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Abstract

Background: Hypercortisolemia has been suggested as a primary hormonal mediator of whole-body catabolism following
severe burn injury. Ketoconazole, an anti-fungal agent, inhibits cortisol synthesis. We, therefore, studied the effect of
ketoconazole on post-burn cortisol levels and the hyper-catabolic response in a prospective randomized trial (block
randomization 2:1).

Methodology/Principal Findings: Fifty-five severely burned pediatric patients with .30% total body surface area (TBSA)
burns were enrolled in this trial. Patients were randomized to receive standard care plus either placebo (controls, n = 38) or
ketoconazole (n = 23). Demographics, clinical data, serum hormone levels, serum cytokine expression profiles, organ
function, hypermetabolism measures, muscle protein synthesis, incidence of wound infection sepsis, and body composition
were obtained throughout the acute hospital course. Statistical analysis was performed using Fisher’s exact test, Student’s t-
test, and parametric and non-parametric two-way repeated measures analysis of variance where applicable. Patients were
similar in demographics, age, and TBSA burned. Ketoconazole effectively blocked cortisol production, as indicated by
normalization of the 8-fold elevation in urine cortisol levels [F(1, 376) = 85.34, p,.001] with the initiation of treatment.
However, there were no significant differences in the inflammatory response, acute-phase proteins, body composition,
muscle protein breakdown or synthesis, or organ function between groups.

Conclusions: Both groups were markedly hypermetabolic and catabolic throughout the acute hospital stay. Normalization
of hypercortisolemia with ketoconazole therapy had no effect on whole-body catabolism or the post-burn inflammatory or
hypermetabolic response, suggesting that hypercortisolemia does not play a central role in the post-burn hypermetabolic
catabolic response.
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Introduction

The hypermetabolic response to a severe burn, defined as a

burn encompassing greater than 40% of the total body surface

area (TBSA), evokes a catabolic state that persists long after the

initial insult [1]. This response is characterized by futile substrate

cycling, increased oxygen consumption, glycogenolysis, proteoly-

sis, and lipolysis [1–3]. The primary mediators of this deleterious

response have been thought to be endogenous catecholamines and

cortisol [1,4]. Urine cortisol levels are elevated 7–10 fold after

severe burn and remain elevated beyond the acute phase [4,5].

Hypercortisolemia is associated with whole-body catabolism,

inflammation, and immune dysfunction [4,6–8]. Under normal

conditions, there is a negative feedback loop in the hypothalamus-

pituitary-adrenal (HPA) axis. After severe stress, the HPA axis’ role

is to maintain hemodynamic stability and physiologic homeostasis

by controlling the release of acute-phase proteins. In response to

severe physiologic stress, corticotrophin-releasing factor and

arginine vasopressin, which are synthesized in the hypothalamus,

activate circulating adrenocorticotropic hormone (ACTH). ACTH

induces the synthesis of cortisol from the adrenal cortex. Increased
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levels of cortisol activate glucocorticoid receptors, which terminate

the release of ACTH [9]. After severe burn injury, the negative

feedback loop between cortisol and ACTH is deranged [10]. This

physiologic, metabolic disruption leads to persistent elevations in

cortisol in severely burned pediatric patients.

Ketoconazole is an imidazole anti-fungal agent that has been

shown to diminish steroid synthesis by blocking P450-dependent

enzyme systems [11,12]. It has been shown to be effective in

reducing both stimulated and basal cortisol secretion in both

normal and Cushing’s (hypercortisolemic) patients [13,14]. Keto-

conazole also reduces the incidence of acute respiratory distress

syndrome (ARDS) in critically ill patients and shortens length of

ICU stay [15]. Preliminary studies in adult burn patients have

shown that urinary cortisol excretion is decreased after one week

of ketoconazole administration [8]. Although patients do not have

completely normal urinary cortisol excretion, they have reduced

muscle protein turnover and improved muscle protein balance [8].

The effect of ketoconazole administration on immune function,

organ function, or hormonal balance has not been fully

investigated in this patient population. Moreover, to our knowl-

edge, the effect of inhibiting excess cortisol production has not

been evaluated in the pediatric burn population. We hypothesized

that the administration of ketoconazole to block excess cortisol

production in severely burned pediatric patients during the acute

hospitalization would attenuate inflammation, hypermetabolism,

and protein wasting.

