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Recent advances in the development and discovery of pharmacological
interventions within the ubiquitin–proteasome system (UPS) have uncovered an
enormous potential for possible novel treatments of neurodegenerative
disease, cancer, immunological disorder and microbial infection. Interference
with proteasome activity, although initially considered unlikely to be
exploitable clinically, has already proved to be very effective against
haematological malignancies, and more specific derivatives that target
subsets of proteasomes are emerging. Recent small-molecule screens have
revealed inhibitors against ubiquitin-conjugating and -deconjugating enzymes,
many of which have been evaluated for their potential use as therapeutics,
either as single agents or in synergy with other drugs. Here, we discuss recent
advances in the characterisation of novel UPS modulators (in particular,
inhibitors of ubiquitin-conjugating and -deconjugating enzymes) and how they
pave the way towards new therapeutic approaches for the treatment of
proteotoxic disease, cancer and microbial infection.

1Institute of Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry
Experimental Station, Mississippi State University, Mississippi State, MS 39762, USA
2Progenra Inc., Malvern, PA 19355, USA
3Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University
of Oxford, Oxford, OX3 7BN, UK

*Corresponding authors: Benedikt M. Kessler, Henry Wellcome Building for Molecular Physiology,
Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
E-mail: bmk@ccmp.ox.ac.uk and Mariola J. Edelmann, Institute for Genomics, Biocomputing and
Biotechnology, Mississippi Agricultural and Forestry, Experimental Station, Pace Seed Lab, Rm
115, Mississippi State University, 650 Stone Boulevard, Mississippi State, MS 39762, USA. E-mail:
mje100@mafes.msstate.edu

expert reviews
http://www.expertreviews.org/ in molecular medicine

1
Accession information: doi:10.1017/S1462399411002031; Vol. 13; e35; November 2011

© Cambridge University Press 2011. Re-use permitted under a Creative Commons Licence – by-nc-sa.

P
ha

rm
ac

o
lo
g
ic
al

ta
rg
et
s
in

th
e
ub

iq
ui
ti
n
sy

st
em

o
ff
er

ne
w

w
ay

s
o
f
tr
ea

ti
ng

ca
nc

er
,n

eu
ro
d
eg

en
er
at
iv
e
d
is
o
rd
er
s
an

d
in
fe
ct
io
us

d
is
ea

se
s



The ubiquitin–proteasome system (UPS) controls
the turnover and biological function of most
proteins within the cell, and alterations in this
process can contribute to cancer progression,
neurodegenerative disorders and pathogenicity
associated with microbes. Therefore,
pharmacological targeting of the UPS can
potentially provide chemotherapeutics for the
treatment of tumours, neurodegenerative
conditions and infectious diseases. The
widespread involvement of components of the
UPS in many biological processes is reflected by
the fact that several hundred genes have now
been associated with this pathway (Refs 1, 2).
Ubiquitin is a protein with 76 amino acids that
can be covalently attached to other proteins,
thereby influencing their fate and function.
Protein ubiquitylation has numerous
physiological functions. It can act as a
recognition signal for proteasomal degradation
(polyubiquitylation), serve as a signalling
scaffold for protein–protein interactions (Lys63-
poly- or monoubiquitylation) or represent a
targeting signal for the lysosomal pathway or
other cellular compartments (mostly
monoubiquitylation). The ability of the
ubiquitylation machinery to selectively target
substrates is mediated by the specificity of
ubiquitin ligation (E2 and E3 enzymes) and
deconjugation, promoted by deubiquitylating
enzymes (DUBs). Interference with either arm of
this pathway should allow highly targeted
pharmacological intervention, provided that
compounds with sufficient selectivity can be
identified (Refs 3, 4, 5, 6, 7, 8, 9) (Fig. 1).
Additional opportunities are provided by the
discovery of pathogen-encoded factors that
evolved to target the UPS of the host cell,
representing attractive targets for treatments
against infectious diseases (Refs 10, 11, 12).
Therefore, the UPS offers a source of novel
pharmacological targets as the basis for the
successful development of drugs to treat human
diseases. However, the complexity of the
ubiquitin system causes considerable challenges
for high-throughput drug discovery because of
extensive structural similarities. The generation
of selective inhibitors is also impeded by the
large number of DUBs (Refs 13, 14), ubiquitin-
conjugating enzymes (E2s) and ubiquitin ligases
(E3s) (Ref. 15) that might have redundancies in
their biological functions. All these enzymes
possess affinity for ubiquitin and various

ubiquitin conjugates. Therefore, their specificity
is dependent on other structural subtleties and
differences in protein–protein interactions
unique to each enzyme species. To address this
problem, an array of methodologies is used,
such as the identification of ‘hits’ by high-
throughput screening (HTS), the development of
suitable assays for functional screening in vitro
and in cells, and the use of protein structures to
aid rational drug design. These approaches have
already resulted in the discovery of a panel of
inhibitory compounds against the proteasome,
several ubiquitin-conjugating enzymes and
DUBs, all of which have potential for further
specific drug development, as discussed here.

