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Targeted RP9 ablation and 
mutagenesis in mouse 
photoreceptor cells by CRISPR-Cas9
Ji-Neng Lv1,2,*, Gao-Hui Zhou1,2,*, Xuejiao Chen1,2,*, Hui Chen1,2, Kun-Chao Wu1,2, Lue Xiang1,2, 
Xin-Lan Lei1,2, Xiao Zhang1,2, Rong-Han Wu1,2 & Zi-Bing Jin1,2

Precursor messenger RNA (Pre-mRNA) splicing is an essential biological process in eukaryotic cells. 
Genetic mutations in many spliceosome genes confer human eye diseases. Mutations in the pre-
mRNA splicing factor, RP9 (also known as PAP1), predispose autosomal dominant retinitis pigmentosa 
(adRP) with an early onset and severe vision loss. However, underlying molecular mechanisms of 
the RP9 mutation causing photoreceptor degeneration remains fully unknown. Here, we utilize the 
CRISPR/Cas9 system to generate both the Rp9 gene knockout (KO) and point mutation knock in (KI) 
(Rp9, c.A386T, P.H129L) which is analogous to the reported one in the retinitis pigmentosa patients 
(RP9, c.A410T, P.H137L) in 661 W retinal photoreceptor cells in vitro. We found that proliferation 
and migration were significantly decreased in the mutated cells. Gene expression profiling by RNA-
Seq demonstrated that RP associated genes, Fscn2 and Bbs2, were down-regulated in the mutated 
cells. Furthermore, pre-mRNA splicing of the Fscn2 gene was markedly affected. Our findings reveal 
a functional relationship between the ubiquitously expressing RP9 and the disease-specific gene, 
thereafter provide a new insight of disease mechanism in RP9-related retinitis pigmentosa.

Retinitis pigmentosa (RP [MIM 268000]) is a group of retinal degenerative disorders with high heritability and 
heterogeneity, affecting approximately 1 in 4,000 in dividuals1,2 and it is becoming the leading cause of irre-
versible midway blindness worldwide. In RP, progressive decline of retinal function leads to night blindness, 
peripheral vision loss, eventually completely loss of vision in advanced stage3. To date, at least 27 genes have been 
identified to associate with the adRP4,5. Among them, many genes are preferentially or exclusively expressed in 
the neuro-retina and/or retinal pigment epithelium. Notably, a group of spliceosome genes, including PRPF36, 
PRPF87, PRPF318, RP99, SNRNP20010, PRPF611, and PRPF412, are ubiquitously expressed and involved in the 
pre-mRNA splicing process.

Pre-mRNA is crucial for the posttranscriptional regulation in mammalian gene expression. Pre-mRNA splic-
ing reaction occurs in spliceosome which is composed of 5 small nuclear ribonucleoproteins (snRNPs), U1, U2, 
U4/U6, U5, and a large number of accessory protein factors13. The U4/U6-U5 tri-snRNP is a dynamic complex, 
of which structural rearrangements are critical for assembly as well as catalytic activation in the spliceosome. 
RP9 has been proven to affect the assembly and/or disassembly of tri-snRNP11. Graziotto et al. and Farkas et al. 
demonstrated that PRPF3, PRPF8 and PRPF31 mutations could cause dysfunction of RPE14,15. Interestingly, the 
RP9 caused adRP is classified as the type 216, which refers to parallel deterioration of both rod and cone func-
tion in the early stage of the disease9. However, underlying molecular mechanisms of the RP9 mutation causing 
photoreceptor degeneration remains fully unknown due to lack of appropriate disease model in vitro or in vivo.

Gene editing technology has been dramatically developed to target any genes. Clustered regularly interspaced 
short palindromic repeats (CRISPR) and CRISPR-associated nuclease 9 (Cas9)17,18, are the ideal way to generate 
in vitro mutational model. In CRISPR/Cas9 system, a short guide RNA (gRNA) contains about a 20 nt sequence 
and is capable of recognizing the targeted site followed by a protospacer adjacent motif (PAM) which recruits 
Cas9 to the targeted genome and induces the formation of site-specific double-stranded breaks (DSBs). The DSBs 
can be repaired by non-homologous end joining (NHEJ), leaving random insertions and deletions (indels), or 
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by homology-directed repair (HDR), resulting in precise genome editing. Previous studies have shown that this 
system could modify genome editing in eukaryotic cells with high efficiency19–24.