Results

Demographics
Two-thousand eight-hundred twenty-one patients were assessed

for eligibility to be enrolled in our research studies. We enrolled

516 patients (Fig. 1, Consort Diagram), 455 of whom were

enrolled in studies of other anti-catabolic agents. Of the 38

patients allocated to placebo, 6 were excluded because they

received anti-catabolic agents, leaving 32 patients in the standard

of care/placebo group. Of the 23 patients randomized to

ketoconazole, 6 were excluded. One patient did not receive the

drug, while 5 were given drug under non-optimal conditions,

leaving 17 patients that received standard of care plus ketocona-

zole treatment [per os (p.o.) on an acidic stomach] in the treatment

group. There were no differences in age, gender, length of ICU

stay, burn size, third-degree burn, length of ICU stay per percent

burn, number of required operations, or time between operations

between groups (Table 1). Incidence of inhalation injury was

comparable in both groups (Table 1). Ketoconazole administra-

tion did not decrease the incidence of pneumonia, sepsis, or multi-

organ failure (MOF) (Table 1).

Cytokines, Hormones, and Proteins
Urinary cortisol was increased 8 fold after severe burn injury

(Fig. 1). Ketoconazole treatment decreased urinary cortisol

excretion to normal levels [F(1, 376) = 85.34, p,.001]. This effect

was evident by post-burn day 8 [F(7, 376) = 8.21, p,.001] (Fig. 2).

Catecholamine levels were significantly elevated after severe burn.

Ketoconazole treatment had no effect on urine catecholamine

levels [F (1, 329) = 1.08, p = .30] (norepinephrine shown in Fig. 3).

Confirming previous studies, we found that severe burn injury

induced a vast inflammatory response. Ketoconazole did not alter

any of the 17 serum cytokines measured (not shown). Serum acute-

phase proteins were physiologically deranged throughout the acute

hospitalization, but were not different based on treatment group.

There were no differences in serum IGF-1, IGFBP-3, or rhGH

between the groups. There were no differences in estrogen, free or

bound testosterone, or free or bound progesterone levels between

the groups. There were no significant or sustained differences in

serum complement C3, a2-macroglobulin, haptoglobin, or C-

reactive protein. Ketoconazole had no effect on triglycerides or

free fatty acids.

Adrenocorticotropic hormone (ACTH or Cosyntropin) chal-

lenge tests showed no differences in responses in either patient

group (Table 2). Both treatment groups were adrenally competent

and responded to the challenge according to established guidelines

[16].

Indirect Calorimetry
As previously reported, burn injury increases resting energy

expenditure (REE), indicating a vast hypermetabolic response. In

this study, control patients demonstrated a decrease in REE, as

predicted by the Harris-Benedict equation, from 14867%

predicted at admission to 13967% predicted at discharge (delta

29% REE) (Fig. 4a). Ketoconazole-treated patients exhibited an

increase in predicted REE from 143611% at admission (before

treatment) to 144611%, although this was not statistically

significant (delta +1% REE), indicating that ketoconazole treat-

ment had no effect on REE from admission to discharge when

compared to controls.

Muscle Protein Synthesis
Stable isotope infusion studies were used to measure muscle

protein synthesis and breakdown to determine net protein balance.

Burned children had a negative net protein balance in skeletal

muscle at the time of the first study, at one week post admission.

Peripheral muscle catabolism further increased towards the second

study, which was conducted around 3–4 weeks post admission.

There were no differences between control and ketoconazole for

net protein balance, protein synthesis, or the fractional synthetic

rate of muscle protein synthesis (Fig. 4b).

Body Composition
Severe burn causes marked changes in body composition during

acute hospitalization. Both control and ketoconazole patients

experienced a 1% loss in lean body mass (LBM) during the study

period. Control patients lost 2% of bone mineral density (BMD)

and 4% of bone mineral content (BMC), while ketoconazole-

treated patients lost 4% of their BMD and 8% of BMC (Fig. 3c).