Targeting proteasome subsets for
inhibition – reducing overall toxicity and

overcoming drug resistance
Protein degradation by the proteasome, a
multicatalytic proteinase complex, is at the
centre of the UPS pathway (Fig. 1), and its
pharmacological inhibition was originally
considered lethal for all cell types. It was
therefore rather surprising that bortezomib
(Velcade) was approved as treatment for
multiple myeloma in 2003 (Ref. 16). Since then,
bortezomib has also been approved for the
treatment of mantle cell lymphoma (Ref. 17).
More recently, other derivatives have been
developed that are at various stages of clinical
trials, such as carfizomib (Phase III against
relapsed multiple myeloma), MLN9708 (Phase
I), CEP18770 (Phase I) and the natural product
NPI-0052 (Phase I) (Ref. 3) (Fig. 1). Ubistatins
were also discovered to inhibit proteasomal
proteolysis by interfering with the recognition of
polyubiquitin chains by the proteasome
(Ref. 18). In addition to NPI-0052, further
natural products with potential anticancer
properties have been characterised to interfere
with proteasomal proteolysis (reviewed in
Ref. 19), such as celastrol (Ref. 20), catechin(−),
the component of green tea (Ref. 21), disulfiram
in combination with copper (Ref. 22), a
triterpenoid inhibitor (Ref. 23), curcumin
(Ref. 24) and JBIR-22, which inhibits homodimer
formation of proteasome assembly factor 3
(Ref. 25). Many of these natural products have
intrinsic antitumour properties, although it is
not clear whether this is solely attributable to
their proteasome inhibitory capacities. For
instance, statins have pleiotropic effects and are
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used to treat a variety of different diseases,
including prevention of cardiovascular events,
although it is not entirely clear whether this is
due to direct or indirect interference with
proteasomal proteolysis (Ref. 26). As expected,
proteasome inhibition causes side effects such
as peripheral neuropathy, myelosuppression,
nausea, hypersensibility and increased
susceptibility to infection (Ref. 27). One problem
with proteasome inhibitors is the emergence of
resistance; however, the combination of several
proteasome inhibitors that exert complementary
specificities appears to overcome the problem of
resistance and might have the added benefit
of enabling reduced dosing of the individual
drugs (Refs 28, 29). An alternative way of
circumventing the general toxicity of these
compounds is to develop inhibitors selective
for immunoproteasomes (Refs 30, 31).
Immunoproteasomes are predominantly

expressed in B-cells, T-cells, macrophages,
dendritic cells and other cell types of the
haematopoietic lineage, and can be induced by
cell exposure to interferon-γ and tumour
necrosis factor -α. This leads to an exchange of
the catalytic β-subunits, thereby enhancing
antigen presentation and preserving cell
viability during inflammation-induced oxidative
stress (Refs 32, 33). Based on the observation
that the immunoproteasome promotes enhanced
antigen processing and presentation, it is
predicted that immunoproteasome inhibitors
may have immunomodulatory effects, such as
attenuating autoimmune-related pathologies.
Indeed, a selective immunoproteasome inhibitor
PR957 was shown to prevent experimental
colitis (Ref. 34) and interfere with arthritis in a
mouse model (Ref. 35). This strategy appears to
be less toxic and particularly promising for
treating autoimmune disorders, and might be
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Figure 1. Small-molecule inhibitors in the ubiquitin–proteasome system (UPS). Schematic representation of
components of the UPS including E1, E2–E3 ligases, DUBs and the proteasome complex (20Si:
immunoproteasome). Ubiquitin is indicated as pink circle labelled U. The UPS pathway and different examples of
E1, E2, E3s and DUBs are highlighted in blue boxes. Increasing numbers of small-molecule inhibitors that
interfere at various steps of the UPS cascade are being discovered.
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extended to targeting the thymoproteasome, a
subform expressed in the thymus (Ref. 36).

Inhibition of DUBs as a novel approach to
treat cancer, neurodegenerative diseases

and viral infection
DUBs have also been molecular targets for
inhibitor development in recent years (Fig. 1).
Members of the DUB family known to
contribute to neoplastic transformation include
USP1 (Fanconi anaemia), USP2 (prostate cancer),
DUB3 (breast cancer), USP4 (adenocarcinoma),
USP7 (prostate cancer, non-small-cell lung
adenocarcinoma), USP9X (leukaemias and
myelomas) and BRCC36 (breast cancer) (Refs 13,
14, 37, 38, 39, 40). Mutations in the gene
encoding the ubiquitin-specific protease CYLD
can lead to the neoplastic condition
cylindromatosis, and other DUBs are also
expressed at lower levels in cancer, including
A20 (B-cell and T-cell lymphomas), USP10
(carcinomas) (Ref. 41) and BAP1 (brain, lung
and testicular cancers) (Ref. 37).