Herein, we successfully generated Rp9 gene knockout (Rp9-KO) and point mutation knock in (Rp9-KI) (Rp9, 
c.A386T, P.H129L) which was analogous to the reported one in the retinitis pigmentosa patients (Rp9, c.A410T, 
P.H137L) in 661 W retinal photoreceptor cells by using CRISPR/Cas9-mediated approach. Based on this cell 
model, we observed significant change in cell property and down regulation of RP associated genes, Fscn2 and 
Bbs2. Furthermore, we elucidated that pre-mRNA splicing of the Fscn2 gene was remarkably reduced in the 
mutated cells. Our study for the first time revealed a functional relationship between Rp9, the general splic-
ing factor, and FSCN2, the photoreceptor-specific gene, and provided a new insight of disease mechanism in 
Rp9-causing retinitis pigmentosa.

Results
Validation of cone photoreceptor-specific markers in 661 W Cells. To test 661 W cell line whether 
is rod photoreceptor or cone photoreceptor, cells were immunostaining for rhodopsin, blue opsin, red or green 
opsin and cone arrestin. The results showed that 661 W cells were positive with the cone photoreceptor-specific 
markers, red or green opsin (Fig. 1A), blue opsin (Fig. 1B) and cone arrestin (Fig. 1C), but negative with rod pho-
toreceptor-specific marker, rhodopsin (Fig. 1D). These results verified that 661 W cells were cone photoreceptor 
originated.

Site-specific DNA cleavage executed by Cas9/sgRNA in 661 W cells. To test whether Cas9/sgRNA 
could cleave targeted regions of Rp9, we designed two sgRNAs targeting different regions of Rp9 gene (Fig. 2A). 
Each Cas9/sgRNA was transfected into 661 W cells and a T7EI assay was performed to determine the cutting 

Figure 1. Immunocytochemical staining of 661 W cells. Cells grew on glass cover slips and were fixed with 
cold 4% PFA, immunolabeled with primary antibodies against red/green opsin (A), blue opsin (B), cone 
arrestin (C) and rhodopsin (D). DAPI (blue) was used to detect the nuclei. Scale bar: 25 μ m.
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efficiency of each sgRNA. The results indicated that sgRNA-1 and sgRNA-2 designed to target the Rp9 gene 
were highly active, inducing mutations at frequencies of 23% for sgRNA-1 and 19% for sgRNA-2 (Fig. 2B). 
Furthermore, no mutation was detected using the T7EI assay when cells were transfected with Cas9 plasmid 
alone. Taken together, these results suggested that sgRNA-1 and sgRNA-2 efficiently targeted the Rp9 and led to 
NHEJ-mediated indels at target sites.

Generation of Rp9-KI and Rp9-KO in 661 W cells. Encouraged by the high efficiency of Cas9/sgRNAs, 
we explored whether these Cas9n pairs could catalyze site-specific DNA cleavage and HDR in 661 W cells. 661 W 
cells were transfected with donor vector and Cas9n pairs targeting the exon 5 of Rp9 gene. 3days later, transfected 
cells were selected for further 7 days with 1.0 mg/ml G418. After selection, cells were digested and 500 cells were 
transferred to a 10-cm dish. 2 weeks later, clones were picked out and propagated for another week. After prop-
agation, 22 clones were randomly selected for genotyping. The genomic DNA of 22 clones was analyzed by PCR 
amplification with specific primers showed as Supplemental Table 1. Figure 2C illustrated that clone 5 contained 