Control patients experienced 6% gains in whole-body fat, though

this was not significantly different than the 9% gains in whole-

body fat experienced by drug-treated patients (Fig. 3c).

Organ Function
In the control group, liver size markedly increased after injury.

Ketoconazole did not attenuate this increase in liver size

compared to the control treatment (data not shown).

Predicted cardiac output (CO), cardiac index (CI), predicted

heart rate (HR), predicted stroke volume (SV), and cardiac work

were altered in burn patients. Ejection fraction (EF) was preserved

in severely burned pediatric patients. Ketoconazole had no effect

on predicted CO, CI, predicted HR, or predicted SV. Ketoco-

nazole treatment had no effect on cardiac function (data not

shown).

We further examined serum markers of organ function and

homeostasis. We found that burn increased creatinine, BUN, and

total bilirubin levels, while burn was associated with decreased

total protein levels. Ketoconazole treatment did not have any

effect on liver or renal function compared to the control treatment

(data not shown).

Ketoconazole Post-Burn
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Discussion

Major thermal injury is followed by a profound catabolic

response that persists for years after injury [1]. This catabolic state

after injury leads to increased risk for infection, severe muscle

wasting, morbidity, and mortality. The response has been thought

to be mediated by increased plasma catecholamines, glucagon,

and cortisol [4]. If left unabated, patients can have severe cardiac

stress, insulin resistance, and persistent derangements in structure

and function of vital organs [1,4,17]. It has been postulated that

excess cortisol, compounded by prolonged muscular inactivity,

increases skeletal muscle protein breakdown in this patient

population [18–21]. This study was designed to reveal whether

ketoconazole treatment attenuates the hypercatabolic and inflam-

matory response to severe burn trauma by decreasing cortisol

synthesis. The principal findings in this study were that

ketoconazole successfully decreased the excretion of urinary

cortisol. However, it did not improve the hypermetabolic or

catabolic condition of the patient population studied.

Ketoconazole blocks the 14-demethylation of lanosterol, thus

preventing its conversion to cholesterol [12,22]. It has been shown

to block steroid production and cortisol production [12]. Based on

the results of this study, it may be incorrect to say that

ketoconazole blocks steroid production, but rather, it interferes

with steroid synthesis [23]. Forty-nine patients were included in

this study, with 17 receiving ketoconazole enterally at a dose of

5 mg/kg every 12 h. These 17 patients had a significant decrease

in urinary cortisol excretion with ketoconazole treatment when

compared to controls. Serum cortisol levels were not affected by

ketoconazole treatment (data not shown). Of note, the normal

circadian rhythm for serum cortisol is physiologically deranged

and lost after severe burn injury, making serum cortisol an

inaccurate measure of the total daily production of cortisol in our

patients [24,25]. Instead, we measured urine cortisol, a more

reliable measurement of the HPA axis in our patient population

[26]. There were no significant differences in the patient

demographics in the two arms of the study. Adrenal function

was assessed in all patients involved in the study by ACTH

challenge tests. None of the patients in this study had clinical signs

or symptoms of adrenal insufficiency (no response to ACTH

challenge tests). Hypercortisolemia has been shown to contribute

to reduced T-helper lymphocyte proliferation and immunocom-

petence [27]. Here, patients receiving ketoconazole did not have a

lower incidence of minor infections (p..05). In addition, though

ketoconazole is an anti-fungal agent, there were no significant

differences in the numbers of patients with sepsis or MOF.

Ketoconazole treatment did not decrease REE and thus,

hypermetabolism. Both patient populations had REE that was

significantly higher than normal values throughout the study

period. Excess cortisol has been linked to increases in REE [5,18].

In this study, muscle protein catabolism was elevated in control

burn patients (237657 nmol/100 ml leg/min). In the ketocona-

zole-treated burn patients, cortisol was reduced to normal levels,

but muscle protein catabolism remained elevated (236654 nmol/

100 ml leg/min). Muscle protein synthesis is also elevated in burn

patients to compensate for the increased catabolism, but the net

Assessed for eligibility 
2000-2010 (n= 2821)

Allocated to Control (n=38)
• Received allocated intervention (n=32)
• Received anti-catabolic agent (n=6)

Allocated to Ketoconazole (n=23)
• Received allocated intervention (n=22)
• Did not receive allocated intervention (n=1)

Lost to follow up (n=0)
Discontinued intervention (n=0)

Lost to follow up (n=0)
Discontinued intervention (n=0)

Analyzed (n=32)
• Excluded f rom analysis (n= 0)

Analyzed (n=17)
• Excluded f rom analysis (n=5) – did not 

receive drug on an acidic stomach.