USP7 and cancer
USP7, also known as Herpes virus associated USP
(HAUSP), is critical in cancer progression because
of its destabilising effect on the tumour suppressor
p53 (Refs 8, 42, 43). USP7 preferentially
deubiquitylates the E3 ligase HDM2 and its
binding partner HDMX, resulting in the
destabilisation of p53 and the repression of p53
transactivation activity (Refs 43, 44, 45).
Additional substrates of USP7 include claspin,
FOXO4 and PTEN (Refs 40, 46, 47). Thus USP7
exerts both p53-dependent and p53-independent
effects on the control of cell proliferation and
apoptosis, making USP7 an attractive target for
pharmaceutical intervention (Refs 48, 49).
Recently, a high-throughput screen identified the
small-molecule compound HBX 41,108 as an
uncompetitive and reversible inhibitor of USP7
(Figs 1 and 2). HBX 41,108 (Fig. 2, compound 1)
is a functionalised cyano-indenopyrazine
derivative that inhibits several DUBs, including
USP7, and stabilises p53 in a nongenotoxic
manner, resulting in the induction of apoptosis
(Refs 5, 50). An independent screen recently
identified compound P005091 and analogues
such as P045204 and P022077 (Fig. 2, compound
2) as USP7 inhibitors in vitro and in living cells
(Refs 51, 59). Proof of concept in cells was
demonstrated by the stabilisation of p53 and the

induction of p21 by a representative compound
from the P005091 series (Ref. 49).

USP8 (UBPY) and endocytosis
As a function of its key role in the regulation of
receptor endocytosis and trafficking, USP8
(UBPY) interacts with a number of clinically
relevant cancer targets, including the epidermal
growth factor receptor (EGFR) (Ref. 60).
Knockdown of USP8 results in the accumulation
of ubiquitylated EGFR in endosomes (Ref. 61).
Hybrigenics reported the identification of the
USP8 inhibitor HBX 90,397 (Fig. 2, compound
3). However, the clinical usefulness of USP8
inhibitors is questionable following the report
that conditional knockout of USP8 in adult mice
resulted in liver failure, probably as a result of
pronounced decreases in receptor tyrosine
kinases such as EGFR (Refs 62, 63).

Prostaglandins as DUB inhibitors
Prostaglandins are also reported to have inhibitory
activity against DUBs in cellular assays. This
family of compounds form a group of lipid
derivatives that serve as signalling molecules
that affect diverse protein functions, depending
on their localisation and physiological
context. Prostaglandins have been characterised
as important messengers in inflammation
(Ref. 64) and immune responses (Refs 65, 66),
with emerging roles in cancer. The J-series
prostaglandins are known to promote apoptosis
in a p53-independent fashion (Refs 67, 68). D12-
prostaglandin J2 was shown to inhibit ubiquitin
isopeptidase activity in cell lysates, owing to the
presence of the cross-conjugated α,β-unsaturated
ketones in their structure (Fig. 1). Similarly,
compounds unrelated to prostaglandins, but also
containing cross-conjugated α,β-unsaturated
ketones and accessible β-carbons, also inhibit
isopeptidase activity. By contrast, the A-series
prostaglandins, which contain a single α,β-
unsaturated ketone, are less efficacious as
ubiquitin isopeptidase inhibitors (Refs 68, 69).
Hence, the mechanism of inhibition by J-series
prostaglandins is most likely based on the
nucleophilic addition of a DUB thiol to
the endocyclic β-carbon of a compound and the
electrophilic accessibility of prostaglandin
resulting from olefin–ketone conjugation. The
inhibitory effect of prostaglandins is exemplified
by 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2)
(Fig. 2, compound 4), which inhibits the activities
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Figure 2. Small-molecule inhibitors against deubiquitylating enzymes. Examples of DUB inhibitors
characterised in the literature targeting the USP family: HBX41,108 (1) (Ref. 50) and P022077 (2) (Ref. 51)
specific for USP7, HBX 90,397 inhibits USP8 (3) (Ref. 52) and IU1 (7) inhibits USP14 (Ref. 53). Inhibitors
targeting the UCH family include 15d-PGJ2 (Ref. 54) (4) and isatin O-acyl oximes (5) (Ref. 55) specific
against UCH-L3 and other isatin derivatives (6) specific against UCH-L1 (Refs 56, 57). PR-619 (6) targets a
broad range of DUBs (Ref. 51) and GRL0617 (9) inhibits SARS virus encoded papain-like protease (PLpro)
(Ref. 58).
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of UCHL-3 (Ref. 54) and UCH-L1 (Refs 56, 57)
(Fig. 1). 15d-PGJ2 has a detrimental effect on
UCH-L1 structure and therefore perturbs its
activity, offering possibilities of interfering with
progression of Parkinson disease associated with
UCH-L1 mutations (Ref. 57).
Punaglandins are cyclopentadienone and