Figure 2. Genome editing via the type II CRISPR system in 661 W cells. (A) Schematic illustrating Cas9n 
double nicking the mouse Rp9 locus and strategy of Cas9n pairs- mediated HDR. mRp9sg-1 and mRp9sg-2 
sequences are shown in red. Representative cleavage sites are shown by a red triangle for 661 W cells transfected 
with Cas9n pairs matching target-1 and 2. The targeting vector includes homology arms (HA) flanking a CMV-
Neomycin element and Rp9 point mutation. (B) SURVEYOR assay for Cas9 and sgRNA-mediated indels. 661 W 
cells were transfected by empty vectors or vectors expressing mRp9sg-1 or mRp9sg-2 to test cutting efficiency 
in the endogenous Rp9 locus. The DNA in the specific cells mentioned above were extracted and performed by 
PCR and T7EI assays. The percentage of indels was quantified by the ImageJ software. (C) PCR genotyping. As 
shown, 1 clone (marked with red number) out of 22 randomly selected clones had the expected Rp9 mutation 
insertion. (D) Representative Sanger sequencing results of the PCR amplicons from 22 clones showing point 
mutation and insertion (red).
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two different amplification products whereas other clones contained only one amplification product. Sequencing 
result of the upper bands of clone 5 revealed the point mutation, c.A386T (Fig. 2D). The result demonstrated that 
the clone 5 was a heterozygous Rp9-KI cell. Also, we sequenced the other 21 clones, the results showed that five 
clones were heterozygous Rp9-KO cells which only one allele was mutated with nucleotide indels thus causing a 
frameshift mutation. Thus Clone 12 would represent for Rp9-KO (Fig. 2D).

Decreased proliferation and migration by Rp9-KI and Rp9-KO. We sought to detect whether these 
Rp9 mutations had any biological effects on 661 W cells. Rp9-KI and Rp9-KO showed inhibition of cell growth 
as compared with control based on the MTT assay (Fig. 3A). A reduction in growth rate was detected at day 3. 
At day 4, the growth rate decreased 27.6% in Rp9-KI and 25.6% in Rp9-KO cells compared with control group 
(n =  3, P <  0.001, Fig. 3A). Western blot analysis confirmed that proliferation-related gene Ccnd2 expression was 
remarkably reduced in Rp9-KI and Rp9-KO cells (Fig. 3B). We then performed in vitro scratch assay to examine 
whether Rp9 mutations were involved in the regulation migration of 661 W cells. A dramatic migration reduction 
was observed in Rp9-KI and Rp9-KO cells (Fig. 3C).

RNA-seq and differential expression analysis of Rp9-KI and Rp9-KO cells. Three libraries 
were generated from 661 W, Rp9-KI and Rp9-KO groups and summaries of RNA-Seq analyses are shown in 
Supplement Table 3. About 42.66 (661 W), 38.56 (Rp9-KI), and 39.83 (Rp9-KO) million clean reads were obtained 
for each transcriptome. The Q30 scores (the average quality value) were above 93%. The RNA-Seq raw reads have 
been submitted to the NCBI SRA database (accession number: SRR5131155, SRR5131263, and SRR5131264).

Through RNA-Seq, a total of 14006, 13885 and 13226 expressed genes were detected in 661 W, Rp9-KI and 
Rp9-KO cells respectively. Among them, 784 and 934 genes were differentially expressed in Rp9-KI and Rp9-KO 
cells compared with 661 W cells (Fig. 4A,B). Overlap of differentially expressed genes containing down-regulated 
RP associated gene, Fscn2, identified by Rp9-KI and Rp9-KO cells were presented (Fig. 4C). We used qRT-PCR 
to confirm the expression of Fscn2 and found it to be markedly down-regulated in Rp9-KI and Rp9-KO cells 
(Fig. 5A). We also used qRT-PCR to quantify other RP associated genes which were significant down-regulated 

Figure 3. Rp9 gene mutation inhibited the proliferation and migration of 661 W cells. (A) MTT cell 
proliferation assay was performed at indicated days. Data at each time point were expressed as mean ±  SEM 
based on results obtained from triplicates. **P <  0.01, ***P <  0.001. (B) Rp9 gene mutation down-regulated 
Ccnd2 expression. 661 W, Rp9-KI and Rp9-KO cell lysate were prepared and used for Western blot analysis. 
Gapdh was used as an internal loading control. The band intensity was measured with ImageJ software, the fold 
change was normalized to the level of 661 W group. Data are representative of three independent experiments. 
**P <  0.01. (C) In vitro scratch assays were performed to evaluate the migration potential of 661 W, Rp9-KI and 
Rp9-KO cells.
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in Rp9-KI or Rp9-KO cells (Fig. 4D) and found another gene, Bbs2, also significantly decreased in Rp9-KI and 
Rp9-KO cells (Fig. 5A).