Enrollment criteria not met (n= 2305)

Patients Enrolled 
(516)

Randomized to other trials (455)

Figure 1. Consort Diagram.
doi:10.1371/journal.pone.0035465.g001
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muscle catabolism was similar with or without ketoconazole

treatment (259641 vs.224623 nmol/100 ml leg/min, p = .57).

The data suggest that the increase in muscle catabolism seen with

severe burn injury is not mediated by elevated cortisol levels.

Table 1. Patient demographics and the effect of ketoconazole.

Control (n = 32) Ketoconazole (n = 17) p,.05 p value

Length of ketoconazole administration (days) NA 3468* S ,.001

Demographics

Age (yrs) 961 761 NS .35

Gender (F/M) 11/21 3/14 NS .22

XHispanic (%) 94 76 NS .16

Caucasian (%) 6 24 NS .16

Time to admission (days) 461 461 NS .65

LOS ICU survivors (days) 3564 4067 NS .48

TBSA burned (%) 5763 6366 NS .19

3rd degree (%) 4965 5368 NS .74

Flame burn (%) 92 73 NS .97

Electrical burn (%) 4 9 NS .97

Scald burn (%) 4 18 NS .97

LOS/% TBSA burned survivors (days/%) 0.660.06 0.660.09 NS .94

No. of surgeries in survivors 561 561 NS .68

Inhalation injury (%) 13 (41%) 9 (53%) NS .41

Infections, Sepsis

Number of minor infections 10 (31%) 5 (29%) NS 1.0

Sepsis (n) 5 (16%) 3 (17%) NS 1.0

Multi-organ failure (n) 7 (22%) 5 (29%) NS .72

TBSA = total body surface area. LOS = length of stay. Data are presented as means 6 SEM, counts, or percentages. *Significant difference for control versus
ketoconazole for corresponding parameter, p,.05.
doi:10.1371/journal.pone.0035465.t001
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treated patients before ketoconazole treatment. Ketoconazole therapy
was initiated by the first week post burn. Urinary cortisol approached
normal values in ketoconazole-treated patients and was significantly
decreased during therapy.
doi:10.1371/journal.pone.0035465.g002

Days Post BurnNon-burned
0 to 7

8 to 16
17 to 22

23 to 28

29 to 34
35 to 40

41 to 60

N
or

ep
in

ep
hr

in
e 

(µ
g/

da
y)

0

50

100

150

200 Control
Ketoconazole

Figure 3. Nor-epinephrine levels are not altered by ketocona-
zole administration. Data are presented as mean 6 SEM. Norepi-
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values (p,0.05).
doi:10.1371/journal.pone.0035465.g003
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There were no significant differences in body composition

between groups. Immobility confounded by hypermetabolism and

the increased catabolic state led to losses in BMC and BMD.

While excess cortisol has been linked to short-term bone loss [28],

there were no gains in BMC or density despite ketoconazole

treatment.

Severe burn injury induced a profound hyper-inflammatory

response. Pro-inflammatory cytokines and acute-phase proteins

were elevated throughout the study period. Ketoconazole treat-

ment did not attenuate the inflammatory response post burn.

Ketoconazole has been used to block androgen steroid synthesis in

prostate cancer and been shown to cause gynecomastia in male

patients in other studies [29,30]. Ketoconazole treatment did not

cause gynecomastia in these patients and did not inhibit androgen

steroid synthesis, despite blocking steroid synthesis and cortisol.

Ketoconazole had no effect on liver function, size, or weight

Table 2. ACTH stimulation test results.