cyclopentenone prostaglandins chlorinated at
the endocyclic α-carbon position. These
compounds, originally isolated from Telesto riisei
coral, exhibit anti-inflammatory and antitumour
activities (Ref. 70), with higher cytotoxic effects
on cells than the J-series prostaglandins.
Interestingly, their effect on apoptosis is
independent of p53 (Ref. 71). Consistent with
this, punaglandins, such as punaglandin 4, are
also more potent inhibitors of cellular DUB
activity than the J-series prostaglandins. The
proposed mechanism for this enhanced inhibitor
activity is the presence of an electronegative Cl
substituent at the α-position of α,β-unsaturated
carbonyls that increases the reactivity towards
the nucleophilic addition of the DUB catalytic
cysteine thiol group. These chlorinated lipids
could therefore represent a new class of cancer
therapeutics (Ref. 71).
Inhibitors based on other molecular scaffolds

with preferential specificity towards UCHs have
also been reported. For instance, Stein and
colleagues have reported the discovery of isatin
O-acyl oximes (Fig. 2, compounds 5 and 6) with
inhibitory activity against UCH-L1 and UCH-L3
(Ref. 55). More recently, the same group
reported a second series of UCH-L1 inhibitors
based on a pyridone scaffold (Ref. 72). The
authors speculate that these compounds might
have potential in the treatment of
neurodegenerative conditions.

USP14 and neurodegeneration
In HTS, the small-molecule compound IU1 was
found to be a selective inhibitor of USP14.
USP14 is a DUB associated with the proteasome
that blocks the degradation of ubiquitylated
substrates. Cellular data confirmed the
hypothesis that IU1-mediated inhibition of
USP14 indirectly accelerates proteasomal
degradation of proteins, such as tau and ataxin-
3, both of which are involved in
neurodegenerative diseases (Ref. 53). Because
many neurodegenerative disorders such as
Parkinson disease and Creutzfeldt–Jakob disease
are associated with the accumulation of

misfolded proteins, IU1 (Fig. 2, compound 7) or
other USP14-directed small-molecule inhibitors
could potentially be used to eliminate these
toxic proteins and improve the prognosis in
neurodegenerative diseases. In support of this,
USP14 has been previously linked to
neurodegenerative disease, and loss of USP14
leads to an ataxic neurological phenotype in
mice (Refs 73, 74).

General DUB inhibitors
WP1130 (degrasyn) is a derivative of AG490, a
small-molecule compound that blocks Janus-
activated kinase 2 (JAK2) activity. In cells,
WP1130 treatment induces accumulation of
polyubiquitylated conjugates. This phenomenon
has been attributed to the inhibitory activity of
WP1130 towards several DUBs, including
USP9x, USP5, USP14 and UCH-L5 (Ref. 75).
WP1130 might be of therapeutic value, and its
proapoptotic properties have been recently
described (Ref. 76). In support of this, treatment
of cells with WP1130 results in the modulation
of anti- and proapoptotic proteins, such as
MCL-1 and p53 (Ref. 75). Further work suggests
that WP1130 could be administered with
bortezomib because the combination resulted in
synergistic inhibition of tumour cells, regulation
of apoptosis and prolonged survival of the
animals (Ref. 77).

Recently, an additional broad-specificity DUB
inhibitor, PR-619 (Fig. 2, compound 8), was
discovered using ubiquitin–CHOP reporter
technology (Refs 51, 78). Given its broad
specificity, the utility of PR-619 probably lies in
its role as a tool for recovering ubiquitylated
proteins from both cell-free and cellular
experimental systems.

Inhibitors of viral DUBs
Viruses also encode DUBs, and these can be
targeted to block viral infection. Papain-like
protease (PLpro) is a DUB encoded by
severe acute respiratory syndrome coronavirus
(SARS-CoV) (Refs 12, 79, 80). PLpro blocks
IRF3-dependent antiviral responses, indicating
its relevance to key infectious processes and
viral evasion of host innate immune responses.
GRL0617 is a noncovalent inhibitor of PLpro
(Fig. 2, compound 9), which blocks SARS-CoV
viral replication without measurable cytotoxic
effects and hence is a promising antiviral drug
candidate. GRL0617 induces a conformational
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change in PLpro, which effectively inactivates
this DUB. Profiling of DUB activity in
cells exposed to GRL0617 using ubiquitin-
specific active-site probes demonstrated that
this inhibitor is selective for PLpro, which
might explain its low cytotoxicity (Ref. 58).
In summary, these studies illustrate thepotential

of many DUBs as suitable drug targets. Several
challenges remain, but more recent
developments in novel discovery platforms and
enzyme substrates such as multi-ubiquitin
chains of different type and length, CHOP
reporter technology and other isopeptide-bond-
based assays are now being used to identify
novel DUB inhibitors with greater specificity
and sensitivity, providing the framework for
optimisation of more suitable drugs.