RP9 mutagenesis affects pre-mRNA splicing of photoreceptor gene FSCN2. Previous report 
showed that PRPF31 mutation inhibited splicing of retina-specific gene, RHO25. In order to confirm whether RP9 
mutation inhibited retina-specific splicing substrate genes expression, we selected Fscn2 and Bbs2 for the further 
experiments. Fscn2 and Bbs2 pre-mRNA splicing were examined using RT-PCR with specific primers (Fig. 5B, 
Supplemental Table 1). As shown in the Fig. 5C, Fscn2 splicing was significantly inhibited in Rp9-KI and Rp9-KO 
compared with control group. Quantification of splicing efficiency obtained from three independent experiments 
was shown in Fig. 5D. However, Rp9-KI and Rp9-KO did not affect the Bbs2 splicing, because there was no signif-
icant change in the ratio of pre-mRNA in splicing products (Fig. 5D).

Discussion
We have demonstrated that RP9 patient-specific rod photoreceptors conferred degeneration in vitro by using 
patient-specific induced pluripotent stem cells26. However, underlying molecular mechanisms of the RP9 muta-
tion causing photoreceptor degeneration remains unknown. Pre-mRNA splicing is crucial for the posttranscrip-
tional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic 
organisms with limited genes27. Mutations that interfere with splicing play an important role in human eye dis-
ease28–30. Here we have shown that proliferation and migration significantly decrease in the Rp9 mutant 661 W 
photoreceptor cells. RP associated genes, Fscn2 and Bbs2, both are markedly down-regulated in the mutated cells. 
Further investigation indicated that pre-mRNA splicing of the Fscn2 gene was markedly reduced.

Figure 4. RNA-seq analyses detected gene expression changes in Rp9 mutant cells. (A) Volcano plot showing 
genes differentially expressed in Rp9-KI compared with control group. Red dots show the 784 genes with a 
|log2FC| >  1 and FDR < 0.05. (B) Volcano plot showing genes differentially expressed in Rp9-KO compared 
with control group. Red dots show the 934 genes with a |log2FC| >  1 and FDR < 0.05. (C) Overlap of differential 
gene expression betweenRp9-KI and Rp9-KO group. Red dots show the Fscn2 gene down-regulated in both 
groups. (D) Heatmaps present RP associated gene expression in Rp9-KI and Rp9-KO group.
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In this study, we successfully generated Rp9-KI (HDR) with an efficiency of 4.5% and Rp9-KO (Indels) with 
an efficiency of 22.7%, which was consistent with reports from other groups. For example, Mali et al. reported 
10–25% indel rates in 293 T cells in 201320. Likewise, in mouse embryonic stem cells study, the efficiency of 
NHEJ-mediated knock-out was 28–50%, whereas the efficiency of HDR-mediated knock-in was below 10%23. 
Importantly, Rp9-KI and RP9-KO resulted in inhibition of cell proliferation and migration.

Previous work by Yuan et al. demonstrated that PRPF31 mutation could inhibit RHO splicing25. Through 
RNA sequencing, we confirmed the expression of Fscn2 markedly down-regulated in Rp9-KI and Rp9-KO cells. 
Fscn2, actin-bundling proteins, is a photoreceptor-specific protein of fascin family, which plays an important 
role in photoreceptor disk morphogenesis. A frame-shift mutation in FSCN2, 208delG, was reported in Japanese 
adRP patients31. A mouse model carrying a targeted disruption of Fscn2 showed progressive photoreceptor 
degeneration32.