Time of measurements Control
Mean increase from
baseline Ketoconazole

Mean increase from
baseline p value

Baseline 2366 2 38616 2 .31

30 minutes 3666 1363 49624 2569 .23

60 minutes 5663 3263 79628 2664 .26

Data are presented as means 6 SEM. There were no significant differences between groups at baseline, 30 min, or 60 min and no differences in mean increases.
doi:10.1371/journal.pone.0035465.t002
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energy expenditure was significantly higher in control and ketoconazole-treated patients than in non-burned volunteers. There were no significant
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changes in muscle protein synthesis and breakdown, were measured by stable isotope studies using d5-phenyalanine infusion. Black bars indicate
week one post burn and white bars week three post burn. There were no significant differences between groups. Both groups were catabolic during
the study period. C, There was severe whole-body catabolism post burn. There were no significant differences between groups.
doi:10.1371/journal.pone.0035465.g004
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compared to controls. In addition, it had no effect on cardiac

function. Renal function measures did not differ between standard

of care and standard of care with ketoconazole treatment.

Preliminary studies have shown an improvement in muscle

protein synthesis with 7 days of ketoconazole treatment in adults

[8]; however, this was not duplicated in this study, possibly due to

the size of the burn studied, the pediatric population studied, or

the dose of ketoconazole treatment used. Twenty-four-hour

urinary cortisol in excess of 300 mcg/day is diagnostic of

Cushing’s Syndrome [31]. Our patients have values that approach

these levels and remain elevated long after the acute hospitaliza-

tion [5]. Hypercortisolemia leads to profound muscle wasting and

growth retardation [31]. Even after successful definitive pituitary

surgery, patients with Cushing’s Syndrome have no significant

improvement in fat mass or LBM [32]. Furthermore, urine cortisol

levels return to normal levels without therapy at 3 months post

burn, while muscle catabolism persists up to 9 months after injury

[1,5]. Despite reversing hypercortisolemia acutely in severe burned

pediatric patients, catabolism was not reversed or attenuated.

These data indicate another cause for continued muscle proteol-

ysis.

Conclusions
The data suggest that cortisol may not be the predominant

mediator of the hypermetabolic, hypercatabolic response to severe

burn injury. The effects of and elevations in catecholamines and

cortisol persist well into the rehabilitative period–months to years

after injury [1,4,17]. Significant gains in LBM, muscle protein

synthesis, and multi-organ dysfunction have been achieved by

blocking the effects of plasma catecholamines [17,33–35]. This

study attempted to isolate the potential benefits of interrupting

excess cortisol in severely burned children. We have shown that

attenuating cortisol levels by decreasing newly synthesized cortisol

during hospitalization after the initiation of the hypermetabolic

response did not diminish inflammation and hypermetabolism or

alter morbidity and mortality. We conclude that efforts to abate

the hypermetabolic, hypercatabolic response to stress must not

exclusively address hypercortisolemia, but must inhibit the effects

of catecholamines or other factors such as glucagon, either jointly

or solely.

Methods

The protocol for this trial and supporting CONSORT checklist

are available as supporting information; see Checklist S1 and

Protocol S1.

Ethics Statement
This study was reviewed and approved by the Institutional

Review Board of the University of Texas Medical Branch,

Galveston, Texas. Prior to the study, each subject, parent, or

child’s legal guardian signed a written informed consent form. All

thermally-injured children had burns over 30% of their TBSA,

were admitted and consented to the study protocol between 2000

and 2008, and required at least one surgical intervention. After the

patient or their parent or legal guardian consented to the study,

the subjects were randomized to receive ketoconazole or placebo.

Ketoconazole was given enterally at a dose of 5 mg/kg every 12 h

on an acidic stomach and was administered throughout the initial

acute hospitalization.

Participants
There were 38 patients randomized to control (standard of care)

and 23 randomized to ketoconazole. Of the patients randomized

to standard of care alone, six were excluded because they received

anti-catabolic agents. Of the patients randomized to receive

ketoconazole, one did not receive the drug and five patients did

not receive the drug on an acidic stomach. Data from 49 severely

burned patients were analyzed in this study (32 Control and 17

Ketoconazole) (Fig. 1).