Antagonists of E3 ubiquitin ligases
E3 ubiquitin ligases represent a diverse group of
proteins with significant roles in ubiquitin
conjugation. First, the E3 ligases catalyse the
covalent transfer of ubiquitin to a lysyl side
chain of a substrate (Ref. 81). Second, the
specificity of E3 ligases determines which
substrates become ubiquitylated, based on the
recognition signals on target proteins (Refs 82,
83). Unsurprisingly, numerous functions in
neurodegenerative disorders, autoimmune
diseases, inflammation and cancer have been
ascribed to E3 ligases (Refs 84, 85, 86). One of
the most crucial E3 ligases in cancer cell
physiology is the proto-oncogene HDM2 (or its
murine homologue Mdm2), which has been
reported to be amplified in many tumour cells
(Ref. 87). The best characterised substrate of
HDM2 is p53, which is targeted to the
proteasome by HDM2. Thus, inhibition of
HDM2 leads to activation of the p53 pathway,
providing an attractive therapeutic strategy for
cancers that retain wild-type p53 expression.
The crystal structure of HDM2 bound to p53-
derived peptide reveals a deep hydrophobic
cleft in HDM2 necessary for p53 binding. This
feature can be exploited for anticancer treatment
by a rational design of peptide- and nonpeptide-
based antagonists of the HDM2–p53 interaction
by targeting the HDM2 cleft.

HDM2 E3 ligase inhibitors in cancer
Nutlin-3a (Fig. 3, compound 10) belongs to a class
of tetrasubstituted imidazolines and is a potent
nonpeptide HDM2 antagonist. It acts as a

competitive inhibitor, blocking the interaction of
p53 with HDM2 (Ref. 88). Consequently, Nutlin-
3a stabilises p53 and its substrates p21 and
Noxa, contributing to increased apoptosis and
cell cycle arrest in the G1 phase. Its antitumour
properties have been demonstrated for cancer
cells expressing wild-type p53 (Refs 97, 98).
Nutlin-3a efficiently eliminates tumour
xenografts in mice, causing no measurable
abnormalities in animals (Ref. 88). In other
preclinical studies, the combination of Nutlin-3a
and the proteasome inhibitor bortezomib
induced additive cytotoxicity in malignant
multiple myeloma cells. These synergistic
antitumour activities might extend the clinical
applications of bortezomib to neoplasias
exhibiting reduced sensitivity to this proteasome
inhibitor (Ref. 99). R7112, an analogue of Nutlin-
3a, is currently in Phase I clinical trials for the
treatment of solid tumours and haematological
malignancies.

The proof-of-concept data provided by the
discovery of the nutlins spurred additional
research in this area, including the identification
of the HLI98 family of compounds (7-nitro-5-
deazaflavin) and RITA (Fig. 3, compound 11)
that also target the ubiquitin-ligase activity of
HDM2, resulting in the activation of p53-
dependent apoptosis (Refs 100, 101). In addition,
the spiro-oxindoles exemplified by MI-63 and
MI-219 (Fig. 3, compound 12) and the
chromenotriazolopyrimidines were also reported
to be effective nonpeptidomimetic small-
molecule inhibitors of the HDM2–p53
interaction (Refs 102, 103, 104).

Another mode of inhibition of HDM2 is by
blocking its association with the proteasome.
JNJ-26854165 (Fig. 3, compound 13) is one of
the first compounds found to induce p53
levels in tumour cell lines and activate p53
transcriptional activity (Ref. 89). JNJ-26854165 is
currently being investigated as an oral agent for
the treatment of refractory solid tumours in
clinical trials.

Natural products are also an important sourceof
novel E3 ligase inhibitors. For example, 53 000
microbial extracts derived from fermented
microorganisms, such as actinomycete bacteria
and fungi, were screened to discover new
compounds that antagonise the HDM2–p53
interaction. Among these, chlorofusin (Fig. 3,
compound 14), a fungal metabolite isolated
from Fusarium sp., was found to have the highest
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Figure 3. Small-molecule inhibitors against ubiquitin/Ubl-conjugating enzymes. Examples of inhibitors
against E3 ligases include Nutlin-3a (10), RITA (11), MI-219 (12), JNJ-26854165 (13), chlorofusin (14) and
chalcone (AM114) (15), which specifically interfere with the HDM2–p53 or HDM2–proteasome interactions
(Refs 88, 89, 90, 91, 92, 93), and thalidomide (16), which inhibits CRBN (Ref. 94). The ubiquitin-activating
enzyme E1 is targeted by PYR-41 (Ref. 95) (17), and the NEDD8-activating enzyme NAE1 is inhibited by
MLN4924 (18) (Ref. 96). All molecular targets are associated with disease pathologies, in particular cancer.
See text for further details. Abbreviations: CRBN, cereblon; NEDD8, neural precursor cell expressed
developmentally down-regulated 8; Ubl, ubiquitin-like protein.
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inhibitory activity towards HDM2 (Ref. 90).
Chlorofusin has a nine-residue cyclic peptide
containing an l-ornithine side chain linked to a
highly functionalised tricyclic chromophore.
Further studies established that neither the cyclic
peptide, the chromophore of chlorofusin alone or
simple derivatives thereof account for inhibition
of the HDM2–p53 interaction, but that the whole
structure of chlorofusin is required (Ref. 105).
The second example of a natural product