RT-PCR results showed that the 661 W cell had normal pre-mRNA splicing of Fscn2, whereas Rp9-KI and 
Rp9-KO cells inhibited this splicing progress. Our results were consistent with those recently reported by Mordes 
et al., who found dominant-negative effect of PRPF31 mutation on FSCN2 pre-mRNA splicing33. However, Maita 
et al. reported that RP9 p.H137L mutation had no effect on E1A splicing34. This might suggest that Rp9 only 
inhibits a fraction of gene splicing. Our experiments revealed a functional link between ubiquitously expressed 
Rp9 gene and the expression of the retina-specific gene, Fscn2. Our results that Rp9-KI and Rp9-KO blocking 
pre-mRNA splicing of Fscn2 provided a new insight for the photoreceptor-specific phenotype of RP9 mutations. 
Defected Fscn2 gene products may contribute to photoreceptor cell death.

We also detected the RP associated gene, Bbs2, markedly down-regulated in Rp9-KI and Rp9-KO cells. Our 
result showed that Rp9-KI and Rp9-KO did not affect the Bbs2 splicing. It demonstrated that not all splicing 
events were equally sensitive to Rp9 mutation. Rp9 mutants may inhibit pre-mRNA splicing of a subset of photo-
receptor genes, such as Fscn2 intron 3 and intron 4, but not other splicing events such as Bbs2 intron 8 and intron 10.

In summary, we have shown that Rp9 mutations obviously inhibit cell proliferation and migration. 
Furthermore, the splicing of adRP associated gene, Fscn2, is also significantly inhibited in Rp9 mutation cells. 
Our results on RP9 provide an explanation why the mutations in the ubiquitously expressed splicing factors can 
cause adRP.

Figure 5. Rp9 gene mutation significantly affects Fscn2 pre-mRNA splicing. (A) qRT- PCR analysis of Fscn2 
and Bbs2 transcripts in 661 W, Rp9-KI and Rp9-KO cells. Relative expression levels of mRNA were normalized 
against Gapdh. ***P <  0.001. (B) Genomic structures of Fscn2 and Bbs2 genes and primers used for RT-PCR. 
(C) Effects of Rp9 gene mutation on the pre-mRNA splicing of Fscn2 intron 3, intron 4 and Bbs2 intron 8, intron 
10. RT-PCR was used to detect the splicing products and corresponding pre-mRNA using specific primers as 
depicted in panel B. (D) Quantification of Fscn2 and Bbs2 splicing efficiency by measuring the ratio of mRNA to 
pre-mRNA using ImageJ from three independent experiments. *P <  0.05.
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Materials and Methods
Donor vectors and sgRNA. To construct donor templates, Rp9 fragments and CMV-Neo were amplified 
with Phanta Max Super-Fidelity DNA Polymerase (Vazyme Biotech Co.Ltd, Nanjing, China) using gene-specific 
primers (Supplemental Table 1). Rp9 fragments were cloned into pEASY-Blunt Simple Cloning Vector (pEASY-
Rp9), and then CMV-Neo was cloned into SacI sites of pEASY-Rp9 (Supplemental Table 2). sgRNAs of mRp9 
were ordered, annealed, phosphorylated and cloned into the BbsI-digested Cas9 nickase vector (pX335, Addgene 
plasmid ID: 42335) and Cas9 vector (pX330, Addgene plasmid ID: 42230).

Cell culture. Cone-derived cell line (661 W) originated from a transgenic mouse line with retinal tumor35 
was cultured in DMEM medium (Gibco, Carlsbad, USA) supplemented with 10% heat-inactivated FBS (Gibco, 
Carlsbad, USA)and 100 μ g/mL penicillin/streptomycin at 37 °C in a humidified atmosphere of 5% CO2. 661 W 
cells were plated into 6-well plates for transfection. After twenty four hours, cells were replaced with new com-
plete medium and the DNA mixed with FuGENE HD Reagent (Roche, Basel, Switzerlands) in Opti-MEM 
(Gibco, Carlsbad, USA) according to the manufacturer’s manual. For G418 selection, 661 W cells transfected with 
px335-mRp9sg1, px335-mRp9sg2 (Cas9n pairs) and donor vector were selected with 1 mg/ml of G418.