Within 24 h of admission, all patients underwent total burn

wound excision. Wounds were covered with 4:1 expanded

autograft or homograft [4]. After the first operative procedure, it

took 5–10 days until the donor site healed and patients returned to

the operating room. This approach was continued until all wound

areas were covered with autologous skin material. Nutritional

treatment was the same for all subjects; a caloric daily intake of

1500 kcal/m2 body surface +1500 kcal/m2 area was delivered as

previously published [36]. The nutritional route of choice for our

patient population was enteral, using Vivonex TENH.

Patient demographics (age, date of burn and admission, sex,

burn size, and depth of burn) and concomitant injuries such as

inhalation injury, sepsis, morbidity, and mortality were recorded.

Inhalation injury was diagnosed by bronchoscopy along with a

consistent history. Minor infection was defined as a positive culture

with less than 105 colony forming units per gram of tissue or

organisms. Wound infection was defined as .105 colony forming

units per gram of tissue in a wound biopsy with the identification

of the pathogen. Repeated counts of the same bacteria in the same

location were counted as the same infection. Sepsis and infection

were defined by the American Burn Association and Society of

Critical Care Medicine guidelines [37–39]. MOF was defined as

previously published [4]. Wound healing was evaluated by

necessary time between operative interventions–defined here by

the time needed for donor sites to heal so that further autografting

of the burned patient is possible. Pulmonary function was

evaluated from incidence of ventilation, length of ventilation,

incidence of atelectasis, and ARDS as defined by the ARDS

network [40]. Pneumonia was defined by guidelines recently

published by the American Burn Association [37].

Cytokines, Hormones, and Proteins
Blood and urine were collected from each burn patient at

admission, preoperatively, and 5 days postoperatively for 4 weeks

and were used for analysis of serum hormone, protein, cytokine,

and urine hormones. Blood was drawn in a serum-separator

collection tube and centrifuged for 10 min at 1320 rpm; the serum

was removed and stored at 270uC until assayed. Serum hormones

and acute-phase proteins were quantified using HPLC, nephe-

lometry (BNII, Plasma Protein Analyzer Siemens Healthcare

Diagnostics, West Sacramento, CA), and ELISA techniques [4].

The Bio-Plex Human Cytokine 17-Plex panel was used with the

Bio-Plex Suspension Array System (Bio-Rad, Hercules, CA) to

profile expression of 17 inflammatory mediators [41].

Cosyntropin challenge tests were performed using a high

performance liquid chromatography (HPLC) method on a

Beckmann Coulter instrument comprising a 508 autosampler,

125 pump system, 168 DAD (diode array detector), and 24 Karate

software. The column was a Symmetry Shield C18 3.5 micron,

4?56150 mm from Waters Corporation. Mobile phase A consisted

of HPLC-grade methanol with 0.1% trifluoroacetic acid (TFA).

Mobile phase B was HPLC-grade water (pH = 2) with TFA. An

isocratic method with 18% over 10 min was used. The analytical

range is 0.1 to 10000 ng/ml. Serum samples were extracted on a

HLB 1 cc 30 mg Oasis solid-phase cartridge (Waters Corporation)

by conditioning with 1 ml methanol followed by 1 ml water,

loading 200 ml sample in 800 ml acidified water, washing with 50%

methanol in water (twice), and eluting with methanol (pH = 10.7).

Ketoconazole Post-Burn
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Eluted samples were evaporated to dry under a gentle stream of

air, reconstituted in 50% methanol water (pH = 2), and subjected

to HPLC analysis. Patients were fasted at least 8 h prior to the test,

and measurements were taken prior to 10 a.m. A baseline blood

sample was drawn, and samples were subsequently drawn at

30 min and 60 min later to determine a patient’s response.

Hypermetabolism
Indirect calorimetry. All patients underwent REE mea-

surements within one week following hospital admission and

weekly thereafter during their acute hospitalization. All REE

measurements were performed between midnight and 5 a.m. while

the patients were asleep and receiving continuous feeding. REE

was measured using a Sensor-Medics Vmax 29 metabolic cart

(Yorba Linda, CA) as previously published [42]. REE was

calculated from oxygen consumption and carbon dioxide produc-

tion using equations described by Mlcak and colleagues [42].