that exhibits inhibition of the p53–HDM2
interaction is the (−) enantiomer of hexylitaconic
acid isolated from a culture of marine-sponge-
derived fungus Arthrinium sp. (Ref. 91). The (−)
hexylitaconic acid impairs p53–HDM2
interactions in a dose-dependent manner, but its
derivatives, including a monomethyl ester, a
dihydro derivative and a dihydro derivative
monomethyl ester, showed no inhibitory activity.
Chalcones are aromatic ketones previously

characterised as potential antitumourigenic
therapeutics in ovarian cancer (Ref. 92), gastric
cancer and other tumours (Ref. 106). Chalcone
derivatives interfere with p53–HDM2 interactions
by binding near the tryptophan-binding pocket
of the HDM2 hydrophobic cleft (Ref. 93).
Molecular modelling studies indicate that boronic
acid binds to lysine residues Lys51 and Lys94 of
HDM2 (Ref. 107). The detailed mechanism of the
cytotoxic activity of chalcones remains to be
determined. In some cases, the enhanced
apoptosis is related to inhibition of the 20S
proteasome and thus stabilisation of p53, as
exemplified by boronic chalcone derivative
AM114 (Fig. 3, compound 15) (Ref. 108).
Regardless, it seems likely that chalcone-
mediated inhibition of the p53–HDM2 interaction
is a contributory mechanism to their reported
antitumour properties (Ref. 93).

SCFSkp2 E3 ligase inhibitors and cancer
HDM2 is not the only ubiquitin E3 ligase that
constitutes a potential therapeutic target.
SCFSkp2 is an SCF (S-phase kinase-associated
protein 1–cullin–F-box) ubiquitin E3 ligase
containing Skp2, an F-box protein that
determines substrate specificity. Upregulation of
SCFSkp2 is associated with decreased p27Kip1
levels and is negatively correlated with a good
prognosis in cancer (Ref. 109); therefore,
compounds directly targeting SCFSkp2 represent
potential drugs for cancer therapy. Using HTS,
Chen and colleagues identified compound A

(CpdA) as a promising SCFSkp2 inhibitor that
prevents incorporation of Skp2 F-box protein
into the SCFSkp2 ligase complex. CpdA thus
leads to ubiquitin-dependent accumulation of
substrates for SCFSkp2 E3 ligase activity, such as
p27, and consequently induces G1–S cell cycle
arrest and apoptosis. Notably, CpdA works
synergistically with the proteasome inhibitor
bortezomib (Ref. 110), probably by interfering
with Cul1 neddylation.

Recently, two additional examples of E3
inhibitors were reported. First, using a
fluorescence polarisation screen, the biplanar
dicarboxylic acid compound SCF-I2 was shown
to be an allosteric inhibitor of substrate
recognition by the yeast F-box protein SCFCdc4.
SCFCdc4 degrades many substrates, such as
SIC1, in a phosphorylation-dependent manner,
and the SCF-I2 inhibitor perturbs the
phosphodegron binding pocket of SCFCdc4

(Ref. 111). A second group used a yeast-based
chemical genetics screen to identify modulators
of SCFMet30 activity (Ref. 112). Biochemical
studies confirmed that SMER3 specifically
inhibits SCFMet30-dependent ubiquitylation of
the transcription factor Met4 by reducing the
binding of Met30 to Skp1, which is probably
due to its direct binding to Met30.

CRBN E3 ligase targeted by the teratogenic
agent thalidomide
Cereblon (CRBN), damaged DNA-binding
protein 1 (DDB1) and Cul4A form an E3 ligase
complex that is important for embryonic
development. This complex is targeted by
thalidomide (Fig. 3, compound 16), a clinically
approved drug for the treatment of multiple
myeloma, leprosy and inflammatory bowel
disease (Crohn disease) (Ref. 113). One of the
enantiomers of thalidomide was found to have
teratogenic side effects. Binding of thalidomide
to the CRBN complex and inhibition of CRBN
E3 ligase activity appear to be the underlying
molecular mechanisms for thalidomide-induced
teratogenicity by the perturbation of embryonic
development (Ref. 94).