Genomic DNA isolation, amplication and T7EI assay. To validate the mRp9 sgRNAs, the genomic 
DNA of each Cas9/gRNA-transfected cells was extracted using the Blood/Cultured cells DNA Kit (Simgen 
Biotech Co.Ltd, Hangzhou, China) following the manufacturer’s instruction. The regions containing thetar-
get sites were amplified by PCR using Phanta Max Super-Fidelity DNA Polymerase with gene-specific primers 
(Supplemental Table 1) under the following conditions: 95 °C for 3 min; 30 cycles (95 °C for 15 s, 58 °C for 15 s, 
72 °C for 30 s) and 72 °C for 5 min.

The T7EI assay was performed according to the manufacturer’s instructions. In brief, 20 μ l of PCR product was 
denatured and annealed by heating at 95 °C for 5 min and ramped down to 25 °C at 6 °C/min. Then, 5 μ l annealed 
samples, 1.1 μ l NEBuffer 2 (10x), 0.5 μ l T7EI and 4.4 μ l ddH2O were added together and incubated at 37 °C for 
30 min. Cleaved DNA fragments were separated on 1.5% agarose gels and the DNA concentration of each band 
was quantified using the ImageJ software. Percent values of indels were calculated as described15. For genotyping 
PCR, genomic DNA was amplified using 2 ×  Super Taq PCR MasterMix (BioTeke Corporation, Beijing, China) 
with primers listed (Supplemental Table 1).

Immunocytochemistry. 661 W cells were fixed in 4% paraformaldehyde (PFA) for 15 minutes. Cells were 
permeabilized and blocked in PBS containing 4% BSA and 0.5% Triton X-100 for 1 hour at room temperature, 
incubated overnight with primary antibody at 4 °C, and then subjected to immunohistochemistry as previously 
described36.

Primary antibodies were rabbit anti-opsin blue (1:500; chemicon, AB5407), rabbit anti-opsin red/green 
(1:500; chemicon, AB5405), rabbit anti-cone arrestin (1:500; Millipore, AB15282) and mouse anti-rhodopsin 
(1:10000; sigma, o4886).

Cell proliferation assay. A total of 5 ×  103 661 W cells were seeded in 96-well plates with 100 μ l DMEM 
containing 5% FBS and 100 μ g/mL penicillin/streptomycin. Cell proliferation was assessed by MTT assay. MTT 
assay was carried out according to the method by Mosmann37. Briefly, 10 μ l of MTT solution was added into 
each well and the cells were incubated for 4 hours. Then medium was discarded and supplied with 150 μ l DMSO. 
Finally, Cell proliferation was assessed by measuring the absorbance at 490 nm using Spectra Max M5 (Molecular 
Devices, Sunnyvale, CA, USA).

In Vitro scratch assay. In Vitro Scratch Assay was performed as previously reported38. Simply, cells were 
scratched with a 200 μ l pipet tip. Remove the debris by washing the cells once with 1 ml of DPBS and then replace 
with 2 ml DMEM supplemented with 2% FBS and 100 μ g/mL penicillin/streptomycin. Photograph was taken 
immediately after scratching and at 24 or 48 hours after culture. The ability of migration was evaluated by com-
paring with the migration rate in the center of the gap.

Western blot analysis. Total protein extracts were prepared using cell lysis buffer containing protease inhib-
itors (1 mM phenylmethylsulfonyl fluoride, 2 mM leupeptin, 1 mM pepstatin, 80 mM aprotinin). Protein contents 
were quantified by the Bradford reagent according to the manufacturer’s instructions. Equal amounts of proteins 
were separated by 12% SDS-PAGE and transferred to a nitrocellulose blotting membrane (PALL Corporation, 
Port Washington, USA). Membranes were blocked for 1 h in 1 ×  TBS containing 10% non-fat milk, 0.1% Tween 
20 and incubated overnight with primary antibodies: rabbit anti-Ccnd2 (Santa Cruz Biotechnology, Santa Cruz, 
USA), mouse anti-Gapdh (KangChen Bio-tech Inc., Shanghai, China). Then membranes were incubated with 
IRDye®  680-conjugated goat anti- rabbit, IRDye 800CW-conjugated goat anti-mouse. Fluorophore-conjugated 
antibodies were detected using the Odyssey®  Imager (LI-COR Biosciences Inc., Lincoln, USA).