Measured values were compared to predicted normal values,

based upon the Harris-Benedict equation, and to body mass index

[42].
Muscle protein synthesis. The degree of protein catabolism

was quantified using stable isotope tracers. Protein kinetic studies

were performed beginning between 5:00 and 7:00 a.m. on

postoperative day five after the first excision and grafting

procedure. All stable isotope studies consisted of a 5-h infusion

of 2H5-Phenylalanine. Because phenylalanine is neither synthe-

sized nor degraded in the peripheral tissues (it is metabolized only

in the liver), measurement across the leg reflects the net balance of

protein synthesis and breakdown. Blood samples were taken

simultaneously from an ipsilateral femoral artery and vein for this

determination. Indocyanine green was used to determine leg blood

flow. The blood concentration of unlabeled phenylalanine was

determined by gas chromatography-mass spectrometry using the

internal standard approach and tert-butyldimethylsilyl esters, as

previously described [43]. Indocyanine green concentrations were

determined spectrophotometrically at l= 805 nm on a Spectronic

1001 (Bausch and Lomb, Rochester, NY). As phenylalanine is

neither synthesized nor degraded in the periphery, the difference

in concentration of this substrate in the femoral arterial and

venous plasma pools reflects the net balance of leg skeletal muscle

protein synthesis and breakdown. The net balance (NB) was

calculated and standardized for leg volume by the following

equation: NB = (CA 2CV) N BF, where CA and CV are free amino

acid concentrations in blood from the femoral artery and vein and

BF is leg blood flow in cc/min/100 ml leg. Leg blood flow was

determined from a modification of Fick’s equation. BF was

normalized for each patient by leg volume. Subject weight, leg

circumference at prescribed points relative to anatomic landmarks,

and the distances between these points were used to mathemat-

ically model leg volume [43]. Protein synthesis (PS) was calculated

from the formula PS = (EA N CA 2 EV N CV) N BF/EM, where

EA, EV, and EM are the amino acid enrichments in artery, vein,

and muscle, respectively. Protein breakdown (PB) was calculated

from the formula PB = PS 2 NB.
Body composition. Height and body weight were deter-

mined clinically 5 days after admission and at discharge. Total

LBM, fat, BMD, and BMC were measured by dual energy x-ray

absorptiometry (DEXA). A hologic model QDR-4500W DEXA

(Hologic Inc, Waltham, MA) was used to measure body

composition as previously published [44–48].

Organ Function
M-Mode echocardiograms were used to determine CO, CI, SV,

resting HR, and EF. SV and CO were adjusted for body surface

area and expressed as indexes. All cardiac ultrasound measure-

ments were obtained using a Sonosite Titan echocardiogram, with

a 3.5 MHz transducer. Three measurements were performed and

averaged for data analysis. Recordings were performed with

subjects in a supine position and breathing freely, as recommended

by the American Society of Echocardiography [4,45]. Absolute

values were then expressed as percent of normal based on

published nomograms [49].

Liver ultrasound measurements were made with the HP Sonos

100 CF (Hewlett Packard Imaging Systems, Andover, MA). The

liver was scanned using an Eskoline B-scanner, and liver size/

volume was calculated using a previously published formula [50].

Actual size was then compared to predicted size [44]. Serum

proteins, e.g., creatinine, bilirubin, and total protein were

determined using standard nephelometry to evaluate organ

function [4].

Statistics
The distribution of the data was evaluated using QQ plots and

the Kolmogorov-Smirnov normality test. To test for differences in

normally-distributed data (cortisol, catecholamines), we conducted

a two-way repeated measures ANOVA. To test for differences in

non-normally distributed data (cytokines), we used two-way

repeated measures ANOVA on Ranks. In either instance, we

determined group differences using a post-hoc Bonferroni-Dunn

correction to manage multiple comparisons. Two-sided equal-

variance t-tests were used to compare continuous data. Fisher’s

exact test was used for frequency data. P values less than.05 were

considered significant. Continuous data are presented as mean 6

SD or SEM. Frequency data are presented as counts and

percentages. SAS (version 9.2) was used for data analysis and

hypothesis testing. SigmaPlot (version 11.0) was used for graphics.
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