MuRF1 E3 ligase inhibition and muscular
atrophy
MuRF1 is a key effector enzyme of muscular
atrophy, an area of unmet medical need for
several different pathologies (Ref. 114). Using
an ELISA-based HTS platform, Progenra
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identified a novel modulator of the E3 ubiquitin
ligase, P013222, which inhibited MuRF1
autoubiquitylation and myosin heavy-chain
ubiquitylation and protected myotubes from
dexamethasone-induced muscle wasting
(Ref. 115).
As outlined above, most of the identified E3

ligase inhibitors are directed towards
protein–protein interactions, and their
‘druggability’ is therefore challenging. The
complexity of this enzyme family, the lack of
details on their precise molecular mechanism
and the fact that most E3s rely on
protein–protein interactions to mediate their
activity makes the design of E3 ligase inhibitors
difficult (Ref. 4), but potentially offers the
framework for translational applications by
interfering with many different biological
processes in a highly specific manner. Recent
reports of the identification of specific SCF
inhibitors increase our confidence that it will be
possible to develop inhibitors of this emerging
class of important drug targets.

Inhibition of ubiquitin-activating enzymes
Ubiquitin conjugation requires initial activation of
ubiquitin by E1 enzyme, which adenylates the C-
terminal carboxyl group of ubiquitin, forming a
high-energy ubiquitin adenylate intermediate,
followed by the formation of a thiol ester
between the carboxyl group of Gly76 of
ubiquitin and a thiol group of E1. This series of
reactions activates the C-terminus of ubiquitin
for a subsequent nucleophilic attack (Ref. 116).
Blocking this reaction could therefore be used to
inhibit ubiquitin conjugation. In vitro studies
suggest that knockdown of E1 ligase results
in lower levels of protein ubiquitylation and
eventually induces cell death in malignant
cells (Ref. 117). To identify novel E1 inhibitors,
Yang and colleagues screened a library of small
compounds and identified 4[4-(5-nitro-furan-2-
ylmethylene)-3,5-dioxo-pyrazolidin-1-yl]-benzoic
acid ethyl ester (PYR-41) as the first cell-permeable
E1 inhibitor. PYR-41 efficiently reduces bulk
protein ubiquitylation and sumoylation, and
prevents degradation of p53, contributing to
enhanced apoptosis. PYR-41 also attenuates
cytokine-mediated nuclear factor-κB (NF-κB)
activation by regulating proteasomal
degradation of IκBα, an inhibitory subunit of
NF-κB. Functionally, PYR-41 probably binds
irreversibly to the active-site cysteine in E1

ligase, therefore preventing ubiquitin transfer
(Ref. 95). However, this compound also targets
several DUBs, including USP5, and crosslinks to
kinases and has antitumour activity in animals
(Ref. 118). PYZD-4409 (Fig. 3, compound 17),
another small-molecule inhibitor, has been
shown to interfere with the activity of E1 ligase,
preferentially inducing tumour cell death in
primary acute myeloid leukaemia cells. The
effects of PYZD-4409 have also been studied in a
mouse model of leukaemia, where it reduced
tumour weight and volume. This study
underlines the importance of E1 as a potential
drug target in leukaemia and possibly other
cancers, especially in cases where neoplastic cells
are resistant to treatment with proteasome
inhibitors such as bortezomib (Ref. 117).
Furthermore, two natural products have been
identified to inhibit E1, panepophenanthrin
isolated from the mushroom Panus rudis
(Refs 119, 120) and himeic acid A derived from
the fungus Aspergillus sp. (Ref. 121), both of
which inhibit the E1-catalysed ubiquitin
activation invitro,butwithunknownmechanisms.

Recently, small-molecule inhibitors of E2
enzymes were also discovered. Leucettamol A, a
compound isolated from a marine sponge
Leucetta aff. Microrhaphis, was identified as a
novel inhibitor of the Ubc13–Uev1A interaction,
thereby blocking the formation of the E1–E2
complex (Ref. 122). Also, an allosteric inhibitor
of the human Cdc34 E2 ligase, CC0651, was
found through a small-molecule screen for
inhibitors of SCFSkp2-dependent ubiquitylation
of p27Kip1, and was shown to interfere with the
proliferation of human cancer cell lines (Ref. 123).

Generally, when targeting E1–E2 conjugating
enzymes, several pathways that are dependent
on ubiquitylation, such as DNA repair or
endocytosis, are inhibited at the same time,
potentially contributing to increased nonspecific
cytotoxicity. Therefore, from the therapeutic
standpoint, the use of ubiquitin E1 (or E2)-specific
inhibitors is currently awaiting additional
preclinical validation before advancing to clinical
studies.

