The explanation for this finding is that with a rel-
atively high clearance, a higher dose of the drug is needed to 
maintain the same target concentration. This trend was signifi-
cantly more prominent in obese than in non-obese individuals 
(Fig. 4A). Therefore, when TCI is performed with the same target 
concentration, the initial infusion rate of the Eleveld model was 
faster but gradually decreased over time since the clearance was 
lower than that of the Schnider model (Fig. 4B). 

When the Minto and Kim models for remifentanil were com-

pared for people with a normal BMI, the central compartment 
volume and clearance did not appear to be different between the 
models. However, as the BMI increased, the central compartment 
volume and clearance according to the Minto model did not in-
crease in proportion to the BMI because the LBW of James’ equa-
tion was installed in every parameter of the Minto model. In 
James’ equation, LBW decreases with increasing body weight in 
morbidly obese individuals (Fig. 3C). However, the central com-
partment volume and clearance using the Kim model increased 
according to the increase in the BMI. The Kim model does not 
use James’ equation but rather applies the fat-free mass from the 
Janmahasatian equation, which is used to calculate the fast-pe-
ripheral compartment volume. The central compartment volume 
and clearance with the Kim model are generally predicted to be 
larger than those with the Minto model. As the BMI increased, 
the difference in the central compartment volume and clearance 
between the two models increased (Fig. 3D). Therefore, when a 
TCI is performed using the Kim model, the cumulative dose is 
predicted to be larger over time than that using the Minto model. 
The difference in the cumulative dose between the two models 
was larger in obese patients (Fig. 4C). The infusion rate was also 
higher in the Kim model, but both models showed similar trends 
throughout the simulation (Fig. 4D). 

An additional simulation considering the influence of age 
showed that the difference in the cumulative dose of propofol be-
tween the models increased with age. In the case of remifentanil, 
however, the difference in the cumulative dose between the two 
models remained constant for all age groups (Fig. 5).  
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Discussion 

Regardless of applying an appropriate mass scalar for induction 
and maintenance of anesthesia, the target concentration cannot 
be guaranteed by manual administration using a simple calcula-
tion of the dose. In other words, a holistic TCI device equipped 
with an appropriate pharmacokinetic and pharmacodynamic 
model is needed to control the concentration of anesthetic drugs. 
Drug infusions through the TCI system is theoretically the most 
accurate and fastest way to reach the target concentration, but it 
requires an accurate model to support it. Many pharmacokinetic 
and pharmacodynamic models, however, were created from data 
that did not include information of obese patients, and therefore 
cannot accurately predict concentrations of drug in blood in these 
patients. Recently, a few models have been introduced that can be 

applied to both obese patients and general patients [42,44]. 
The Eleveld model is a well-constructed model that can be used 

to administer more accurate concentrations of drugs to individual 
patients through the inclusion of various covariates relevant to ac-
tual clinical situations. Since the Eleveld model includes the use of 
opioids as a covariate, among others, this model may be a more 
practical model. When propofol is administered in clinical prac-
tice, opioids such as remifentanil are almost always administered 
together, and the two drugs may affect each other pharmacokinet-
ically and/or pharmacodynamically [46]. The propofol simulation 
conducted for this review also included covariates for opioid use 
to reflect the effect of co-administration of remifentanil. 

Based on the Eleveld model, the central compartment volume 
does not increase significantly (16.2%) with an increase in BMI. 
The clearance of obese patients, however, increases as the BMI or 
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weight increases (54.9%). Clinically, this means that if propofol is 
administered to obese patients during anesthesia induction with a 
bolus dose based on the TBW, an overdose may occur because of 
relatively small increase of central compartment volume. In the 
case of continuous infusions, however, TBW could be adopted as 
a dosing scalar for anesthesia even for obese patient as the clear-
ance of obese patient increase enough with the increase of TBW 
[17,34]. These observations are consistent with previous reports 
which have found that the increase in the volume of distribution 
is relatively small while the increase in clearance is prominent in 
obese [18,23,24]. 

Even though the best model can accurately predict concentra-
tions, it cannot take all clinical situations into account. Pharmaco-
kinetic changes in propofol can be influenced by various factors, 
such as very lean or underweight body types, laparoscopic sur-
gery, and a prone posture [47–50]. Propofol itself can cause phar-
macokinetic changes. The cardiac depression caused by propofol 
affects its own distribution and clearance. Therefore, rather than 
trying to discover every variable that may affect pharmacokinetics 
and create endless new models, it is essential that patients moni-
toring, such as the BIS, be used to confirm whether the purpose 
of the drug is achieved. 

However, how many models are currently available for TCIs? 
Most commercial infusion pumps are not equipped with the new 
models that have been built for obese patients. To apply a new 
TCI model suitable for obese patients, an infusion pump must be 
connected to a computer with TCI software, through which a 
pharmacokinetic/pharmacodynamic model suitable for obese pa-
tients can be run. Another method is to apply an appropriately 
modified scalar instead of using the patient’s actual height or 
weight in the model already installed in a commercial TCI pump. 
Through using the ABW instead of the TBW for the traditional 
Schnider and Marsh models, or inputting a fictitious height for 
the Minto model, replacing true patient data is a possible solution; 
however, modified scalars are not a perfect solution. 

In conclusion, simply administering an anesthetic drug based 
on body weight to obese patients is associated with a high risk of 
overdosing. Comorbidities associated with obesity can further in-
crease the risk of overdosing. To determine the appropriate dose 
for obese patients, it is important to understand how the pharma-
cokinetics and pharmacodynamics change as the body weight in-
creases. Factors that affect the pharmacokinetic changes in obese 
individuals include an increase in adipose tissue, LBW, extracellu-
lar fluid, and cardiac output.  

Several mass scalars, including the IBW and LBW, have been 
introduced to more appropriately calculate drug dosages for obese 
patients; however, there are no mass scalars that can be applied to 

all drugs and individuals. Therefore, it is important to carefully 
monitor the effects and side effects of the drugs during adminis-
tration.  
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