RNA library construction and sequencing. RNA was extracted from the 661 W cells, Rp9-KI and 
Rp9-KO mutated cells using TRIzol reagent (Invitrogen, San Diego, USA). RNA concentration and purity were 
measured with NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, USA). RNA integ-
rity was assessed using the RNA Nano 6000 Assay Kit of Agilent Bioanalyzer 2100 system (Agilent Technologies, 
Santa Clara, USA).

High-quality RNA was sent to Biomarker Technologies Corporation (Biomarker Technologies Corporation, 
Beijing, China) for cDNA libraries construction and sequencing. The RNA-Seq libraries were constructed 
according NEBNext UltraTM RNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, USA) fol-
lowing manufacturer’s recommendations. Briefly, mRNA was purified by NEBNext Poly (A) mRNA Magnetic 
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Isolation Module. The isolated mRNA was fragmented and used to synthesize the first cDNA. Second strand 
cDNA synthesis was generated using DNA Polymerase I and RNase H. The double-stranded cDNAs were puri-
fied by Agencourt AMPure XP system (Beckman Coulter, Brea, USA) and subjected to end repair and adapter 
ligation. The ligation products were enriched by PCR amplification and purified using Agencourt AMPure XP 
system. Sequencing reactions were carried out on the Illumina HiSeq 2500.

Transcriptome analysis and identification of differential gene expression. The raw reads were 
firstly processed through in-house perl scripts. Clean reads were obtained by removing reads containing adapter 
sequences, unknown nucleotides> 5%, low quality reads. The clean reads were mapped to mouse genome (mm10) 
with TopHat239. Gene expression levels were estimated using fragments per kilobase of exon per million frag-
ments mapped (FPKM).

Prior to differential gene expression analysis, the read counts of each sequenced library were adjusted by 
edgeR program package40. DEGseq41 was performed to evaluate differential expression between control, Rp9-KI 
and Rp9-KO groups. The false discovery rate (FDR) control method was applied to define the threshold of the 
P-value to compute the level of significance. Significantly differential expression was accepted as |log2FC| >  1 and 
FDR <  0.05.

RT-PCR. For reverse transcription, isolated RNA was treated with DNase I (Thermo Scientific, Rockford, 
USA) according to the manufacturer’s manual. The DNase I-treated RNA was transcribed into cDNA using 
MMLV Reverse Transcriptase (Promega, Madison, USA). The cDNA was subsequently used as template to per-
form RT-PCR and qRT-PCR.

RT-PCR was performed according to the following procedures: 12.5 μ l 2× Super Taq PCR Master Mix, 0.5 μ l 
cDNA, 11 μ l ddH2O, 0.5 μ l forward primer (10 μ M), 0.5 μ l reverse primer (10 μ M) (Supplemental Table 1), reac-
tion conditions including 95°C for 3 min; 40 cycles (95 °C for 15 s, 58 °C for 15 s, 72 °C for 30 s) and 72 °C for 5 min.

qRT-PCR was performed as described in the method of Fast start universal SYBR Green Master (Roche 
Molecular Biochemicals, Mannheim, Germany) with 7500 Real-Time PCR System. Gapdh expression was used 
for normalization. The specificity of PCR products was verified by melt curve analysis. Sequences of primers are 
shown (Supplemental Table 1).

Statistical analysis. Data were expressed as means ±  SEM and analyzed by two-way analysis of variance 
(ANOVA) with GraphPad. Differences were considered to be statistically significant at a P value of 0.05 or less.
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