Targeted inhibition of NEDD8-activating
enzymes

Neural precursor cell-expressed developmentally
downregulated-8 (NEDD8) is a ubiquitin-like
protein with the highest homology to ubiquitin.
Its conjugation to substrates (neddylation)
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requires activation by the E1 APPBP1-UBA3 and
transfer by the E2 UBC12 (Ref. 124). NEDD8
primarily functions in the regulation of E3
ubiquitin ligases, modifying most members of
the cullin family. Cullins are scaffold
components of the SCF E3 ubiquitin ligases that
control the proteasomal degradation of proteins
involved in the cell cycle, transcriptional
regulation or signal transduction (Refs 124, 125).
Neddylation of cullins results in increased
ubiquitylation of the SCF substrate proteins and
their subsequent proteasomal degradation. SCF
E3 ligases promote the ubiquitylation of proteins
involved in inflammation and tumourigenesis
(Ref. 126), such as HIF-α and IκBα (Refs 127,
96); therefore, specific inhibition of NEDD8-
activating enzymes (E1) and other components
of the neddylation pathway represents an
alternative approach to targeting the UPS for
cancer treatment. MLN4924 (Fig. 3, compound
18) is a small-molecule inhibitor of the NEDD8-
activating enzyme and is presently being
evaluated in Phase I clinical trials. MLN4924
increases the apoptosis of several tumour cell
lines and murine tumour xenografts and is
considered a promising drug candidate for
myeloid leukaemia (Refs 96, 128, 129). In
contrast to the proteasome inhibitor bortezomib,
MLN4924 is more specific because it does not
inhibit bulk proteasomal degradation (Ref. 96).
The functional mechanism of MLN4924 involves
formation of the MLN4924–NEDD8 covalent
adduct, which is similar to the first intermediate
of the reaction catalysed by the NEDD8-
activating enzyme, thus efficiently inhibiting the
NEDD8 E1 enzyme (Ref. 130).
Given that SCF E3 ligases represent several

hundred of all known E3 ubiquitin ligases, there
is concern that inhibition of ∼300 E3 ligases might
lead to serious side effects in a clinical setting.
However, the impact of side effects must be taken
in the context of proteasome inhibitors, which
have been shown to exhibit acceptable clinical
profiles for the treatment of cancer, yet modulate
the stability of many more proteins (relative to
SCF E3s). Ultimately, the evaluation of MLN4924
and any successor compounds in a clinical setting
will determine whether this strategy is a
therapeutically acceptable approach.

Conclusions and perspectives
The ubiquitin system or ‘ubiquitome’ has been
compared with the well-characterised ‘kinome’

and has spurred an entire array of novel
inhibitors against molecular targets that
manipulate ubiquitin and ubiquitin-like
molecules. Similarly to the kinase field,
functional redundancy, the structural similarities
of active sites (DUBs) and the diversity
of protein–protein interaction domains
(conjugating enzymes) render the discovery of
specific inhibitors challenging. Several novel
compounds are promising results in clinical
trials, such as the proteasome inhibitors
carfizomib (Phase III), MLN2238 (Phase I) and
NPI-0052 (Phase I) or the NAE inhibitor
MLN4924 (Phase I against AML and solid
tumours). Thalidomide, which has been in
clinical use for many years, has been recently
identified as an E3 ligase inhibitor. Also, several
E1 and E3 ligase inhibitors such as PYR-41,
Nutlin-3a, Compound A, P013222 and SCF-I2
have proved successful in the preclinical stage.
Generally, it remains to be determined whether
small molecules are required to specifically
target only one molecule to be clinically useful
or whether, in a manner similar to medically
relevant kinase inhibitors, molecules with
broader specificities against subfamilies of
enzymes might exhibit clinical efficacy. Clearly,
the emergence of new inhibitors directed against
UPS components supplements the activities of
kinase inhibitors, cytotoxic agents and other
compounds, and it is predicted that ultimately
the combinatorial use of these drugs holds the
greatest promise for future therapies against
cancer, neurodegenerative disorders and
infectious disease. These disease pathologies are
highly complex, and substantial differences can
occur between individuals. A broadened arsenal
of small-molecule compounds, including drugs
targeting components of the UPS, might provide
the framework for individualised drug regimens
as part of a trend towards personalised medicine.

Outstanding research questions
• Generate further understanding of the precise

role of E1/E2/E3 ligases and DUBs and other
components in the UPS in disease processes,
to establish correlations between their
dysfunction and properties of disease
pathology.

• Develop promising lead compounds into more
effective inhibitors with greater potency.

• Whereas many small-molecule compounds
show antiproliferative activities in tumour cell
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lines, it is less clear how this can be translated
into inhibiting tumour growth in vivo without
affecting normal cells. Distinguishing between
these two scenarios should drive the selection
and development of more effective
compounds in the future.

• Is it really necessary to chemically target one
enzyme for optimal interference with disease
progression? Many diseases, in particular
cancer, exert aberrations in several
biochemical pathways. The discovery and
pharmacological targeting of all abnormally
functioning networks will be necessary for
better treatments in the future.
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